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Kinetics of photoinduced ordering in azo-dye films: Two-state and diffusion models
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We theoretically study the kinetics of photoinduced ordering in azo-dye photoaligning layers and present the
results of modeling performed using two different phenomenological approaches. A phenomenological two-
state model is deduced from the master equation for the one-particle distribution functions of an ensemble of
two-level molecular systems by specifying the angular redistribution probabilities and by expressing the order
parameter correlation functions in terms of the order parameter tensor. Using an alternative approach that
describes light-induced reorientation of azo-dye molecules in terms of a rotational Brownian motion, we
formulate the two-dimensional diffusion model as the free energy Fokker-Planck equation simplified for the
limiting regime of purely in-plane reorientation. The models are employed to interpret the irradiation time
dependence of the absorption order parameters defined in terms of the principal extinction (absorption) coef-
ficients. Using the exact solution to the light transmission problem for a biaxially anisotropic absorbing layer,
these coefficients are extracted from the absorbance-vs-incidence angle curves measured at different irradiation
doses for the probe light linearly polarized parallel and perpendicular to the plane of incidence. It is found that,
in the azo-dye films, the transient photoinduced structures are biaxially anisotropic whereas the photosteady

and the initial states are uniaxial.
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I. INTRODUCTION

It has long been known that some photosensitive materials
such as compounds containing azobenzene and its deriva-
tives may become dichroic and birefringent under the action
of light. This phenomenon—the so-called effect of photoin-
duced optical anisotropy (POA)—has a long history dating
back nine decades to the paper by Weigert [1].

Over the past few decades the Weigert effect (POA) has
been attracted much attention because of its importance in
the development of tools dealing with the light-controlled
anisotropy. For example, the materials that exhibit POA are
very promising for use in many photonic applications [2-5].

It is also well known that one of the key procedures in the
fabrication of liquid crystal electro-optic devices is the pro-
duction of substrates with anisotropic anchoring properties.
The traditional method widely used to align liquid crystal
display cells involves mechanical rubbing of aligning layers
and has a number of the well-known difficulties [6]. The
photoalignment technique suggested in Refs. [7-9] is an al-
ternative method that avoids the drawbacks of the mechani-
cal surface treatment by using linearly polarized ultraviolet
(UV) light to induce anisotropy of the angular distribution of
molecules in a photosensitive film [10,11]. Thus the phenom-
enon of POA—the so-called Weigert effect—is at the heart
of the photoalignment method.

Light induced ordering in photosensitive materials,
though not being understood very well, can generally occur
in a variety of photochemically induced processes. These
typically may involve such transformations as photoisomer-
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ization, cross-linking, photodimerization, and photodecom-
position (a recent review can be found in Refs. [11,12]).

So, the mechanism underlying POA and its properties
cannot be universal. Rather they crucially depend on the ma-
terial in question and on a number of additional factors such
as irradiation conditions, surface interactions, etc. In particu-
lar, these factors combined with the action of light may result
in different regimes of the photoinduced ordering kinetics
leading to the formation of various photoinduced orienta-
tional structures (uniaxial, biaxial, and splayed).

POA was initially studied in viscous solutions of azo-dyes
[13] and in azo-dye-polymer blends [14], where the aniso-
tropy was found to be rather unstable. This is the case where
the photoinduced anisotropy disappears after switching off
the irradiation [ 13—18]. By contrast to this case, POA can be
long-term stable.

The stable POA was observed in polymers containing
chemically linked azochromophores (azopolymers) [2]. Tt
turned out that stable anisotropy can be induced in both
amorphous and liquid crystalline azopolymers [2,3,19-23].

The photoalignment has also been studied in a number of
similar polymer systems including dye doped polymer layers
[7,24], cinnamate polymer derivatives [8,9,25,26], and side
chain azopolymers [19,20,22,27]. In addition, the films con-
taining photochemically stable azo-dye structures (azoben-
zene sulfuric dyes) were recently investigated as new photo-
aligning materials for nematic liquid crystal cells [28-30].

In Ref. [29], it was found that, owing to high degree of
the photoinduced ordering, these films used as aligning sub-
strates are characterized by the anchoring energy strengths
comparable to the rubbed polyimide films. For these materi-
als, the voltage holding ratio and thermal stability of the
alignment turned out to be high. The azo-dye films are thus
promising materials for applications in liquid crystal devices.

According to Ref. [30], the anchoring characteristics of
the azo-dye films such as the polar and azimuthal anchoring
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energies are strongly influenced by the photoinduced order-
ing. In this paper the kinetics of such ordering will be of our
primary interest. More specifically, we deal with theoretical
approaches and related phenomenological models describing
how the amount of the photoinduced anisotropy character-
ized by absorption dichroism evolves in time upon illumina-
tion and after switching it off.

There are a number of models [17,23,31-35] formulated
for azocompounds exhibiting POA driven by the trans-cis
photoisomerization. In these models, a sample is treated as
an ensemble of the stable frans isomers characterized by
elongated rodlike molecular conformation and the bent ba-
nanalike shaped cis isomers. The mechanism of photoi-
somerization implies that the key processes behind the ori-
entational  ordering of azo-dye molecules are
photochemically induced trans-cis isomerization and subse-
quent thermal and/or photochemical cis-frans back isomer-
ization of azobenzene chromophores.

Owing to pronounced absorption dichroism of photoac-
tive groups, the rate of the photoinduced isomerization
strongly depends on orientation of the azo-dye molecules
relative to the polarization vector of the actinic light, Eyy.
So, the molecules with the optical transition dipole moment
oriented perpendicular to Eyy are almost inactive.

When the cis isomers are short living, the cis state be-
comes temporary populated during photoisomerization but
reacts immediately back to the stable trans isomeric form.
The trans-cis-trans isomerization cycles are accompanied by
rotations of the azo-dye molecules that tend to minimize the
absorption and become oriented along directions normal to
the polarization vector of the exciting light Ey;y. Nonphoto-
active groups may then undergo reorientation due to coop-
erative motion [17,19,33,35,36].

The above scenario, initially suggested in Ref. [13], is
known as the regime of photo-orientation (angular redistri-
bution) where the lifetime of cis isomers is short and POA is
mainly due to the angular redistribution of the long axes of
the trans molecules during the trans-cis-trans photoisomer-
ization cycles. Note that, in the opposite case of long-living
cis isomers, the regime of angular hole burning (photoselec-
tion) occurs so that the anisotropy is caused by angular se-
lective burning of mesogenic frans isomers due to stimulated
transitions to nonmesogenic cis form [22,35,37].

From the above it might be concluded that, whichever
regime of the ordering takes place, the photoinduced orien-
tational structure results from preferential alignment of azo-
dye molecules along the directions perpendicular to the po-
larization vector of the actinic light, Ey;y, determined by the
dependence of the photoisomerization rate on the angle be-
tween Eyy and the long molecular axis. So, it can be ex-
pected that the structure will be uniaxially anisotropic with
the optical axis directed along the polarization vector.

Experimentally, this is, however, not the case. For ex-
ample, constraints imposed by a medium may suppress out-
of-plane reorientation of the azobezene chromophores giving
rise to the structures with strongly preferred in-plane align-
ment [23]. Another symmetry breaking effect induced by
polymeric environment is that the photoinduced orientational
structures can be biaxial [21,23,35,38—40] (a recent review
of medium effects on photochemical processes can be found
in [41]).
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It was recently found that, similar to the polymer systems,
the long-term stable POA in the azo-dye SD1 films is char-
acterized by the biaxial photoinduced structures with favored
in-plane alignment [42]. Unlike azopolymers, photo-
chromism in these films is extremely weak so that it is very
difficult to unambiguously detect the presence of a notice-
able fraction of cis isomers.

As compared to the polymer systems, modeling of photo-
induced ordering in the azo-dye films has received little at-
tention. In this paper we intend to fill the gap and describe
the symmetry breaking and biaxiality effects using phenom-
enological models formulated on the basis of a unified ap-
proach to the kinetics of POA [23,35]. The layout of the
paper is as follows.

In Sec. IT A, we recapitulate the theory [35] by assuming
that the azo-dye molecules can be represented by two-level
molecular systems. This theoretical approach is based on the
master equation combined with the kinetic equation for the
additional (matrix) system, which phenomenologically ac-
counts for the presence of long-living anisotropic (angular)
correlations. Then, in Sec. II B, we discuss the relationship
between the order parameter and the absorption tensors.

In Sec. II C, a phenomenological two-state model is intro-
duced by specifying the angular redistribution probabilities
and by expressing the order parameter correlation functions
in terms of the order parameter tensor. In this model, the
regime of photo-orientation with short-living excited state is
characterized by weak photochromism and negligibly small
fraction of excited molecules that rapidly decays after
switching off irradiation.

According to Ref. [43], when the photochemical pro-
cesses underlying photoisomerization are hindered, the pro-
cess of photoinduced reorientation can be alternatively de-
scribed as rotational diffusion of azo-dye molecules under
the action of the polarized light.

In Sec. III A, we show that diffusion models of POA can
be formulated as the free energy Fokker-Planck (FP) equa-
tion [44], describing light-induced reorientation of azo-dye
molecules as rotational Brownian motion governed by the
effective mean-field potential. Using this approach, the dif-
fusion model suggested in [43] can be easily extended to the
case of biaxial orientational structures. In Sec. III B, we in-
troduce and study the simplified two-dimensional (2D) dif-
fusion model that can be regarded as the first approximation
representing the regime of purely in-plane reorientation.

The two-state and 2D diffusion models are employed to
interpret the experimental data in Sec. I'V. Finally, in Sec. V
we present our results and make some concluding remarks.
Technical details on solving the light transmission problem
for a biaxially anisotropic absorbing layer and on using the
analytical result to extract the extinction coefficients from
the measured dependence of absorbance on the incidence
angle are relegated to Appendix.

II. MASTER EQUATION AND TWO-STATE MODELS

In this section following the approach developed in Refs.
[23,35] we begin with the system of generalized kinetic rate
equations that describe the azo-dye film in terms of one-
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particle distribution functions of an ensemble of two-level
molecular systems. Mathematically, this system that will be
referred to as the master equation can be regarded as a con-
sequence of the Chapman-Kolmogorov equation [45]. The
part of the system governed by the transitions between the
ground and the excited states of azo-dye molecules deter-
mines two-state models characterized by the transition rates
expressed in terms of the angular redistribution probabilities.
We formulate our model by specifying the probabilities and
then examine its predictions.

A. Master equation

We assume that azo-dye molecules are cylindrically sym-
metric and orientation of a molecule can be specified by the
unit vector, w=(sin 6 cos ¢,sin 0 sin ¢,cos ), directed
along the long molecular axis. So, for a spatially homoge-
neous system, angular distribution of the ground-state mol-
ecules at time ¢ is characterized by the number distribution
function Ng(d,7)=Vpg(d,7), where V is the volume and
pg(d,1) is the one-particle distribution function describing
the orientation-density profile of azo-dye molecules in the
ground state. Similarly, for the azo-dye molecules in the ex-
cited state (excited molecules), the distribution function is
Ng(d,1)=Vpg(d,?).

Then the Kinetic rate equations for N (i, ) can be written
in the general form of master equation [45-47],

ON, N,
uz=|:d a:| +2
diff

at dt pra

[W(a,d

BN (1)

- W(B,4'|a, )N, (4d,7) ]dd’
+ Yo N o(0)f,,(8,1) = N, (d,1)],

a,B € {G,E},
(1)

where N is the total number of azo-dye molecules and ng and
ng are the concentrations giving the number fractions of the
ground-state and excited molecules, respectively.

The concentration n,, is defined through the relation link-
ing the one-particle distribution function, p,(1i,?), and the
corresponding normalized angular distribution functions,

fo(1,1),

N, (4,1) = Vp,(4,1) = Nny(1)f,(4,1). (2)
Note that the concentrations meet the relation
ng(t) + ng(t) =1, (3)

which is the conservation law for the total number of mol-
ecules.

The first term on the right-hand side of Eq. (1) is due to
rotational diffusion of azo-dye molecules. It plays a leading
part in the diffusion models that will be discussed later in
Sec. III. In this section we concentrate on frictionless models
representing the limiting case where the diffusion term is
absent.

Now we specify the rate of the G—E transition stimu-
lated by the incident UV light. Figure 1 shows that, in our
frame of reference, the y axis is directed along the polariza-
tion vector of the linearly polarized activating UV light, E
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FIG. 1. (Color online) Frame of reference: the z axis is normal
to the substrate and the polarization vector of the activating light is
directed along the y axis.

=EYy, the z axis is normal to the substrates, and the unit
vector X=[y X Z] is parallel to the x axis. So, the transition
rate can be written as follows [16,48]:

W(E, |G, i4") =T,_(d,i") P, (d'), (4)

P(i) = (hw) '@, ., >, 0y (Q)EE]

i
= qluy(1+ o)
= 7[9/1[3 to,+ ZUany(ﬁ)]/?” ’)/ph = qIUV’ (5)

where o(1d) is the tensor of absorption cross section for the
molecule in the ground state oriented along 4, o;;=0,J;
+(oy—0uu;, o,=(oy—o)/o, is the absorption aniso-
tropy parameter, fiw, is the photon energy, ®,_., is the quan-
tum yield of the process, I',_,(i,d’) describes the angular
redistribution of the molecules in the excited state, Iy is the
pumping intensity, and qE(ﬁw,)'hI)gﬂea'(f). Similarly, the
rate of the spontaneous E — G transition is as follows:

W(G,4[E,d") = y,I',_(d,d"), (6)

where y,=1/7, and 7, is the lifetime of the excited state,
which is expressed in terms of the angular redistribution
probability I',_,(,d"). All the angular redistribution prob-
abilities are normalized so as to meet the standard normal-

ization condition for probability densities,

fI‘B_a(ﬁ,li’)dﬁz 1, (7)

where di=sin 0d6d .

In Eq. (1), the presence of long-living angular correlations
coming from anisotropic interactions between azo-dye mol-
ecules and collective modes of confining environment is
taken into account by using the phenomenological approach
suggested in Refs. [35,40]. In this approach, the effective
anisotropic field, which results in the long-term stability ef-
fect and determines angular distribution of the molecules in
the stationary regime, is introduced through the additional
angular distribution function, f,,(d,7), characterizing the ad-
ditional subsystem that, for brevity, will be referred to as the
matrix system.
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It bears close resemblance to the equilibrium distribution
of the mean-field theories of photoinduced optical anisotropy
[31,32,34]. In these theories, this distribution has been as-
sumed to be proportional to exp[—V(d4)/kzT], where V(i) is
the mean-field potential that depends on the order parameter
tensor.

The last square bracketed term on the right-hand side of
Eq. (1) describes the process that equilibrates the absorbing
molecules and the matrix system in the absence of irradia-
tion. The equilibrium angular distributions f<eq) and ﬂgq> are
both equal to f,,,.

The latter is the case for the mean-field models considered
in [31,32,34]. In these models the excited molecules (cis
fragments) are assumed to be long living with y,=0 and
Yc="Ye- We can now recover the models by setting the an-
gular redistribution probabilities I',_,(d,d") and I',_,(d,d")
equal to the equilibrium distribution, f,,=p(1d), determined
by the mean-field potential V(d): p(d)<exp(-V/kzT). So,
the mean-field approach introduces the angular redistribution
operators acting as projectors onto the angular distribution of
the matrix system. This is the order parameter dependent
distribution that characterizes orientation of the azo-
molecules after excitation.

An alternative and more general approach is to determine
the distribution function f,,(d,7) from the kinetic equation
that can be written in the following form [35]:

Ul Sy DG~ @], ()

dt a={G,E}

Using system (1) and relations (4)—(6) it is not difficult to
deduce the equation for ng(?),

z?nG

— =71~

P ng) = {(P)ghg, )

where the angular brackets (---), stand for averaging over
the angles with the distribution function f,. Owing to condi-
tion (7), this equation does not depend on the form of the
angular redistribution probabilities.

Equations for the angular distribution functions f;(1,7)
and fy(d,?) can be derived from Eq. (1) by using relations
(4)—(9). The result is as follows:

nEa&_ff:_nG[<P>GfE_frg_g(ﬁ,li’)P(ﬁ’)fc(ﬁ”t)dﬁr]
= ¥enelfe = il (10)
nG% =—ng[P(8) - (P)slfc

+ YEnEf rg—e(ﬁ’ﬁ’)fE(ﬁ,’t)dﬁ, - ’YenEfG

- Yonalfc = fiul- (11)

In Sec. II C, the system of Egs. (9)—(11) will be used as the
starting point to introduce our two-state phenomenological
model of POA. This model is formulated as the kinetic equa-
tions for the orientational order parameters that will be dis-
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cussed in Sec. II B where the fraction of the excited mol-
ecules is tacitly assumed to be negligibly small.

B. Order parameters and absorption tensor

Quadrupolar orientational ordering of rodlike molecules is
characterized using the traceless symmetric second-rank ten-
sor [49],

Qi) =Bi®i-I)2, (12)

where I is the identity matrix. Dyadic (12) can be averaged
over orientation of molecules with the normalized angular
distribution function f(i) to yield the order parameter tensor
S,

(Q)=fQ(ﬁ)f(ﬁ)dﬁ=S, (13)

where dd =sin 6df0d¢. In our case, on symmetry grounds, it
can be expected that the basis vectors {X,¥,Z} shown in Fig.
1 define the principal axes of the order parameter tensor. So,
tensor (13) is given by

S = diag(5,,5,,5.). (14)
The dielectric tensor, €, can also be written in the diago-
nal form,

€= dlag( x7 y’ )7 eaﬁ= éaaaﬁ' (15)

In the presence of absorption, tensor (15) is complex valued
and its principal values, {ex €.}, are expressed in terms of
the refractive indices, {n (’)} and the extinction coef-
ficients, {x,, k. K.}, as follow [50]

’y3

weg=n>=(n""

€,= €, +i€., +iK,)> (16)
We can now define the absorption order parameters

through the relation

_ 2D\ -D\" - D

"2kt K+ Ry 2D+ DJ(“) + D)’

(@ _ 2K;— Kj— Ky

i#j#k,
(17)

where the optical densities {D'") D(“ D(“} are proportional
to the extinction coefficients: D D o k;. Note that the optical
density D“)—D(”)[D(“)— “)] can be determined experi-
mentally by measuring the absorption coefficient for a test-
ing beam which is propagating along the normal to the film
substrate (the z axis) and is linearly polarized parallel [per-
pendicular] to the polarization vector of the activating UV
light (the y axis).

Now, following Refs. [30,40], we touch briefly on the
relation between the orientational and the absorption order
parameters defined in Egs. (14) and (17), respectively. To
this end, we begin with the absorption tensor of an azo-dye
molecule,

lj(u) O.L + (O-H O-L)uiu‘a (18)

which is assumed to be uniaxially anisotropic. Its orienta-
tional average takes the following matrix form:

(o) = (0,1 + 2A08)/3, (19)
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ow=0y+20,, Aoc=o0-0,, (20)

where the angular brackets (- -+) denote orientational averag-
ing [see Eq. (13)].

In the low concentration approximation, the optical den-
sities are proportional to the corresponding components of

tensor (19),

D\ =D\ o p(a,, +2A05,)/3, (21a)
DY =D = p(a,,+2A08,)/3, (21b)
Dg“) o« p(o,y +2A08.)/3, (21c)

and on substituting the expressions for the optical densities
[Eq. (21)] into Eq. (17) we obtain

S,(a) = raS[7 ra = Ua/(3 + O-a)’ (22)

where o,=Ac/o . So, the absorption order parameters [Eq.
(17)] are equal to the corresponding elements of order pa-
rameter tensor (14) only in the limiting case where absorp-
tion of waves propagating along the long molecular axis is
negligibly small: o, —0 and 0,,=30 |, + Ac— Ao Note that
the average optical density Di“)+D§,“)+D£") is proportional to
po,, and thus typically does not depend on the irradiation
dose.

C. Two-state model

We can now present our two-state model. Following the
line of reasoning from Refs. [35,40], we assume that the

angular redistribution probabilities, I',_, and I',_,, are both
isotropic,
(6,67) =T (6 = = (3)
d,d —=f
g-e A iso
and
Y=Y =0, (24)

so that the anisotropic field represented by f,, does not influ-
ence the angular distribution of excited molecules. Equilib-
rium properties of excited and ground-state molecules are
thus characterized by two different equilibrium angular dis-
tributions: f;,, and f,,, respectively.

On substituting relations (23) and (24) into Egs. (8) and
(11) we deduce the following system of kinetic equations for
the order parameters:

8 20,
ng ot 3 GGz(ij)\ Ye(l - nG)Sij)
+ yang(S - Si7), (25a)
sy
—alz]_ == Yung(SS" = 519, (25b)
where ijGmn is the order parameter correlation function
given by

G\ =(0,(18)Q,,,(1))g - SIS, (26)
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The key point of the approach suggested in Ref. [35] is
the assumption that the correlators [Eq. (26)], which charac-
terize response of azo-dye molecules to the pumping light
and enter the kinetic equations for the order parameter com-
ponents [Eq. (25a)], can be expressed in terms of the aver-
aged order parameters S( It was also shown that the para-
bolic approximation used in Ref. [23] can be improved by
rescaling the order parameter components S —>)\S(G) with
A=(1+0.6130)/7, computed from the condltlon that there
are no fluctuations provided the molecules are perfectly
aligned along the coordinate unit vector é;: G” ”—O at S(G)
=1. In Ref. [35] this heuristic procedure has also been found
to provide a reasonably accurate approximation for the corr-
elators calculated by assuming that the angular distribution
of molecules can be taken in the form of distribution func-
tions used in the variational mean-field theories of liquid
crystals [49,51].

So, the resulting system of equations that govern temporal
evolution of the order parameters reads

as 2
ng— = —2a¥oh, (577 4 20M/7S - N2S5?)
Sor~ 3
- 7e(1 - I’lG)S + '}’Gng(Sm - S), (273)
aAs 209
ZTa¥oh,y N(2/7 + NS)AS
S o 3
— %.(1 = ng)AS + ygng(AS,, — AS), (27b)
as
—r=- Su=15), 27
ot ’)’mnG( m ) ( C)
IAS,,
T T YuliG(AS,, — AS), (27d)
where 7,,=99, §=5© As= S(G) $©. 5, =5, and

AS,, = Sf’% stm.

Long term stability and photosteady state

Mathematically, the two-state model is defined by equa-
tions for the order parameters and the concentration given in
Egs. (27) and (9), respectively. We may now pass on to dis-
cussing some of its general properties.

Our first remark concerns the effect of the long-term sta-
bility of POA. It means that there is the amount of the photo-
induced anisotropy preserved intact for long time after
switching off the light. Clearly, this is a memory effect and
the system does not relax back to the off state characterized
by irradiation independent equilibrium values of the order
parameters.

In order to see how this effect is described in our model,
we assume that the activating light is switched off at time ¢
=t and consider subsequent evolution of the order param-
eters at t>f.g. In the absence of irradiation, Eq. (27) decom-
poses into two decoupled identical systems of equations for
two pairs of the order parameters: {S,S,,} and {AS,AS,,}. So,
without the loss of generality we may restrict ourselves to
the evolution of the x components of order parameters,
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{S,8,4={8'9 s} governed by the equations

xx

as

~, = %elling=1)S+ (5, 5), (28)
as

— =y (S, 29

o = YnlSn=5) (29)

supplemented with the initial conditions

S(tor) = Sotts Sltog) = S (30)

At Iyy=0, equation for concentration (9) is easy to solve.
So, for the initial value problem with ng(¢.) =ng, we have

1 —ng=exp(= YAl =nyy), At=t—tyy.  (31)

From Eq. (31) it is clear that, in the limiting case of short-
living excited state with Ar>1/1v,, the concentration of ex-
cited molecules, ng=1-ng, rapidly decays to zero. In this
regime, the first term on the right-hand side of Eq. (28) is
negligibly small and can be disregarded. Equations (32) and
(33) can now be easily solved to yield the formulas

S(r) = Sgsftf"")’G[Soff o,;lf)]exp( YAD)/y, (32)

Sm(t) = Sf)sftf) - ym[soff_ Sf)rgf)]exp(_ YAI)/yv (33)

where y=1v,,+vg and

o}? (YmSott + YGSoff)/Y (34)
Evidently, the order parameters defined in Egs. (32) and (33)
evolve in time approaching stationary value (34). The
memory effect manifests 1tself in the dependence of the sta-
tionary order parameter, S, on the (initial) conditions [Eq.
(30)] at the instant the activating light is switched off.

The photosteady states reached in the long irradiation
time limit are represented by stationary solutions of the sys-
tem [Eq. (25)] and the concentration [Eq. (9)].

The steady state concentration of excited molecules can
be expressed in terms of the steady state order parameter,
S(“) through the relation

3+ a,(1+25%)
3(r+ 1) +a,(1+280)

l—ngt):

(35)
where r=1,/v,),. From Eq. (35) it can be seen that, in the
case where the lifetime of the excited state is short and the
ratio r is large, r> 1 the fraction of the excited molecules is
negligible, so that n ~1.

On substituting Eq (5) into the steady state relation

(Q;;()P(d))G =0 (36)

derived from Egs. (25a) and (9) we obtain equation for the
steady state order parameters,

20,
R (0;(8) 0y, (1)) 37
il 3 + O'a<Q ( )Qy}( )>G ( )
From Eq. (25b) the difference between the order parameters
of the matrix system and the ground-state azo-dye molecules
dies out as the photosteady state is approached, SEJG)—SEI'-”)
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—0 at t—oo, Interestingly, Eq. (37) shows that the order
parameters, S“St, characterizing the regime of photosatura-
tion, are independent of the light intensity, /Iyy.

For the specific form of the correlators used to obtain
system (27), the photosteady state is uniaxial with S(vsyf)
—S(Sl and the x component of the order parameter tensor,

Sq—S(St) can be found by solving the equation

xx

20,(1/5 + 2N/ 78— N2S2) = S [3 + 0,(1 +28)]. (38)

III. NONLINEAR FOKKER-PLANCK EQUATIONS
AND DIFFUSION MODEL

The two-state model introduced in Sec. II Ccan be re-
garded as a frictionless model driven by the transitions be-
tween the ground and excited states. A peculiarity of this
model is that the excited molecules have no direct effect on
ordering dynamics of the ground-state molecules and, in the
regime of short-living excited state with y,,/ v, <1, the frac-
tion of the excited molecules can be too small to reveal itself
in experiments.

Since, in the azo-dye films, the nature of the excited state
remains unknown, it is reasonable to consider diffusion mod-
els that do not involve excited molecules. Such a model was
previously suggested in Ref. [43].

In this section we extend the diffusion model [43] by
using the approach based on FP equations [52]. For our pur-
poses, of particular interest are the so-called nonlinear mean-
field FP equations determined by the effective free energy
functional, F[P], as follows

5P oP

where d;=4/dx; and P=P(x,1) is the probability density
(distribution function). The theory and applications of such
equations representing the special case of nonlinear FP equa-
tions were recently reviewed in the monograph [44].

In Sec. IIT A, we show that the rotational diffusion model
governed by the mean-field potential can be derived from the
mean-field FP equation extended to the case of the rotational
diffusion.

A. Rotational mean-field Fokker-Planck equations

In diffusion models, reorientation of molecules is de-
scribed as the rotational Brownian motion. So, our first step
is to recast the mean-field FP equation [Eq. (39)] into the
form of the rotational mean-field FP equation,

(40)

where DE;O‘) is the rotational diffusion tensor and the

components of the angular momentum operator, 7,
expressed in terms of the Euler angles, w=(a,p,7),
are  [53] J,=-i{-cos a cot Bd,—sin adg+ 2?;3 NS

=—i{—sin a cot Bd,+cos a/(93+:2a(9 }, and J.=-id,. Note

that, algebraically, Eq. (40) can ge regarded as a modlﬁed
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version of the FP equation [Eq. (39)], where the nabla opera-
tor —iV is replaced by the angular momentum operator 7,
thus changing the generators of spatial translations to the
ones of rotations [54,55].

When the effective free energy functional is a sum of two
terms that represent the contributions coming from the effec-
tive internal energy, U[f], and the Boltzmann entropy

Flf1=Ulf1+(nf), (41)
the variational derivative of the free energy takes the form

oF V+Inf+1, V oU (42)
T = n b = _7
of of
where V is the mean-field potential. On substituting relation
(42) into Eq. (40) we obtain the mean-field FP equation,

af ==T D dTf+ [ TV}, (43)

describing the rotational diffusion governed by mean-field
potential (42).

The rotational mean-field FP equation [Eq. (43)] is linear
provided that the potential, V, is independent of the angular
distribution function, f. This is the special case correspond-
ing to the well-known rotational diffusion equation that has
been widely used to study a large variety of problems based
on the rotational diffusion model for the rotational motion of
molecules in the presence of external fields. These include
dielectric and Kerr effect relaxation of polar liquids [56-63],
rotational diffusion of a probe molecule dissolved in a liquid
crystal phase [64—69], and molecular reorientation in liquid
crystal phases [70-73].

When molecules and the orientational distribution func-
tion are cylindrically symmetric, the model can be described
in terms the angle between the electric field and the molecu-
lar axis [56-59], whereas angular distributions of a more
general form require using both azimuthal and polar angles
that characterize orientation of the molecules [60,61]. In this
case, for uniaxial (rodlike) molecules, the distribution func-
tion f(a,B,y)=f(w) is independent of the Euler angle v,
f@)=f(¢,0) =f(i), and the angular momentum operator
can be expressed in terms of the azimuthal and zenithal (po-
lar) angles, ¢ and 6, as follows:

d,—0
iT o L =[r X V]= 8,9, [sin 0] 6,0,  (44)
where  €4=(cos 6 cos ¢,cos fsin p,—sin §) and €,
=(-—sin ¢,cos ¢,0).

A more complicated biaxial case occurs for asymmetric
top molecules [62,72], macromolecules in liquid solutions
[63], and probes in the biaxial liquid crystal phase [67]. For
such low symmetry, analytical treatment cannot be simplified
and involves the three Euler angles, w=(a, B, 7).

In the lowest order approximation, nonlinearity can be
introduced through the truncated expansion for the internal
energy functional U[f] retaining one-particle (linear) and
two-particle (quadratic) terms,
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Ulf] =J U (o)f(w)dw

1
+ EJ o) U)o, 0,)f(w)dwdw,,  (45)

where [dew---=[3"da[Tsin BdB[idy -+ and Uy(e,,w,)
=U,(w,, ) is the symmetrized two-particle kernel. The ef-
fective potential

Vo) = 500 = Uy (o) + [ (el (36)
of(w)

is the sum of the external field potential, U,(w), and the
contribution coming from the two-particle intermolecular in-
teractions.

For rodlike azo-dye molecules, the one-particle part of
effective potential (46) can be written as a sum of the two
terms,

U,(4) = U,(4) + U,(id), (47)
where the light-induced contribution

U,(d) = MIEEV Q) - Eyy = MIIUVQ_\ry(ﬁ) (48)

comes from the interaction of azo-molecules with the acti-
vating UV light and the surface-induced potential

U(8) =uz - Q- Z=u,Q. (i) (49)

takes into account conditions at the bounding surfaces of the
azo-dye layer.

Assuming that the two-particle interaction is of the Maier-
Saupe form,

U,(8,4,) = u, Tr[Q(d)) - Q(d,)] = MzQij(ﬁl)Qij(ﬁz),
(50)

we derive the expression for the effective potential of azo-
dye molecules,

V@) = ulyyQy,(8) + u, Q- (6) + urS;0,;(8).  (51)

Generally, the equilibrium angular distribution can be ob-
tained as a stationary solution to the FP equation [Eq. (43)].
It is not difficult to see that the stationary solution given by

fulw)=Z expl-V(0)], Z= f exp[- V(o) Jdew

(52)

is the Boltzmann distribution determined by the effective po-
tential. Note that the internal energy and the potential defined
in Egs. (41) and (42) are dimensionless. The energy scale is
determined by the temperature factor kzT incorporated into
the rotation diffusion tensor.

When the FP equation is linear, stationary distribution
(52) describing the equilibrium state is unique. In contrast to
the linear case, effective potential (51) depends on the ele-
ments of the averaged orientational order parameter tensor
(13): V(w)=V(id|8S). So, the components of the order param-
eter tensor in the stationary state, S ij:Sl(-;t), can be found from
the self-consistency condition
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Sij= f 0,;(W)f([S)dd. (53)

In general, there are several solutions of Eq. (53) represent-
ing multiple local extrema (stationary points) of the free en-

ergy
u
FIL]=FulS) =-S5~ Z(S).  (54)

Following the line of reasoning presented in Ref. [44] and
using effective free energy (41) as the Lyapunov functional,
it is not difficult to prove the H theorem for nonlinear FP
equations of form (40). It follows that all transient solutions
converge to stationary ones in the long time limit. So, each
stable stationary distribution is characterized by the basin of
attraction giving orientational states (angular distributions)
that evolve in time approaching the stationary distribution.

Free energy FP equations (both linear and nonlinear) are
generally not exactly solvable. So, we conclude this section
with remarks on numerical methods applicable to nonlinear
FP equations.

The method based on distributed approximating function-
als (DAFs), which couples the path-integral concept to the
DAF idea, is proposed for numerically solving a general
class of nonlinear time-dependent Fokker-Planck (FP) equa-
tions in [74]. The approach is applied to solve a nonlinear
self-consistent dynamic mean-field problem for which both
the cumulant expansion and the scaling theory have been
found by Drozdov and Morillo [75] to be inadequate to de-
scribe a long-lived transient bimodality.

In Ref. [75], a finite-difference method for solving a gen-
eral class of linear and nonlinear FP equations based on a
K-point Stirling interpolation formula is suggested. A proce-
dure to systematically evaluate all the moments of the FP
equation by expanding them in a power series in a given
function of 7 is suggested in [76]. The methods which are
extensions of this power series expansion formalism to a
general Fokker-Planck-Schrodinger process are presented in
[77]. They are applied to a well-known problem of the decay
of an unstable state driven by exponentially correlated
Gaussian noise.

B. Regime of purely in-plane reorientation: 2D model

In Sec. IIT A our model has been formulated as the free
energy FP equation [Eq. (43)] describing rotational diffusion
of azo-dye molecules governed by effective mean-field po-
tential (51). Since general analysis can be rather involved,
we first examine our model in the limiting two-dimensional
case of purely in-plane reorientation.

The simplified two-dimensional model,

= 0yf + 5[ Ty(fV) + fayV = Vayfl, =D, (55)
can be derived by assuming that the out-of-plane component
of the unit vector i describing orientation of the azo-dye

molecules is suppressed and, as is shown in Fig. 1, d
=(sin ¢,cos ¢,0). It implies that, similar to the model of a
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single axis rotator with two equivalent sites [56,57], the mol-
ecules are constrained to be parallel to the substrate plane
(the x-y plane) and the orientational distribution function
takes the factorized form

Jd, 1) = f(¢h,1)8lc),

where &(c) is the & function.

So, in this section we consider the FP equation [Eq. (55)]
representing the simplest case when the out-of-plane reorien-
tation has been completely suppressed. Then, for
=(sin ¢,cos ¢,0), the diagonal elements of order parameter
tensor (12) averaged over the azimuthal angle are given by

S, =0y = (3 sin> p— 1) = 5[~ 3(cos 2¢) + 1],

c=cos 6, (56)

(57a)

Sy=(0Qyy) = %(3 cos’ p—1)= 5[3(005 2¢) + 1],
(57b)
Sz=<sz>=_%7 (570)

where <~">=f(2)”~"d¢.

We can now substitute order parameters (57) into the ef-
fective potential V given in Eq. (51). The result for the an-
gular dependent part of the potential is

V=(v; +vy{(cos 2¢))cos 2¢p = v cos 2 ¢, (58)

where v, =3u;lyy/4 and v,=9u,/8 are the photoexcitation
and intermolecular interaction parameters, respectively.

Our next step is to obtain the system of equation for the
averaged harmonics, c,(7)={(cos n¢)(7), which are propor-
tional to the Fourier coefficients of the distribution function,
f(&, 7). To this end, we integrate the FP equation [Eq. (55)]
multiplied by cos n¢ over the azimuthal angle. The resulting
system reads

(97.6‘,1 == nzcn +nv (Cn+2 - C\n—Z\)’ Co= 1 5 (59)

where v=v+v,¢;.

When f(¢+m)=f(¢), the odd numbered harmonics van-
ish, ¢,;,;=0. For the even numbered harmonics, p;=cy,
system (59) can be conveniently recast into the form

(9,pk=—4k2pk+2kv(pk+1 _pk—l)’ k= 1,2, ey (60)

Pr=Cu, Po=co=1, v=v,+vypy, (61)

where p;=(cos 2¢) is the order parameter harmonics that
enter the expressions for orientational order parameters (57).
Bifurcations of stationary states
From the general formula [Eq. (52)] we obtain the expres-
sion for the stationary distributions,

fa=2 exp[- V]=Z exp[-v cos 2¢],

2
Zy= J exp[- V]d¢, (62)
0

representing the photosteady states in the two-dimensional
case with potential (58).
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Equation (62) can now be combined with the relation
exp[—v cos 2¢p] =1(v) + 2> (- D (v)cos 2k,
k=1
(63)

where [, is the modified Bessel function of integer order
[78], to derive the formulas

Zy=2mly(v), (64)

P = (= D)/ 1(v), (65)

giving the stationary state statistical integral, Z, and the av-
eraged harmonics, pff‘), expressed in terms of the parameter
v. Using the recurrence relation [78]

U[Ik—l(v) =i (v)]= 2kl (v), (66)

it is not difficult to verify that formula (65) gives the station-
ary solution to system (60) which, in the steady state regime
with d.p,=0, is represented by the finite-difference equation

o(pt —pi) = 2kpp. (67)

From Eq. (58), the parameter v=v+v,p\* depends on

the order parameter harmonics and Eq. (65) with k=1 pro-
vides the self-consistency condition

P = (0= v)vy == 1,)/o(v). (68)

This condition can also be obtained as the stationary point
equation for stationary state free energy (54). In our case, we
have

ULfd=vpt” - S, (69)
(Inf)=—1In Zy—vp'®, (70)

1 v’
Fu(v)=v; _E-H)lv —In Iy(v), (71)

where the additive constant is chosen so as to have the free
energy vanishing at v=0.

In Fig. 2(a) it is illustrated that, in the v-p; plane, solu-
tions of the self-consistency [Eq. (68)] can be found as inter-
section points of the curve, —I,(v)/Iy(v), and the straight
line, (v—v;)/v,. It is seen that the number of the intersection
points varies between one and three depending on the values
of the parameters v; and v,.

As is shown in Fig. 2(b), for the case of three stationary
states, the free energy curves are of the double-well potential
form with two local minima separated by the energy barrier.
From the lowest order term of the series expansion,

3 5

x x  x
L)/ X)) =-Z+—-—, 72
1()/1o(x) 2716 97 (72)
it is not difficult to see that this case may occur only if the
parameter v, is less than —2.
Referring to Fig. 2(b), at v;=0 and v, <-2, free energy
(71) is an even function of v, F(v)=Fq(-v), with two sym-
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FIG. 2. (Color online) (a) Intersection points represent solutions
of self-consistency equation (68). (b) Stationary state free energy
(54) as a function of the parameter v.

metrically arranged minima representing two stable station-
ary states. When the parameter of intermolecular interaction,
v,, increases passing through its critical value, U(ZC)=—2, the
minima come close together and coalesce at the critical
point. So, at v, > -2, there is only one minimum correspond-
ing to the unique equilibrium state.

When the activating light is switched on, the parameter v,
is distinct from zero. It gives rise to asymmetry effects illus-
trated in Fig. 2(b). It can be seen that, at v, # 0, one of two
minima becomes metastable. The local maximum represent-
ing the unstable stationary state and the metastable minima
merge and disappear provided the magnitude of the param-
eter v, is sufficiently large.

This effect is evident from the curve depicted in Fig. 3(a)
where the stationary state order parameter harmonics is plot-
ted in the v,-p; plane by using the following parametriza-
tion:

(m_{m=PK@=-JK®UM9 .
b loi=n@=E-0api ().

So, the free energy has two local minima only if the in-
equalities

0.8 ML i i T T
0.6 7% e (@ | I (b) |
-l | - +) —0.2
VC

04} - 3 1

I / 1 F ~0.1
0.2} / —

L Y

T oo . 0 >
g n |
) / (+)

i vc // Vc
-0.2 / .

L ] = —-0.1
0.4 1t o ]

L c —

-0.6 <>~y o 1702

L e L V2 i
'0.8 PR ST NI (T N T I T N

-0.2-0.1 0 0.1 0.2 -2.8 2.6 -24 22 -2
v1 v2

FIG. 3. (Color online) (a) Order parameter harmonics p
=(cos 2¢) as a function of the photoexcitation parameter v; at v,
=-2.5; (b) bifurcation curves in the v,-v; plane are typical of the
cusp catastrophe with the cusp singularity located at (-2,0).
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FIG. 4. (Color online) Bifurcation diagram as the cusp surface
in the three-dimensional (v;,v,,p;) space.

vg') <v, <o (74)

c

v, <v¥=-2,

are satisfied. The critical values of the parameter v; depend
on the reduced strength of intermolecular interaction v, and
can be parametrized as follows:

v1=v1(8) =&—-vyp1(§)

V.= 1

— - _ n-1_
=08 == (OO =

(75)

Geometrically, in the v,-v; plane, Eq. (75) defines the bifur-
cation curves shown in Fig. 3(b). These curves form a bifur-
cation set which is the projection of the cusp surface,

v =&-{pi(8)
Sp=\v2=¢ (76)
p1=—1(&)/1,(é),

representing the bifurcation diagram in the three-dimensional
(v1,v5,p;) space (see Fig. 4). Note that the cusp bifurcation
occurs as a canonical model of a codimension 2 singularity
[79] and the surface shown in Fig. 4 is typical of the cusp
catastrophe [80,81].

We conclude this section with the remark on how diffu-
sion models may account for the effect of long-term stability
by using approximation of the “frozen” potential proposed in
Ref. [43]. Mathematically, it implies that, after switching off
the exciting light at time 7=, with the order parameter har-
monics pyi=p;(t.), the relaxation process is governed by
the kinetic equations for harmonics (60) where the parameter
v is changed to the frozen interaction parameter v,g=v,p g
From Eq. (65) the stationary value of the order parameter
harmonics

Pf:flt) == 11 (o) o(ofr) = P1(Vosr) (77)
is determined by the frozen strength of intermolecular inter-
action, v, and thus depends on the value of the order pa-
rameter harmonics at the time of switching, =7 So, in the
two-state and in the 2D diffusion models the memory effect
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underlying the long-term stability of POA is described by
relations (34) and (77), respectively.

IV. RESULTS

In Secs. I C and III B, we have employed the approaches
based on the master and Fokker-Planck equations to intro-
duce two different models: the two-state model and the two-
dimensional diffusion model, respectively. In both cases, the
photoinduced anisotropy is characterized by the orientational
order parameters whose temporal evolution is governed by
the kinetic equations of the model.

In Sec. II B, we discussed how the order parameters can
be related to absorption characteristics such as extinction
(absorption) coefficients and optical densities. Specifically,
Eq. (22) shows that the absorption order parameters, Sl(“),
defined in Eq. (17) as a function of the principal values of the
extinction coefficients, «;, are proportional to the orienta-
tional order parameters [Eq. (14)]. A comparison between the
theory and experiment can thus be made from the measured
values of the absorption coefficients.

In thin anisotropic films, the absorption coefficients can
be determined experimentally using the methods of ellipsom-
etry [82,83]. These are generally based on the analysis of the
polarization state of light reflected from or transmitted
through a sample.

One of the simplest experimental procedures is to mea-
sure the light transmittance of a film when the testing beam
is normally incident and linearly polarized. Performing the
measurements for beams polarized perpendicular and parallel
to the polarization vector of the UV light the two in-plane
optical densities, D;””:Dﬁ“) and Di“)=D(f), can be obtained
as a function of the irradiation dose.

The normal component, Di"), then can be estimated by
assuming that the total sum of principal optical densities

DW=D"+D\" + D\ (78)

tot

does not depend on the irradiation dose and the photosatu-
rated state is uniaxially anisotropic with Di“)zDi“). More de-
tails about this approach can be found, e.g., in Refs. [35,40]
where it was applied to azopolymer films.

In the Appendix we show that the absorption extinction
coefficients can be extracted from the dependence of absor-
bance on the incidence angle measured using probe beams
which are linearly polarized parallel (p polarization) and per-
pendicular (s polarization) to the plane of incidence. In order
to fit the experimentally measured curves, this method relies
on the analytical expressions for the transmission coefficients
of biaxially anisotropic absorbing layers deduced in the Ap-
pendix [see Eq. (A22)].

The results for the extinction coefficients, k,, Ky and k.,
are summarized in Fig. 5 where the coefficients are plotted
against the irradiation time. The corresponding absorption
order parameters, S)(C"), S;“), and Si"), evaluated from the ex-
perimental data by using formula (17), are presented in
Fig. 6.

It can be seen that the initial and photosaturated states are
both uniaxially anisotropic with S)(C“ =S§,“> and Si“):S(V“), re-
spectively. So, similar to the case of azopolymers, the tran-
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FIG. 5. (Color online) Extinction coefficients as a function of
irradiation time.

sient photoinduced orientational structures are inevitably bi-
axial.

It is also clear that, before reaching the regime of photo-
saturation, the in-plane order parameters, Sfc" and S;“), un-
dergo pronounced changes. By contrast, the normal compo-
nent of the order parameter, Si"), slowly increases with
irradiation time. We can therefore employ the two-
dimensional diffusion model described in Sec. III B as a zero
order approximation where variations in the normal order
parameter component, Si“), are neglected.

The theoretical curves shown in Fig. 6 as dashed lines are
computed by solving system (60). The fitting procedure is as
follows.

Assuming that the order parameter Si“) is constant and
Si“) =~ —(.334, we obtain the coefficient r, that enters relation
(22), r,~0.67, and the absorption anisotropy parameter o,
=~0.1. Then, from the experimental data, we can estimate the
order parameter harmonics in the photosteady state, p(,“)z
—0.887 (the corresponding in-plane order parameter is Sﬁi‘)
~(0.9). The self-consistency condition [Eq. (68)] gives the
equation vzzvgsftf) /p (v‘(,}tf) +v;), linking the interaction and the
photoexcitation parameters, where vosftf) is the solution of Eq.
(77) at pSP=p'V: pV=p,(v'Y). At v,=1.0, this equation
yields the value of the intermolecular interaction parameter,
v, =-5.22.
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FIG. 6. (Color online) Absorption order parameters as a function
of irradiation time. The theoretical curves are computed by numeri-

cally solving the kinetic equations for two-state model (27) and for
two-dimensional diffusion model (60).

PHYSICAL REVIEW E 80, 011706 (2009)

According to the experimental data presented in Figs. 5
and 6, the irradiation time it takes to reach the regime of
photosaturation is about 64 min. From the other hand, for the
computed dependence of the order parameter harmonics, py,
on 7= Dimt)t, this regime takes place at 7= 1.1. So, the rota-
tional diffusion constant Di“’t) can be estimated at about
0.013 min~!' (=2.2X107* s7).

Referring to Fig. 6, agreement between the theoretical
curves and experiment indicates that the two-dimensional
diffusion model can be regarded as a good approximation to
start from. So, the regime of kinetics of the photoinduced
structures in the azo-dye film appears to be close to the lim-
iting case of the in-plane reorientation.

Now we consider the two-state model formulated in Sec.
II C. Similar to the case of the 2D diffusion model, our first
step is to determine the coefficient r, and the anisotropy
parameter o,. The coefficient r,, r,~0.89, can be calculated
as the solution of the equation obtained by substituting the
photosaturated value of the absorption order parameter, ngc)
=r,54=0.59, into Eq. (38). We also find that the absorption
anisotropy parameter o, is about 25.1, 0,~25.1, and the
photosteady state is characterized by the order parameter
Se=S%~0.66.

The numerical results shown in Fig. 6 are computed in the
regime of photoreorientation where the decay rate of the ex-
cited state y,~11.3 min~! is much larger than the excitation
rate, Ypp/ ye~2X 1073, and the thermal relaxation rates,
Yo! ¥e=2%107% and v,,/y,~8 X 107>. Numerical calcula-
tions in the presence of irradiation were followed by com-
puting the stationary values of S and AS to which the order
parameters decay after switching off the irradiation at time
tog (for more details see Sec. II C).

The results presented in Fig. 6 suggest that the two-state
model can be used to relax the assumption on purely in-plane
photoreorientation and to go beyond the limitations of the 2D
diffusion model.

V. DISCUSSION AND CONCLUSIONS

In order to study the kinetics of the photoinduced ordering
in azo-dye films we have employed two different models
capable to account for the peculiarities of the process. In
particular, the films under consideration exhibit the long-
term stable POA characterized by the weak photochromism
and by the suppressed out-of-plane photoreorientation lead-
ing to the biaxiality effects.

The two-state model is formulated by using the phenom-
enological approach developed in Refs. [35,40]. In this ap-
proach, the film is represented by an ensemble of two-level
molecular systems. So, it starts from the master equation
[Eq. (1)] for one-particle angular distribution functions of the
ground-state and excited molecules. The kinetics is then de-
termined by the angular redistribution probabilities that enter
the photoexcitation and decay rates. They also define cou-
pling between the azo-dye molecules and the anisotropic
field represented by the distribution function of the matrix
fom- This anisotropic field reflects the presence of long-living
angular correlations and stabilizes the photoinduced aniso-

tropy.
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The resulting kinetic equations [Eq. (27)] for the order
parameter components are deduced by using the parabolic
approximation suggested in Ref. [35] to express the order
parameter correlation functions in terms of the order param-
eter tensor. Following the procedure described in Refs.
[23,35], these order parameter correlation functions are ad-
ditionally modified in order to take into account constraints
suppressing out-of-plane reorientation. Another important as-
sumption taken in our two-state model is that the excited
molecules do not affect the ordering kinetics directly.

Similarly, there is an alternative approach which is formu-
lated in Sec. III without explicit reference to excited elec-
tronic levels. According to this approach, the photoinduced
anisotropy arises from the rotational Brownian motion of
azo-dye molecules in the effective light modified potential.
Mathematically, this suggests using the mean-field Fokker-
Planck equation [Eq. (40)] with effective free energy func-
tional (41) as the equations governing the Kinetics of photo-
induced ordering. Thus diffusion models can be defined by
specifying the rotational diffusion tensor and effective poten-
tial (42) that enter Eq. (43).

The two-dimensional model studied in Sec. III B presents
the simplest case to start from. It is based on the approxima-
tion of purely in-plane photoreorientation which assumes
that the normal order parameter component S, was kept con-
stant.

In order to test applicability of this approximation, we
compared the predictions of this simple model with the avail-
able experimental data. From Fig. 6 it is clear that, in azo-
dye films, the kinetics of photoinduced structures take place
in the regime close to the limiting case of purely in-plane
photoreorientation.

Referring to Fig. 6, the comparison between the numerical
results and the experimental data shows that the two-state
and the 2D diffusion models both correctly capture the basic
features of the photo-ordering kinetics in the azo-dye layers.
It comes as no surprise that the results computed from the
two-level model give better agreement with experiment than
the ones for the 2D diffusion model. The primary reason for
this is that the two-state model takes into account effects due
to variations in S..

These effects can also be taken into consideration in the
rotational diffusion approach by expanding the orientational
distribution function into a series over the spherical harmon-
ics, Y,,(d), or, more generally, the Wigner D functions
[53.84], D! (w). The mean-field Fokker-Planck equation
[Eq. (43)] then can be transformed into the system of non-
linear ordinary differential equations for the averaged har-
monics, {Y,,)(1) or (D’ )(t). Equations (60) represent the

mm
special case of such system derived for the two-dimensional
model.

For an infinite number of equations, numerical analysis
involves truncating the system so that only a finite number of
harmonics are taken into account. The number of harmonics
is typically determined by the required accuracy of calcula-
tions. Difficulties emerge if this number turns out to be very
large. For instance, this is the case for highly ordered photo-
steady states.

So, we have demonstrated that the phenomenological ap-
proach in Ref. [35] and generalized diffusion models can be
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FIG. 7. (Color online) Geometry of anisotropic layer in the
plane of incidence.

(refl)
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used as useful tools for studying photoinduced ordering pro-
cesses in azo-dye films. It should be noted, however, that
theoretical approaches of this sort, by definition, do not in-
volve explicit considerations of microscopic details of azo-
dye film physics. A more comprehensive study is required to
relate the effective parameters of the models and physical
parameters characterizing interactions between molecular
units of films.

ACKNOWLEDGMENTS

This work was supported by HKUST CERG Grants No.
612208, No. 612406, and No. RPC07/08.EGO1 and RGC
Grant No. 614807. We thank A. Murauski and A. Muravsky
for stimulating remarks and help with the input data used in
Appendix. A.D.K. is also grateful to Professor B. I. Lev (Bo-
goliubov Institute of Theoretical Physics, Kiev) for useful
discussions and acknowledges partial financial support from
STCU Grant No. 4687.

APPENDIX: TRANSMISSION COEFFICIENTS OF
BIAXTALLY ANISOTROPIC ABSORBING LAYERS

In this section we derive the exact solution to the trans-
mission boundary value problem by applying the theoretical
approach developed in Refs. [85,86] to the case of biaxially
(and uniformly) anisotropic absorbing layers.

As is shown in Fig. 7, we consider an absorbing uni-
formly anisotropic film of thickness d with the z axis giving
the optic axis normal to the bounding surfaces: z=0 and z
=d. The other two in-plane optic axes are assumed to be
directed along the unit vectors X and y. In this case the di-
electric tensor of the film is diagonal and is defined in Eq.
(15). From Eq. (16), the principal values of the tensor, €,
can be expressed in terms of the refractive indices, n(a’), and
the extinction coefficients, k..
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The medium surrounding the layer is assumed to be opti-
cally isotropic and characterized by the dielectric constant €,
and the magnetic permittivity u,,. Referring to Fig. 7, there
are two plane waves in the half space z=0 bounded by the
entrance face of the layer: the incoming incident wave
{Eine, Hino} and the outgoing reflected wave {E,.q,H,.q}. In
the half space z=d after the exit face, the only wave is the
transmitted plane wave {E,,,,;,H,,,t Which propagates
along the direction of incidence and is excited by the inci-
dent light.

So, the electric field outside the layer is a superposition of
the plane waves

E|z<0 = Einc(l;inc)ei(kmcir) + Ereﬂ(l;reﬂ)ei(kreﬂ.r) B (Ala)

El.og= Bk e, (Alb)
where the wave vectors K;,., K., and k. are constrained to
lie in the plane of incidence due to the boundary conditions
requiring the tangential components of the electric and mag-
netic fields to be continuous at the boundary surfaces.
Another consequence of the boundary conditions is that
the tangential components of the wave vectors are the same.
Assuming that the incidence plane is the x-z plane we have

K, = Kyoolly = kKo = kX + kg“)zﬁ a e {inc,refl, tr},
(A2)

where k,,/ ky,.=n,,= \s’% is the refractive index of the am-
bient medium and k,,.,=w/c is the free-space wave number.
The wave vector components can now be expressed in terms
of the incidence angle 6, as follows:

ke =k, Sin Oy = kyoeGys (A3)
K =k = = kI = Ky, €08 Ohne = KyacGs (A4)
Gy =1y, sin b, g, = \ni - %Zc' (AS)

The plane wave traveling in the isotropic ambient medium
along the wave vector [Eq. (A2)] is transverse, so that the
polarization vector is given by

E,(k,) = EP(k% -k gk, + EXY, (A6)
where E'% and Eﬁ“) are the in-plane and out-of-plane com-
ponents of the electric field, respectively.

The electromagnetic field of incident, transmitted, and re-
flected waves propagating in the ambient medium is of the
general form

{E.H} = {E(2), H(»)}e" . (A7)
On substituting the relations [Eq. (A7)] into the Maxwell
equations we can obtain the equations for the tangential com-
ponents of the electromagnetic field inside the anisotropic
layer. The result can be written in the following 4 X 4 matrix
form:
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M, Mu><EP

1) Ek\/ s
M, My, Hp) T Pt

(A8)

—iaTF=M~FE<

E(2) H,(2)
where Ep(z)= (EV(Z)) and Hp(z)=( 1) ).

For dielectric tensor (15) with the plane of incidence par-
allel to the x-z plane, from the general expressions derived in
Refs. [85,86], the 2 X 2 matrices M;; characterizing the block
structure of the matrix M are given by

2 2
n.— 0
M12—€Z]< < >, M;, =0, (A9)
nZ
o n? 0
My =p 2 o)y Mp=0. (A10)
0 ny =g

According to the computational procedure developed in
Refs. [85,86], the transmission and reflection matrices de-
fined through the linear input-output relations

(tr) (inc) (refl) (inc)
(Ei)tr) ) = T<E€1nc) )’ (El()reﬂ) ) = R<E‘?1nc) ) (Al l)
E; E; E; E;
can be expressed in terms of the linking matrix

Wi, le> (A12)

W=V, -U“(h)-vm=<
W21 W22

as follows:

T=W|, (A13)

R=W,, -W; =W, - T. (A14)

The expression for linking matrix (A12) involves the in-
verse of the evolution operator

U '(h)=U(-h) =exp{-iMh}, h=k,d (Al5)
and the eigenvector matrix for the ambient medium
Em - U'qu
Vl’l’l = . 2 (A l 6)
Hm 0'3Hm

which is characterized by the two diagonal 2 X2 matrices,
Em=diag(q"1/nm’ 1) and MmHmzdiag(nm7('Im)’ where o3
=diag(1,-1).

In our case, the resulting expression for the evolution op-
erator is

U, 0
U(h)=exp{iMh}=V-< " )N-I-VT~G,
0 U
0 I
G=< 2), (A17)
L, 0
where I,=diag(1,1),
. g, 0
c=exp{xiQh}, Q={" ). (A18)
qs
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FIG. 8. (Color online) Absorbance as a function of the sine of incidence angle. Circles and squares represent the data measured for testing
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theoretical curves are shown as solid lines.

an |
gy="\nl-q.. q,=\nj-q,. (A19)
nZ
E -o;E 2
V= H 0'3H 5 szdlag(qp,%,—qp,—%),
(A20)
/n, 0 1{n, O
E=<q” * ) H=—< ) (A21)
0 1 m\0 g

We can now substitute operator (A17) into the linking
matrix (A12) and obtain the transmission and reflection ma-
trices using relations (A13) and (A14). The result is given by

t(qg) O I, - P?
T= ( P(q ) ) - 2—22U+’ (A22)
0 ts(‘ix) I,- U+P
r 0 I, - U?
R= ( P(Qx) ) _ 0.32—2*'21), (A23)
0 rx(%c) L, - U+P
nX + n"'l 0
P= V_V_:la Vi = /'anqm B lu’mnxqp
0 B E g,
(A24)

All the matrices that enter Eqs. (A22)—(A24) are diagonal, so
that nondiagonal elements of both transmission and reflec-

tion matrices vanish. Algebraically, this is a consequence of
the diagonal form of the block matrices that define the op-
erator of evolution (A17).

So, absorption of plane waves linearly polarized parallel
and perpendicular to the plane of incidence can be character-
ized by the effective optical densities, D, and D, expressed
in terms of the corresponding transmission coefficients,

Dp,x(einc) = Dp,s(qx) =-2 1n|tp,s(qx)| . (AZS)

The optical densities [Eq. (A25)] are proportional to the ab-
sorbances measured experimentally, D;“p) and Dg‘”‘p), and
determine the theoretical dependence of the absorbance on
the incidence angle, 6, (or, equivalently, on the incidence
angle parameter g,=n,, sin 6;,.).

In Fig. 8, the experimental data on angular dependence of
absorbance measured in the azo-dye SD1 film with the thick-
ness of 15 nm at different irradiation doses are fitted by the
theoretical curves computed from formula (A25).

For our purposes, full description of a rather standard ex-
perimental procedure is not important (some details can be
found in [42]). So, without going into details we note that the
film was illuminated with linearly polarized UV light at
varying exposure time by using LED exposure light source.
The wavelength and the intensity of the actinic light were
365 nm and 3.0 mW/cm?, respectively.

In Fig. 5, the extinction coefficients of the azo-dye layer
found as the fitting parameters are plotted as a function of the
irradiation time.
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