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The naïve mode coupling theory �NMCT� for ideal kinetic arrest and the nonlinear Langevin equation theory
of activated single-particle barrier hopping dynamics are generalized to treat the coupled center-of-mass �CM�
translational and rotational motions of uniaxial hard objects in the glassy fluid regime. The key dynamical
variables are the time-dependent displacements of the particle center-of-mass and orientational angle. The
NMCT predicts a kinetic arrest diagram with three dynamical states: ergodic fluid, plastic glass, and fully
nonergodic double glass, the boundaries of which meet at a “triple point” corresponding to a most difficult to
vitrify diatomic of aspect ratio �1.43. The relative roles of rotation and translation in determining ideal kinetic
arrest are explored by examining three limits of the theory corresponding to nonrotating, pure rotation, and
rotationally ergodic models. The ideal kinetic arrest boundaries represent a crossover to activated dynamics
described by two coupled stochastic nonlinear Langevin equations for translational and rotational motions. The
fundamental quantity is a dynamic free-energy surface, which for small aspect ratios in the high-volume
fraction regime exhibits two saddle points reflecting a two-step activated dynamics where relatively rapid
rotational dynamics coexists with slower CM translational motions. For large-enough aspect ratios, the dy-
namic free-energy surface has one saddle point which corresponds to a system-specific coordinated translation-
rotation motion. The entropic barriers as a function of the relative amount of rotation versus translation are
determined.
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I. INTRODUCTION

Glassy dynamics and kinetic structural arrest are of broad
interest and relevance in both thermal liquids and colloidal
and nanoparticle suspensions �1,2�. Despite intense theoreti-
cal and simulation activities in this area over the last decade
or two, with few exceptions, the focus has been on simple
spherical particle model fluids. In reality, most thermal glass-
forming materials involve more complex elementary con-
stituents, the most generic aspect of which is anisotropic par-
ticle shape. A similar diversity exists at the nanometer and
colloidal scales where large aspect ratio disks, rods, ellip-
soids, and spherocylinders are classic nonspherical objects
�3,4�. Recent advances in materials science �5–7� have led to
the creation of a vast array of nonspherical colloids and
nanoparticles, perhaps the simplest of which is a “dicolloid”
which is the analog of a homonuclear diatomic molecule of
variable length-to-width ratio.

Microscopic ideal mode coupling theory �MCT� �8,9�
studies of dense fluids of hard-core ellipsoids �10� and homo-
nuclear diatomics �11� have been recently performed. Many
interesting results have emerged, including the prediction of
a plastic glass state and a nonmonotonic dependence of the
ideal glass transition volume fraction and transport coeffi-
cients on particle aspect ratio. These predictions have been
partially confirmed via computer simulation of related mod-
els in the dynamic crossover regime �12–15�. However, the
strict MCT nonergodicity transition is known to be an artifact
of neglecting nonperturbative activated barrier hopping pro-
cesses, and simulations have found evidence of the qualita-

tive importance of rotational hopping even in the dynamical
crossover regime �13�.

One of us and his collaborators recently developed and
widely applied a first-principles microscopic theory of
strongly activated single-particle center-of-mass translational
dynamics in fluids and suspensions of hard spheres �16,17�
and uniaxial objects �18�. Our starting point is the simplified
naïve mode coupling theory �NMCT� �16,19� as restricted to
center-of-mass �CM� translational motions �18�. Despite the
limited number of questions that CM-NMCT addresses, it
has successfully treated within a mathematically and concep-
tually simple framework ideal kinetic vitrification for hard
spheres �16,17�, hard linear molecules �18�, re-entrant glass-
fluid-gel melting in dense attractive sphere fluids �20�, and
partial and full localizations in binary mixtures of hard and
sticky spheres �21�. Beyond MCT nonlinear Langevin equa-
tion �NLE� theory �16,17,22� �and simulation �23�� predicts
that MCT-like critical power-law behavior emerges as a
crossover phenomenon associated with activated hopping
over relatively low barriers. Specifically, the variation with
volume fraction of the relaxation time and self-diffusion con-
stant in the beginning stages of the barrier hopping regime
can be empirically fit by a critical power law form despite
being beyond the ideal MCT arrest transition �16,17�. Con-
nections with jamming in granular media �24,25� have also
been made �18,26�. However, explicit treatment of rotational
dynamics, both at the NMCT and beyond levels, has not
been achieved.

The goal of the present paper is to generalize the NMCT
and nonlinear Langevin equation theories for nonspherical
particles to explicitly treat orientational dynamics. Section II
presents the approach at the NMCT level and three special
limits are examined in Sec. III. Numerical results for the
ideal kinetic arrest phase diagram, localization properties,*Corresponding author; kschweiz@illinois.edu
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and nonergodicity factors of hard diatomics are given in Sec.
IV. Extension of the theory to treat activated dynamics is
given in Sec. V and sample calculations of dynamical free-
energy surfaces and entropic barriers as a function of aspect
ratio and volume fraction are presented. The paper concludes
in Sec. VI with a summary and future outlook. Appendix A
derives the uniaxial particle dynamic structure factor, and a
detailed analysis of the vertices for interparticle forces and
torques is given in Appendix B.

II. NAÏVE MODE COUPLING THEORY

We consider one-component fluids of rigid uniaxial ob-
jects described as a linear chain of N bonded interaction sites
�diameter D� that interact via pair decomposable excluded
volume forces. The dynamical theory can be formulated for
this general class of objects. However, in this initial work,
we focus on the simplest and highest symmetry realization: a
homonuclear diatomic of N=2 identical sites separated by a
bond length b corresponding to an aspect ratio of L /D=1
+ �b /D�. The original generalization of NMCT to nonspheri-
cal particles invoked an a priori mapping to a reduced
center-of-mass description which ignored orientational dy-

namics �18�. To set the stage for our theory which removes
this limitation, the CM theory is derived from a more general
site perspective.

A. Center-of-mass naïve mode coupling theory

The central quantity in NMCT is the time-correlation
function matrix of forces �18� felt by sites i and j on a tagged
diatomic due to the surrounding molecules, Kij�t�
��fi�0� · f j�t��. Based on standard MCT projection and fac-
torization approximations, the real forces are replaced by an
effective force between site i on the tagged diatomic and site
k on a different molecule given by −kBT dCik�r� /dr, where
kBT is the thermal energy and Cik is the site-site direct cor-
relation function. In a Fourier-resolved representation, Kij�t�
involves the quantity q2�C> �q�S> �q , t�C> �q��ij�ij�q , t�, where
�ij�q , t� and Sij�q , t� are the corresponding matrix elements
of the dimensionless single molecule and collective density-
fluctuation dynamic structure factors, respectively. The force
correlations temporally decay in a parallel fashion via collec-
tive relaxation of the surrounding media as quantified by
S> �q , t� and via tagged particle motion as quantified by
�> �q , t�. Assembling these theoretical elements, one obtains
�18,21�

�fi�0� · f j�t�� =
1

3�2	 dq

�2��3�q2

k,l

2

�ij�q�Cik�q�Cjl�q�Skl�q��S
�ij��q,t��C

�kl��q,t�

=
1

3�2	 dq

�2��3�q2Css
2 �q��ij�q��S

�ij��q,t�

k,l

2

Skl�q��C
�kl��q,t� , �1�

where � is the molecular number density, the second line has
used the symmetry relation for a homonuclear diatomic,
Cij�q�=Css�q�, where “ss” refers to site-site, and normalized
�at t=0� single molecule and collective dynamic “propaga-
tors” are defined as

�S
�ij��q,t� = �ij�q,t�/�ij�q� , �2�

�C
�kl��q,t� = Skl�q,t�/Skl�q� . �3�

The single molecule dynamic structure factor matrix is

�ij�q,t� = �eiq·�ri�t�−rj�0��� , �4�

where � j j�q�=1 and �12�q�=sin�qb� /qb.
We now transform from the site representation to the

center-of-mass and orientation representation using r�1=R� CM

+b� /2 and r�2=R� CM−b� /2 and rewrite Eq. �4� as

�S
�ij��q,t� = �eiq� ·�R� CM�t�−R� CM�0��eiq� ·��− 1�i+1b��t�+�− 1�jb��0��/2�/�ij�q� .

�5�

Equation �5� makes explicit the fact that both CM transla-
tional and rotational motions contribute to the temporal de-

cay of the single molecule site-site density correlations. To
recover the original CM version of NMCT �18�, relaxation is
assumed to occur solely via center-of-mass translation

�S
�ij��q,t� � �eiq� ·�R� CM�t�−R� CM�0��� � �S

CM�q,t� , �6�

�C
�ij��q,t� � �C

CM�q,t� , �7�

which follow from Eq. �5� if b��t�=b��0�, i.e., molecules do
not rotate. Equations �6� and �7� can alternatively, and more
generally, be viewed as a special case of the “dynamic site
equivalency” approximation that is utilized in Sec. II B to
treat rotations. Using Eqs. �6� and �7� in Eq. �1� yields

�fi�0� · f j�t��

=
1

3�2	 dq

�2��3�sSss�q�q2Css
2 �q��ij�q��S

CM�q,t��C
CM�q,t� ,

�8�

where the site-site level collective static structure factor is
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Sss�q� � N−1 

i,j=1

N

Sij�q� . �9�

Since only CM motions are retained, the sole relevant force-
force time-correlation function is

KCM�t� � 

i,j=1

N

�fi�0� · f j�t��

=
N

3�2	 dq

�2��3�sSss�q�q2Css
2 �q��ss�q�

��S
CM�q,t��C

CM�q,t� , �10�

where the total single molecule static structure factor of the
diatomic is

�ss�q� � N−1 

i,j=1

N

�ij�q� = 1 +
sin�qb�

qb
. �11�

Equation �10� can be explicitly rewritten in the purely CM
dynamical theory form by first recalling the reference inter-
action site model �RISM� integral equation in Fourier space
for site-site equilibrium pair correlations of a fluid composed
of identical interaction sites �27,28�

hss�k� = �ss�k�Css�k��ss�k� + �s�ss�k�Css�k�hss�k� , �12�

Sss�k� � �ss�k� + �shss�k� =
1

�ss
−1�k� − �sCss�k�

, �13�

where �s=N� is the site number density and hss�k� is the
Fourier transform of the intermolecular site-site total corre-
lation function, hss�r�=gss�r�−1. For hard-core interactions,
the site-site Percus-Yevick �PY� closure is �27�

Css�r� = 0, r � D . �14�

The CM and site level total structure factors are related by
adopting the “rigid particle” approximation �29� discussed in
depth previously �18�

Sss�k� � �ss�k�SCM�k� . �15�

At the CM level, the Ornstein-Zernike relation of an atomic
liquid applies �30�

SCM�k� = 1 + �hCM�k� =
1

1 − �CCM�k�
. �16�

Comparing Eqs. �13� and �14�, one has

CCM�k� = N�ss�k�Css�k� , �17�

hCM�k� �
N

�ss�k�
hss�k� , �18�

which are equivalent statements of the rigid particle map-
ping. Combining Eqs. �15�–�17� yields the CM-NMCT
theory for the force time-correlation function

KCM�t� =
1

3�2	 dq

�2��3�SCM�q�q2CCM
2 �q��S

CM�q,t��C
CM�q,t� .

�19�

For liquids, �S
CM�q , t� and �C

CM�q , t�→0 as t→	, but for
ideal solids, these propagators are nonergodicity parameters
or Debye-Waller �DW� factors. Within NMCT, they are
taken to be of an Einstein oscillator �harmonic solid� form
�16,18,19�

�S�q,t → 	� = exp�− q2rloc
2 /6� , �20�

�C�q,t → 	� = exp�− q2rloc
2 /6SCM�q�� , �21�

where rloc is the CM localization length and the classic
de Gennes narrowing correlation of the relaxation rate of
collective density fluctuations with the inverse of the struc-
ture factor �16,30� is included in Eq. �21�. This correction
to a literal Vineyard approximation �16,19,30� ��S

CM�q , t�
��C

CM�q , t�� is quantitatively important and can be motivated
in several ways. The most transparent follows from a short-
time analysis of SCM�q , t� in the overdamped limit where
�21,31�

d

dt
SCM�q,t� = − q2D0SCM

−1 �q�SCM�q,t� �22�

and D0 is the short-time self-diffusion constant. Solving for
SCM�q , t� yields

SCM�q,t� = SCM�q�e−q2D0t/SCM�q� = SCM�q�e−q2�rCM
2 �t��/6SCM�q�.

�23�

The second equality follows from the underlying assumption
of short-time Fickian self-diffusion. Equation �23� is relevant
to the ideal glass problem since particle localization occurs
on short length scales. This motivates the identification of
SCM�q , t→	� in NMCT via �rCM

2 �t→	���rloc
2 �or equiva-

lently the replacement 6D0t→rloc
2 �, thereby yielding Eq.

�21�. This arrested short-time dynamics analysis is an alter-
native motivation for the Gaussian Debye-Waller factors of
Eqs. �20� and �21�.

Using Eqs. �20� and �21� in Eq. �19�, the localization
length can be self-consistently computed which is equivalent
to enforcing an equipartition relation given by �16,18,21�

�KCM�t → 	;rloc�rloc
2 /2 = 3kBT/2. �24�

The NMCT theory self-consistency equation for the localiza-
tion length is then

rloc
−2 =

1

9
	 dq�

�2��3�q2CCM
2 �q�SCM�q�e−�q2rloc

2 /6��1+SCM
−1 �q��,

�25�

which is identical in form to that for an atomic �sphere� fluid
�16�.

B. NMCT for rotating and translating diatomics

The nature of rotational localization, and the possibility of
a partial localization transition into an orientationally ergodic
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but translationally arrested “plastic glass” state, is not ad-
dressed by the CM-NMCT. The starting point for generali-
zation is Eq. �1� for the site-level force time-correlation func-
tion matrix. Knowledge of the single molecule and collective
density-fluctuation matrix propagators, and how they are re-
lated to CM and rotational motions, is the source of the high
technical complexity in extending MCT for spheres to non-
spherical objects within either the site �11� or Euler rigid
body formulations �10�. To render this aspect tractable in a
physically transparent and tractable manner that allows ex-
tension to treat barrier hopping, we propose the “dynamic
site equivalency” �DSE� approximation. For the single mol-
ecule dynamic structure factor matrix, this corresponds to
approximating all matrix elements by the average

�S
�ij��q,t� � �S

ss�q,t� �
�ss�q,t�
�ss�q�

. �26�

The physical idea is that the long-time site level dynamics is
of a “slaved” nature due to the rigid body nature of transla-
tions and rotations. Recall that NMCT approximates propa-
gators by their short-time form, which is then mapped onto
an Einstein description of an ideal solid. For a uniaxial ob-
ject, the propagator in Eq. �26� can be exactly determined
under short-time dynamical conditions as described in Ap-
pendix A. The result is

�S
ss�q,t� = 2�ss

−1�q�

l=0

	

j2l
2 �qb/2��4l + 1�

�exp
− �q2DT + 2l�2l + 1�DR�t� , �27�

where DT and DR are the short-time CM and rotational dif-
fusion constants, respectively, j2l�x� is the spherical Bessel
function of order 2l, and an infinite summation over angular-
momentum states is required. For fixed wave vector, single
molecule density fluctuations decay in a parallel and multi-
plicative manner via CM and rotational motions. Such a Fou-
rier space description of the self-dynamic structure factor is
often used for dense molecular fluids in the normal liquid
regime �32�.

To proceed, a specific description of the rotational degree
of freedom is required. For a uniaxial object, one angle fully
describes this motion. The classic Debye approach �33,34�
appropriate for continuous orientational diffusion is based on
an angle 
�t� defined as 
�t�=cos−1�u��0� ·u��t��, where the
unit vector u��t��b��t� /b. In this formulation, 
�t� is bounded
between zero and �, corresponding to motion of the unit
vector on the surface of a sphere, and hence is not sensitive
to the full particle rotations. As discussed by others �34–36�,
this description is not appropriate for glassy �intermittent�
dynamics and a rotational diffusion constant cannot be de-
fined based on the usual Fickian formula. Rather, an “Ein-
stein formulation” is required corresponding to an un-
bounded, cumulative angular displacement degree of
freedom given by �35,36�

��t� � ����t�� ,

���t� = 	
0

t

dt��� �t�� , �28�

where �� is the angular velocity. This cumulative angular
displacement relative to the initial �t=0� orientation allows a
rotational trajectory to be defined which, in analogy with
translational motion, results in a rotational mean-square dis-
placement that obeys the Fickian relation at long times

lim
t→	

��2�t�� = 4DRt . �29�

The beyond MCT nonlinear Langevin equation theory pro-
posed in Sec. IV for the orientational dynamics is formulated
in terms of this cumulative angular displacement variable.
For small times and angular displacement, the Debye and
Einstein formulations are identical corresponding to

��2�t�� = 4DRt , �30�

��R� CM�t� − R� CM�0��2� = 6DTt . �31�

For NMCT based on a harmonic Einstein solid picture,
Eqs. �30� and �31� imply, in analogy with the sphere analysis,
that �6DTt→	��rloc

2 and �4DRt→	���loc
2 �radians� in Eq.

�27�

�S
�ij��q,t → 	� � �S

�ss��q,t → 	�

= 2�1 +
sin�qb�

qb
�−1�


l=0

	

j2l
2 �qb/2��4l + 1�

�exp�− l�2l + 1��loc
2 /2��

�exp�− q2rloc
2 /6� , �32�

where rloc and �loc are the CM localization length and local-
ization angle. The collective density-fluctuation propagator is
treated in the same DSE spirit

�C
�ij��q,t� � �C

ss�q,t� �
Sss�q,t�
Sss�q�

, �33�

and the de Gennes–corrected Vineyard approximation is
again adopted to relate single and many particle dynamic
fluctuations

�C
�ij��q,t → 	� � 2�1 +

sin�qb�
qb

�−1�

l=0

	

j2l
2 �qb/2��4l + 1�

�exp�− l�2l + 1��loc
2 /2g2��

�exp�− q2rloc
2 SCM

−1 �q�/6� . �34�

By analogy with the treatment of translations, an orienta-
tional de Gennes–like correction is employed in Eq. �34� via
the second-rank orientational correlation factor, g2, associ-
ated with many molecule static angular correlations and de-
fined as �37�
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g2 � 1 + n−1 

i�j=1

n

�P2�u� i · u� j�� , �35�

where n is the number of molecules, P2 is the second Leg-
endre polynomial, and u� j is a unit vector that defines the
orientation of linear molecule j. The single-particle reorien-
tation time, �S,R, and collective reorientation time, �C,R, are
related as �37� �C,R�g2�S,R. Equation �34� assumes the reori-
entation time is inversely proportional to the rotational dif-
fusion coefficient and hence DR→DR /g2. In general, g2 is
modestly larger than unity ��1.1–2� for nonspherical mo-
lecular liquids �38�. For our system, g2 depends on diatomic
aspect ratio and is expected to increase with particle elonga-
tion and volume fraction. However, there is no quantitative
knowledge of g2 for hard diatomics of the aspect ratios and
very high volume fractions of present interest. Fortunately,
this correction has little effect since it is not large compared
to unity and is a pure numerical factor, not a wave-vector–
dependent correction. In what follows, g2=1 unless stated
otherwise.

Two coupled self-consistent equations for the localization
length and angle can now be derived within the NMCT
framework. In the Einstein solid description, KCM

���F� CM�0� ·F� CM�t→	�� is an effective spring constant for
CM displacement and KROT���T� �0� ·T� �t→	�� is an effec-
tive spring constant for rotation. Here, F� CM= f�1+ f�2 is the
total force on the diatomic CM and T� = �b /2�u� � �f�1− f�2� is
the total torque where u� is the unit vector along the diatomic
axis. The NMCT self-consistency equations are of a classical
equipartition relation form

KCMrloc
2 /2 = 3kBT/2, �36�

KROT�loc
2 /2 = kBT . �37�

Combining Eqs. �1�, �32�, �34�, �36�, and �37� yields two
coupled equations for rloc and �loc,

rloc
−2 =

2

9�2	
0

	

dq�q4CCM
2 �q�SCM�q��1 + sin�qb�/qb�−2

�exp
− q2�1 + SCM
−1 �q��rloc

2 /6�

��

l=0

	

j2l
2 �qb/2��4l + 1�exp�− l�2l + 1��loc

2 /2��2

� 	
0

	

dq4�1 + sin�qb�/qb�−2VCM�q�

�exp
− q2�1 + SCM
−1 �q��rloc

2 /6�

��

l=0

	

j2l
2 �qb/2��4l + 1�exp�− l�2l + 1��loc

2 /2��2

,

�38�

�loc
−2 =

b2

12�2exp�− �loc
2 /2�	

0

	

dq�q4CCM
2 �q�SCM�q�

��1 − sin�qb�/qb��1 + sin�qb�/qb�−3

�exp
− q2�1 + SCM
−1 �q��rloc

2 /6�

��

l=0

	

j2l
2 �qb/2��4l + 1�exp�− l�2l + 1��loc

2 /2��2

.

�39�

Equations �38� and �39� constitute the new naïve MCT. A
center-of-mass “vertex” �18,26� is defined in the second line
of Eq. �38� which corresponds to the integrand on the right-
hand side of the equation when rloc=�loc=0. The vertex rep-
resents a Fourier-resolved effective mean-square force ex-
erted by the fluid on a tagged molecule center of mass. Note
that CM and rotational localization, as encoded in the
Debye-Waller factors, are now coupled via the wave-vector
integration. In Appendix B, a detailed analysis of the wave-
vector scaling of the force and torque vertices is presented
which provides a deeper understanding of the dynamical role
of correlations on different length scales. Here we simply
note that the limiting behaviors of the Bessel function con-
tributions are j2l�qb�
 �qb�2l as q→0 and j2l�qb�
 �qb�−1 for
all l as qb→	. The presence of the l=0 contribution in Eqs.
�38� and �39� implies the ergodic rotational state ��loc→	�
differs from the simpler CM description. The latter is recov-
ered from Eq. �38� under the nonrotating condition ��loc
=0� using the sum-rule formula for spherical Bessel func-
tions.

III. LIMITING CASES

Before implementing the new NMCT, we consider three
limiting cases which provide physical insight about the
dominant relaxation channel.

A. Effectively frozen rotation

Consider an isotropic fluid of globally randomly oriented
diatomics. Now imagine the molecules dynamically translate
but do not rotate. This corresponds to �loc=0 in Eq. �38�,
which then reduces to the CM version of NMCT �18� of Eq.
�25�. Although not literally true, this simplification is rel-
evant �as shown below� for small aspect ratio diatomics due
to the dominance of high wave-vector force correlations. In-
deed, if one sets �loc=0 in Eq. �38�, then the amplitude of the
vertex in Eq. �38� is independent of q at high wave vectors
�18�. Alternatively, the effectively frozen rotation limit cor-
responds to CM translation being far more effective at relax-
ing intermolecular forces than rotational motions. Such a
simplification must overpredict the tendency to localize since
rotational motions provide an additional mechanism for es-
caping confining forces and torques.

B. Effectively ergodic rotation

The opposite limit of ergodic rotation assumes that rota-
tional motion is fluidlike ��loc=	�. This limit is expected to
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be relevant at low aspect ratios where only the CM is local-
ized and the system is in a plastic glass state. Setting �loc
=	 in Eq. �38�, one obtains

rloc
−2 =

32

9�2	
0

	

dq�q4CCM
2 �q�SCM�q�

sin4�qb/2�
�qb�4

��1 +
sin�qb�

qb
�−2

exp
− q2�1 + SCM
−1 �q��rloc

2 /6� .

�40�

Unlike the frozen rotation limit, which can never be exact
since �loc=0 does not satisfy Eq. �39�, ergodic rotation can
be exact for a plastic glass. The wave-vector scaling of the
vertex in Eq. �40� is also different than the frozen rotation
�CM-NMCT� case �18�; it grows as �q4 at small wave vec-
tors and decays to zero as �1 /q4 in the high q limit. Hence,
the nonmonotonic dependence of the vertex on q implies the
existence of a characteristic intermediate wave vector and
hence length scale.

C. Effectively frozen center-of-mass

In analogy with the frozen rotation model, one can con-
sider the frozen CM limit corresponding to molecules start-
ing in equilibrated, locally correlated positions that are
locked in place. Although this limiting case cannot be liter-
ally realized in experiment, we shall show it is relevant to
understanding the predictions of the full NMCT theory for
high aspect ratios. Setting rloc=0 in Eq. �39�, the frozen CM-
NMCT equation is

�loc
−2 =

b2

12�2exp�− �loc
2 /2�	

0

	

dq�q4CCM
2 �q�SCM�q�

��1 − sin�qb�/qb��1 + sin�qb�/qb�−3

��

l=0

	

j2l
2 �qb/2��4l + 1�exp�− l�2l + 1��loc

2 /2��2

.

�41�

The limiting vertex scaling with wave vector is again differ-
ent. At small q, the vertex increases as �q6, while it saturates
�q independent� at high wave vectors.

IV. NUMERICAL PREDICTIONS OF NMCT

In this section, several NMCT predictions are worked out:
the location and “order” �discontinuous versus continuous�
of the ideal nonergodicity volume fractions for translation
only �single localization, plastic glass� and simultaneous ro-
tation and translation arrest �double-glass�, CM localization
length and rotational angle along, and beyond, the ideal glass
lines, and the Debye-Waller factors. NMCT is a simplified
formulation of the ideal mode coupling theory which ad-
dresses only the above properties and questions. Another
goal of this section is to test the reliability of NMCT by
comparing its predictions to those of the technically far more
complex, but rigorous within the ideal MCT framework,
“full” MCT results �11� for diatomics at the site level.

A. Ideal nonergodicity phase diagram

Figure 1 shows the full NMCT nonergodicity boundaries
determined from Eqs. �38� and �39�. Ideal glass curves in the
frozen rotation and frozen CM limits are also included. Three
dynamical phases are predicted: fluid, plastic glass, and
double glass. At low-enough volume fractions, only the
trivial solution of Eqs. �38� and �39� exists, rloc=	 , �loc
=	, corresponding to ergodic translation and rotation. Upon
increasing volume fraction, two types of nonergodicity tran-
sitions occur depending on aspect ratio. If L /D�1.43, a non-
trivial solution of finite rloc and infinite �loc emerges corre-
sponding to the fluid-plastic glass transition at a volume
fraction � fp, i.e., the “ergodic rotation” limit of Eq. �40�.
Further increase of volume fraction leads to a double local-
ization solution corresponding to the plastic glass–double-
glass transition at a volume fraction �pd. In contrast, if
L /D�1.43, there is only one nonergodicity transition corre-
sponding to simultaneous rotation and CM localization at a
volume fraction � fd. As L /D→2, the ideal glass transition
volume fraction acquires a value very close to, but slightly
above, that of hard spheres. The plastic glass and double-
glass states merge in a cusplike fashion at a “triple point” at
L /D=1.43 and �t�0.56. All nonergodicity transitions are
“first order,” i.e., discontinuous jumps of the dynamic order
parameter�s�.

The fluid-plastic glass line for L /D�1.43 and the fluid
double-glass line for L /D�1.43, both represent a CM local-
ization transition and constitute the initial nonergodicity
boundary encountered as volume fraction is increased. Con-
sistent with prior simplified CM-NMCT �frozen rotation�
�18�, this boundary is a nonmonotonic function of aspect
ratio. Moreover, the hardest to vitrify state occurs at nearly
the same value of L /D�1.43 in both versions of NMCT.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

L/D

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

φ

frozen rotation
frozen CM
ergodic rotation
double frozen
double frozen (g

2
=2)

DOUBLE GLASS

PLASTIC GLASS

FLUID

FIG. 1. �Color online� Nonergodicity boundaries predicted by
NMCT in the volume fraction—aspect ratio representation. Five
curves indicate CM nonergodicity boundary under the frozen rota-
tion approximation �black circle�, pure rotation nonergodicity
boundary under frozen CM approximation �red triangle�, fluid-
plastic glass transition �blue square�, double-glass transition �green
solid star�, and its analog with g2=2 �green dashed plus�. The in-
tersection of the double-glass and fluid-plastic glass boundaries oc-
curs at a triple point L /D=1.43.
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The differences between the full and frozen rotation
NMCT ideal glass boundaries are largest at intermediate as-
pect ratios. When the aspect ratio is relatively small, rotation
has little effect and the full theory is virtually identical to its
frozen rotation CM limit for L /D�1.1. For large aspect ra-
tios, rotation is strongly constrained and the assumption it is
frozen is a rather good approximation resulting in the full
and CM version of NMCT glass boundaries approaching
each other. As expected physically, the full theory always
predicts higher volume fractions are required for kinetic ar-
rest since rotational motion facilitates fluidity. Of course, ro-
tation becomes more difficult at fixed volume fraction as the
aspect ratio increases and hence the double-frozen glass
curve in Fig. 1 is a monotonically decreasing function of
aspect ratio.

Our overall conclusion is that the frozen rotation CM-
NMCT �18� is qualitatively reliable for the restricted ques-
tion of the location of the first ideal nonergodicity transition.
However, this is not true of the other limiting case: the fro-
zen CM glass boundary in Fig. 1. If the CM is pinned and the
molecule can only rotate, then the volume fraction for orien-
tational arrest decreases strongly with aspect ratio. For all
aspect ratios, it lies below the double-frozen curve and un-
dergoes curve crossing with the ergodic rotation and frozen
rotation ideal glass boundaries.

The results in Fig. 1 also confirm our argument in Sec. II
that the collective rotation factor, g2, has a small quantitative
influence on ideal glass boundaries. Double localization
curves without �g2=1� and with a fixed and rather large
value �g2=2� correction are close and the shapes of the
double-glass arrest boundaries are qualitatively identical. In
reality, g2 depends on volume fraction and L /D in a poten-
tially complex manner �38�, but will not seriously modify the
results.

The full site-site MCT �11� for hard diatomics also pre-
dicts three dynamical phases: fluid, plastic glass, and double
glass. The initial nonergodicity boundary as spherical sym-
metry is broken is a discontinuous �type B� fluid-to-glass line
in the full MCT, while the plastic glass to double-glass tran-
sition is continuous �type A�. The latter is in contrast with
NMCT which is based on just two scalar order parameters
for which all dynamical transitions are discontinuous �type
B�. Quantitatively, the plastic glass–double-glass boundary in
the full MCT is a nonmonotonic function of L /D which ter-
minates in a cusplike manner at a triple point at the double-
glass line at L /D�1.34. In detail, this differs from the re-
sults in Fig. 1 where the triple point is the maximum of the
initial nonergodicity boundary. In full MCT, the latter occurs
at L /D�1.42, in almost perfect agreement with NMCT. The
ideal glass transition for L /D=2 is slightly higher than that
for hard spheres in both the full MCT and NMCT. Quantita-
tively, the full MCT nonergodicity volume fractions are all
higher compared to NMCT.

Finally, we note that if the crude Vineyard approximation
for the collective Debye-Waller factor is used, the CM-
NMCT kinetic arrest boundary is shifted down in volume
fraction by �0.1 for all aspect ratios �not plotted�. Hence, at
the CM level, use of the more accurate de Gennes form of
the collective DW factor results only in quantitative changes.
However, for our NMCT that treats rotations and transla-

tions, qualitative changes occur which results in much poorer
agreement between full MCT and our naïve formulation for
the topology of the ideal kinetic arrest diagram �39�.

B. Localization length and angle

The center-of-mass localization lengths along the noner-
godicity boundaries are shown in Fig. 2�a�. For low aspect
ratio diatomics, rloc /D�0.2 at the plastic glass transition and
is a weakly nonmonotonic function of aspect ratio. For
L /D�1.43, at the plastic glass to double-glass transition, the
CM localization length decreases discontinuously, which is
most apparent at the triple point where rloc /D changes from
0.201 to 0.133. The double-glass localization lengths based
on g2=2 are very close to the g2=1 results. The NMCT
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FIG. 2. �Color online� �a� CM localization length as a function
of aspect ratio along the nonergodicity boundaries: fluid-plastic
glass boundary �blue solid square�, double-glass boundary �green
solid star�, double-glass boundary with g2=2 �green dashed star�,
and plastic glass at the plastic glass–double-glass boundary �blue
dashed circle�. Black vertical dashed line indicates that at the triple
point, rloc /D discontinuously changes from 0.201 for the plastic
glass to 0.133 for double-glass state. �b� Localization lengths as a
function of volume fraction in the plastic glass or double-glass re-
gion for L /D=1.15, 1.43, and 2.0. Inset shows the same results in a
log-linear format.
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predictions for the CM localization length along the first
nonergodicity boundary are quite similar to those of full
MCT �11�, including the weakly nonmonotonic dependence
on aspect ratio for small L /D and the sharp drop near the
aspect ratio corresponding to the most difficult to vitrify
state.

Along the double-glass line, rloc /D monotonically in-
creases with aspect ratio from �0.03 at L /D=1.1 to �0.18
at L /D=2. This trend is expected since the cage size must be
smaller to constrain the rotational motion at higher volume
fraction. In all cases, the CM localization lengths decrease
with volume fraction above the nonergodicity boundaries as
shown in Fig. 2�b� for three illustrative aspect ratios. The
log-linear plot of the inset suggests a roughly exponential
decay.

Figure 3 presents the analogous localization angle results.
For all aspect ratios, �loc discontinuously jumps from infinity

to the finite values as shown in Fig. 3�a�. The localization
angle along the double-frozen glass line is roughly a constant
at �75° for L /D�1.3. Beyond this aspect ratio, �loc de-
creases quickly and at the triple point �loc�40°, while for
the largest aspect ratio is only �15°. The localization angles
predicted along the double-glass boundary based on g2=2
are very close to the g2=1 results. Figure 3�b� shows how the
localization angles decrease with volume fraction above the
double-frozen glass nonergodicity boundary; all �loc decrease
to less than 20° at the highest volume fraction considered.

C. Debye-Waller nonergodicity factors

Figure 4 presents the self and collective Debye-Waller
factors along the double-glass line for six aspect ratios. In the
context of an ideal glass transition, these quantities are
closely related to the intermediate time plateau behavior of
dynamic structure factors. Due to partial rotational relax-
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FIG. 3. �Color online� �a� Localization angle as a function of
aspect ratio along the double-glass boundary: g2=1 �solid star� and
g2=2 �dashed plus�. The intersection of the green solid curve and
the vertical dotted line indicates that at the triple point the localiza-
tion angle discontinuously changes to infinity in plastic glass state.
�b� Localization angles as a function of volume fraction in the
double-glass region for L /D=1.15 �blue star�, 1.43 �green triangle�,
and 2.0 �red circle�. Inset is same results in a log-linear format.
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FIG. 4. �Color online� �a� Self-particle DW factors at the ideal
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ation, the wave-vector dependence of the self-DW factors in
Fig. 4�a� is not strictly Gaussian as true for hard spheres
within NMCT. A two-step or plateaulike feature occurs at
intermediate wave vector for modest aspect ratios. The
shapes of the collective DW factors in Fig. 4�b� are similar to
their self-counterparts but with additional oscillations that
arise from the de Gennes narrowing correction factor in the
CM Debye-Waller factor �see inset�. Such oscillations are
expected based on the full ideal MCT �11�, but are absent if
the collective DW factor of Eq. �34� is replaced by its Vine-
yard analog.

V. BEYOND MCT: DYNAMIC FREE-ENERGY
LANDSCAPE AND ACTIVATED PROCESSES

A. Theory

The nonlinear Langevin equation approach that goes be-
yond MCT to treat single-particle activated barrier hopping
was initially developed for spheres based on a heuristic, but
physically motivated, generalization of NMCT �16,18�. Sub-
sequently, it was derived from microscopic time-dependent
statistical mechanics for one-component spherical particle
fluids based on dynamic density-functional and local equilib-
rium ideas �40�. Recent applications to nonspherical particle
fluids within the frozen rotation CM model exploited the
direct analogy with spherical particles �18�. Most recently,
the NMCT and NLE theories have been extended to treat
“biphasic” mixtures composed of hard and sticky spheres
�21� based on the heuristic route from NCMT to the NLE
theory. This path is now adopted for the nonspherical particle
fluid problem.

In the lightly space and time coarse-grained spirit of
model A �41�, the two coupled nonlinear Langevin stochastic
equations of motion for the CM displacement and cumula-
tive orientational angle displacement scalar dynamical vari-
ables are given in the overdamped �ignore inertia� limit as
�16,21�

− �T
d

dt
rCM −

�

�rCM
Fef f�rCM,�� + �fT = 0, �42�

− �R
d

dt
� −

�

��
Fef f�rCM,�� + �TR = 0, �43�

where the white-noise random force, �fT, and random torque,
�TR, satisfy

��fT�0��fT�t�� = 2kBT�T��t� , �44�

��TR�0��TR�t�� = 2kBT�R��t� , �45�

��fT�0��TR�t�� � 0. �46�

Here, �T and �R are short-time translational and rotational
friction constants, respectively.

The use of a scalar CM displacement as the dynamic
order parameter and isotropic equilibrium correlations to
quantify caging constraints corresponds to the neglect of an-
isotropic CM motion associated with different mobilities par-

allel and perpendicular to the molecular axis. We follow the
physically motivated heuristic approach originally proposed
for spherical particle fluids and mixtures �16,21� to deduce
the form of the dynamic free energy. In the long-time limit,
the key NMCT quantities �F� CM�0� ·F� CM�t�� and �T� �0� ·T� �t��
obey equipartition relations which can be written as �21�

��F� CM�0� · F� CM�t → 	��rloc − 3kBT/rloc

= �Fef f�rCM,��/�rCM�rloc,�loc
= 0, �47�

��T� �0� · T� �t → 	���loc − 2kBT/�loc

= �Fef f�rCM,��/���rloc,�loc
= 0. �48�

Based on the local equilibrium idea underlying the dynami-
cal variable level density-functional approach �40�, the
ensemble-averaged localization length and angle that enter
KCM and KROT derived in Sec. II are then replaced by their
instantaneous dynamical variable analogs thereby yielding

� � Fex�rCM,��
�rCM

=
2rCM

3�2 	
0

	

dq�q4CCM
2 �q�SCM�q��1 + sin�qb�/qb�−2

��

l=0

	

j2l
2 �qb/2��4l + 1�exp�− l�2l + 1��2/2��2

�exp
− q2�1 + SCM
−1 �q��rCM

2 /6� , �49�

� � Fex�rCM,��
��

=
b2�

6�2exp�− �2/2�	
0

	

dq�q4CCM
2 �q�SCM�q�

��1 − sin�qb�/qb��1 + sin�qb�/qb�−3

��

l=0

	

j2l
2 �qb/2��4l + 1�exp�− l�2l + 1��2/2��2

�exp
− q2�1 + SCM
−1 �q��rCM

2 /6� , �50�

where

�Fef f = − 3 ln rCM − 2 ln � + �Fex. �51�

The two-dimensional dynamical free-energy surface follows
via integration as

�Fef f�rCM,�� − �Fef f�rloc,�loc�

= − 3 ln�rCM/rloc� − 2 ln��/�loc�

+ 	
rloc

rCM

dr�
� � Fex�r�,�loc�

�r�
+ 	

�loc

�

d��
� � Fex�rCM,���

���
.

�52�

By construction, the NLE theory of Eq. �49� reduces to ideal
NMCT if the random thermal noise is ignored; a limit that
effectively “turns off” activated barrier hopping �16,21,40�.
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As discussed in detail previously �40�, the vertices in Eqs.
�49� and �50� involve a mean-square effective force since
dynamic density-functional ideas at the stochastic variable,
not ensemble-averaged, level are the basis of the NLE ap-
proach.

In the ergodic rotation limit relevant for relatively small
aspects ratios �L /D�1.43� at volume fractions below the
double-glass boundary, the NLE theory reduces to one sto-
chastic equation of motion for the CM described by a dy-
namical free energy given by

�Fef f�rCM,	�

= − 3 ln�rCM� −
32

�2	
0

	

dq�q2CCM
2 �q�SCM�q�

sin4�qb/2�
�qb�4

��1 +
sin�qb�

qb
�−2

�1 + SCM
−1 �q��−1

�exp
− q2�1 + SCM
−1 �q��rCM

2 /6� . �53�

For comparison, the effective free energy in the frozen rota-
tion literal CM description is �18�

�Fef f�rCM,0�

= − 3 ln�rCM� −
1

2�2	
0

	

dq�q2CCM
2 �q�SCM�q�

��1 + SCM
−1 �q��−1exp
− q2�1 + SCM

−1 �q��rCM
2 /6� .

�54�

The wave-vector dependence of the constraints encoded in
the caging part of the dynamical free energy is different in
Eqs. �53� and �54�, with the localizing constraints stronger in
Eq. �54�.

B. Dynamic free-energy in the plastic glass phase

In the plastic glass region of the kinetic arrest diagram,
Eqs. �53� and �54� can be compared. Figure 5 shows results
for aspect ratios of 1.1, 1.2, and 1.3. The comparison is made
at a common “distance from the ideal nonergodicity bound-
ary,” i.e., a fixed value of �−�c. As expected, the barrier
predicted by the frozen rotation CM model is larger and the
localization length is slightly smaller than the new ergodic
rotation limit results. Despite this generic difference, overall
the dynamic free-energy curves determined by the two de-
scriptions are qualitatively consistent.

C. Dynamic free-energy surfaces in the double-glass regime

The most interesting activated dynamics occurs in the
double-glass region where the CM and rotational degrees of
freedom are both temporally localized. The entropic barrier
hopping process then occurs on a two-dimensional dynamic
free-energy surface Fef f�rCM,��, results for which are shown
in Fig. 6 for three representative aspect ratios of 1.15, 1.43,
and 2.0. The volume fractions are chosen to be well above
the double-frozen glass NMCT boundary in order to most
clearly illustrate the cooperative nature of activated dynami-
cal trajectories that determine the alpha relaxation process. In

all cases, the saddle-point trajectory �lowest entropic barrier�
is associated with an aspect ratio and volume fraction depen-
dent cooperative translation-rotation motion.

Figure 6�a� shows the dynamic free-energy surface for
L /D=1.15 at �=0.675. Its qualitative form is characteristic
of low aspect ratio systems which can exist in a plastic glass
state. Specifically, relaxation will occur in a two-step acti-
vated manner. The lowest barrier to be surmounted is asso-
ciated with mostly, but not entirely, rotational motion, i.e., a
path almost parallel to the � axis with the CM position nearly
fixed at its localization point. One then expects partial rota-
tional equilibration until random thermal noise ultimately
drives at longer times hopping over the higher barrier asso-
ciated with CM translation. Hence, a two-step activated pro-
cess is predicted involving relatively low and high barriers
corresponding to a partial separation of time scales.

As the aspect ratio grows, the form of the dynamic free-
energy surface qualitatively changes. Examples are given
in Fig. 6�b� �L /D=1.43, �=0.65� and Fig. 6�c� �L /D
=2.0, �=0.6�. A single saddle point now exists and a tra-
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FIG. 5. �Color online� Dynamic free energy as a function of
dimensionless CM displacement for the ergodic rotation limit of the
full theory �solid curves� and the analogous CM mapping �frozen
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of �a� 1.1, �from top to bottom� �−�c=0.05, 0.1, and 0.15; �b� 1.2,
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jectory that follows this path involves substantial coupled
translational and rotational displacements the precise mix of
which depends on aspect ratio and volume fraction. One can
anticipate the numerical solution of the coupled NLEs will

result in a heterogeneous �since it is noise driven�, but basi-
cally one step, relaxation process.

Figure 7 summarizes the dynamic free-energy barrier
heights as a function of the ratio of CM ��rCM=rCM−rloc� to
rotational ���=�−�loc� displacements for a range of volume
fractions in the double-glass region. With increasing aspect
ratio, more translational motion is involved in the activated
hopping process, as indicated by a larger value of �rCM /D��
corresponding to the saddle-point �lowest barrier� trajectory.
The shape of the curves in Fig. 7 becomes less shallow with
increasing aspect ratio. This implies that the breadth of the
relaxation-time distribution, and hence dynamic heterogene-
ity phenomena, will be strongly dependent on aspect ratio.

The qualitative beyond MCT results discussed above is
consistent with the idea, previously suggested from computer
simulation �13� and full MCT �11� studies, that at larger as-
pect ratios, CM translational and rotational motions are
strongly coupled and the onset of slow glassy dynamics oc-
curs at the same thermodynamic state point for translational
and orientational motions. This is in contrast to low aspect
ratio systems where a type of decoupling occurs which un-
derlies the existence of the plastic glass state corresponding
to translational motion being much slower than rotational
motion. Recent simulations have suggested activated hop-
ping processes are dominant for rotational dynamics at low
aspect ratios and represent a channel for restoring ergodicity
�13�. This observation is qualitatively consistent with our
dynamical free-energy surface for L /D=1.15 and the pro-
posed two-step �or two barriers, one low, one high� dynami-
cal scenario. Most recently, simulations �14� of weakly an-
isotropic hard ellipsoids have found a two-step relaxation
for various time correlations where the intermediate plateau
can be very low. We suspect this behavior is also consistent
with our theory �and the DW factors in Fig. 4�, but definitive
statements require numerical trajectory solution of the
stochastic NLEs to compute ensemble-averaged time-
correlation functions.
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FIG. 6. �Color online� Dynamic free-energy surface as a func-
tion of CM translational displacement and rotational angle displace-
ment for �a� �=0.675, L /D=1.15, �b� �=0.65, L /D=1.43, and �c�
�=0.6, L /D=2.0 �note that the value of Fef f /kT as a function of
rCM and � can be read off without the color bar�.
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FIG. 7. �Color online� Entropic barrier height as a function of
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surface as quantified by the ratio of CM and rotational �radians�
displacements for L /D=1.15 �blue dashed square, from top to bot-
tom, �=0.675 and 0.64�, 1.43 �green solid circle, from top to bot-
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VI. SUMMARY AND FUTURE DIRECTIONS

The naïve MCT and nonlinear Langevin equation theories
for the dynamical crossover and single-particle activated bar-
rier hopping dynamics, respectively, have been generalized
to treat the coupled translational and rotational dynamics of
uniaxial objects in the glassy regime. The key idea that ren-
ders the generalization tractable is to introduce only two sca-
lar dynamical variables: the displacement of the particle
center-of-mass and orientational angle from their initial zero
time values. Formulation of NMCT then requires the long-
time limit of the autocorrelation of forces on a tagged par-
ticle center-of-mass and the corresponding torque quantity.
NMCT predicts a kinetic arrest diagram with three phases:
fluid, plastic glass, and double glass, the boundaries of which
meet at a triple point corresponding to a most difficult to
vitrify diatomic of aspect ratio �1.43. The corresponding
CM localization length and rotational angle have been com-
puted along the ideal nonergodicity boundary and in the ideal
arrested state. The relative roles of rotation and translation in
determining the ideal kinetic arrest have been explored by
examining three limiting approximations of the theory corre-
sponding to the nonrotating model discussed previously �18�,
the frozen CM �pure rotation� model, and a rotationally er-
godic model. Each of these limiting models captures the
qualitative behavior of the full theory for specific ranges of
aspect ratios.

The NMCT kinetic arrest boundaries represent the onset
or crossover to activated barrier hopping dynamics. Two
nonlinear Langevin equations have been proposed to de-
scribe the coupled translational and rotational dynamics of
uniaxial particles. The fundamental quantity is a two-
dimensional dynamic free-energy surface which quantifies
effective forces on a particle CM and the corresponding
torque. For small aspect ratio diatomics in the double-glass
high volume fraction regime, the dynamic free-energy sur-
face exhibits two saddle points reflecting a two-step acti-
vated dynamics where relatively rapid rotational dynamics
coexists with slower CM translational motions. For large-
enough aspect ratios, the dynamic free-energy surface has
one saddle point which corresponds to an aspect ratio and
volume fraction dependent coordinated translation-rotation
motion. The entropic barriers as a function of the relative
amount of rotation versus translation have been determined
for several aspect ratios and volume fractions.

Much remains to be done, even for the simple diatomic
system. The mean alpha or structural relaxation times for
barrier crossing will be computed using multidimensional
Kramers theory �21,42� as a systematic function of aspect
ratio and volume fraction. From such information, crude es-
timates of a self-diffusion constant and rotational relaxation
time can be obtained. More rigorously, stochastic Brownian
trajectory solution of the coupled nonlinear Langevin equa-
tions can be performed which will deliver all single-particle
time-correlation functions �17,18� and allow dynamical het-
erogeneity or non-Gaussian effects to be investigated �22�.

The NMCT and NLE approaches formulated in this paper
can be applied to several other problems of interest involving
uniaxial objects. These include addressing the role of short-
range attractions for homonuclear diatomics and the atten-

dant phenomena of physical gelation and glass-fluid-gel re-
entrant transitions �2,20,43�, steric asymmetry �heteronuclear
diatomics�, chemically patchy “Janus particles” correspond-
ing to a large mismatch in intermolecular attraction between
the two sites that compose the diatomic, and a probe di-
atomic in a hard-sphere solvent �44�. Work on these prob-
lems will be reported in future publications.
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APPENDIX A: DERIVATION OF �ss(q , t)

Consider the translation and rotation of a uniaxial Brown-
ian object in solution in the absence of long-range hydrody-
namic interactions �45�. Our goal is to compute the site-level
intramolecular dynamic structure factors, �ij�q , t�
= �eiq·�ri�t�−rj�0���. The calculation can be performed based on
the probability distribution function, P�RCM,� , t �0 ,�0 ,0�,
that the CM is at RCM and molecular axis is at solid angle �
at time t, given the CM is at origin and the molecular axis is
at solid angle �0 at time zero. The simplest Fickian evolu-
tion equation is adopted

�

�t
P�RCM,�,t�0,�0,0�

= �DT�R
2 +

DR

sin2 �
�sin �

�

��
�sin �

�

��
� +

�2

��2��
�P�RCM,�,t�0,�0,0� , �A1�

where P�RCM,� , t=0 �0 ,�0 ,0�=��RCM����−�0� and DT
and DR are the translational and rotational diffusion coeffi-
cients, respectively. This is the Debye model �33,34� which
describes rotational diffusion as a sequence of small scale
random translational and orientational jumps. The solution
of Eq. �A1� has the form �45� P�RCM,� , t �0 ,�0 ,0�
= pT�RCM, t �0 ,0�pR�� , t ��0 ,0�, where

pT�RCM,t�0,0� =
1

�4�DTt
exp�− RCM

2 /4DTt� , �A2�

pR��,t��0,0� = 

l=0

	



m=−l

+l

exp�− l�l + 1�DRt�Ylm
� ��0�Ylm��� ,

�A3�
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and Ylm is the spherical harmonic function. Now let ri�t�
=RCM�t�+bi�t�, where b1�t�=bu��t� /2 and b2�t�=−bu��t� /2,
respectively. Using simple probability theory, one has

�ij�q,t� =
1

4�
	 dRCM exp�iq · RCM�t��pT�RCM,t�0,0�

�	 d�	 d�0 exp
iq · �bi�t� − b j�0���

�pR��,t��0,0� . �A4�

The CM integration is straightforward to perform; to carry
out the angular integration, the spherical wave expansion for-
mula of a vector plane wave is employed

exp�ia · c� = cos�a · c� + i sin�a · c�

= 4�

l=0

	



m=−l

l

iljl�ac�Ylm
� ��a�Ylm��c� , �A5�

where a and c are two arbitrary vectors, �a and �c represent
the solid angles along the two vectors, respectively, and the
following two identities hold

cos�a · c� = 4� 

l=even



m=−l

l

�− 1�l/2jl�ac�Ylm
� ��a�Ylm��c� ,

�A6�

sin�a · c� = 4� 

l=odd



m=−l

l

�− 1��l−1�/2jl�ac�Ylm
� ��a�Ylm��c� .

�A7�

Substituting Eqs. �A2� and �A3� into Eq. �A4�, one obtains

�11�q,t� = �22�q,t�

=
1

4�
exp�− q2DTt�	 d�	 d�0


lm

Ylm
� ���Ylm��0�

�exp�− l�l + 1�DRt�

�
cos��b/2�q · u�����cos��b/2�q · u���0��

+ sin��b/2�q · u�����sin��b/2�q · u���0��� , �A8�

�12�q,t� = �21�q,t�

=
1

4�
exp�− q2DTt�	 d�	 d�0


lm

Ylm
� ���Ylm��0�

�exp�− l�l + 1�DRt�

�
cos��b/2�q · u�����cos��b/2�q · u���0��

− sin��b/2�q · u�����sin��b/2�q · u���0��� . �A9�

Utilizing Eqs. �A5�–�A7� and the identity



m=−l

l

�Ylm��q��2 =
2l + 1

4�
, �A10�

one finally obtains

� j j�q,t� = 

l=0

	

j2l
2 �qb/2��4l + 1�exp
− �q2DT + 2l�2l + 1�DR�t�

+ 

l=0

	

j2l+1
2 �qb/2��4l + 3�

�exp
− �q2DT + 2�2l + 1��l + 1�DR�t� , �A11�

�12�q,t� = �21�q,t�

= 

l=0

	

j2l
2 �qb/2��4l + 1�

�exp
− �q2DT + 2l�2l + 1�DR�t�

− 

l=0

	

j2l+1
2 �qb/2��4l + 3�

�exp
− �q2DT + 2�2l + 1��l + 1�DR�t� .

�A12�

The “dynamic site equivalency” approximation introduced in
Sec. II B focuses on the total site-site dynamic intramolecu-
lar structure factor, �ss�q , t�= �1 /2�
i,j

2 �ij�q , t�. Using Eqs.
�A11� and �A12� and performing the summation yield the
desired result

�ss�q,t� = 2

l=0

	

j2l
2 �qb/2��4l + 1�

�exp
− �q2DT + 2l�2l + 1�DR�t� . �A13�

Finally, we note that our analysis based on Eq. �A1� ignores
possible anisotropy of the CM motion of a uniaxial object
included in the Smoluchowski-Perrin equation �46� corre-
sponding to different CM diffusion constants parallel and
perpendicular to the object axis. For the low-aspect ratio par-
ticles of present interest, this is a small effect since orienta-
tional motion is dominated by excluded volume interactions
�14,36�. More generally, such anisotropy is averaged over by
construction of our NLE theory which is based on the scalar
absolute value of CM displacements and the quantification of
dynamical caging constraints via ensemble-averaged, isotro-
pic site-site equilibrium correlations �40�.

APPENDIX B: VERTICES AND NAÏVE MODE COUPLING
THEORY INTEGRANDS

MCT includes the consequences of force fluctuation on all
length scales via an integration over wave vector in Eqs. �38�
and �39�, the integrand of which consists of two multiplica-
tive parts: �i� a “vertex” defined as the full integrand if the
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DW factors are set equal to unity �rloc=�loc=0� and �ii� the
DW factors. If the DW factors are included, we refer to the
integrand as its “full” force �for CM displacement� or torque
�for rotational displacement� value. The goal of this appendix

is to gain insight as to what wave vectors are dominant in the
vertices and full integrands.

We first rewrite Eqs. �38� and �39� as

1

3
�2�FCM�0� · FCM�	��

=
2

9�2	
0

	

dq�q4CCM
2 �q�SCM�q��1 + sin�qb�/qb�−2

�exp
− q2�1 + SCM
−1 �q��rloc

2 /6�

��

l=0

	

j2l
2 �qb/2��4l + 1�exp�− l�2l + 1��loc

2 /2��2

= rloc
−2 = 	

0

	

dq�force integrand� , �B1�
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FIG. 8. �Color online� Vertex calculations for L /D=1.15 �solid�,
1.43 �dot-dashed�, and 2.0 �dashed� at a fixed volume fraction of 0.5
for �a� force vertex and frozen rotation, �b� force vertex and ergodic
rotation, and �c� torque vertex and frozen CM. Inset: same results
rescaled by the bond length squared.
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FIG. 9. �Color online� Integrand calculations for aspect ratios of
1.15 �solid�, 1.3 �dash-dot-dashed�, 1.43 �dashed�, 1.6 �dot-dashed�,
1.8 �dot-dash-dotted�, and 2.0 �dotted� along the double-frozen
glass boundary for �a� force integrand and �b� torque integrand.
Inset: same results rescaled by the bond length squared.
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1

2
�2�T� �0� · T� �	��

=
b2

12�2exp�− �loc
2 /2�	

0

	

dq�q4CCM
2 �q�SCM�q�

��1 − sin�qb�/qb��1 + sin�qb�/qb�−3

�exp
− q2�1 + SCM
−1 �q��rloc

2 /6�

��

l=0

	

j2l
2 �qb/2��4l + 1�exp�− l�2l + 1��loc

2 /2��2

= �loc
−2 = 	

0

	

dq�torque integrand� . �B2�

There are three types of vertices for the force and torque
integrands. Substituting rloc=0 and �loc=0 into Eq. �B1�, the
force vertex function of frozen rotation is

vertex�q� =
1

18�2�q4CCM
2 �q�SCM�q� , �B3�

which quantifies the Fourier-resolved effective mean-square
force on the CM with frozen rotation. Substituting rloc=0
and �loc=	 into Eq. �B1�, the force vertex function of ergodic
rotation is,

vertex�q� =
32

9�2�CCM
2 �q�SCM�q�

sin4�qb/2�
b4 �1 +

sin�qb�
qb

�−2

.

�B4�

Substituting rloc=0 and �loc=0 into Eq. �B2� yields the
torque vertex function of frozen CM,
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FIG. 10. �Color online� Convergence of the force integrand as a function of the number of angular-momentum contributions �l terms as
indicated� at double-glass line for �a� L /D=1.15, �b� L /D=1.43, �c� L /D=1.6, and �d� L /D=2.0.
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vertex�q� =
b2

48�2q4�CCM
2 �q�SCM�q��1 −

sin�qb�
qb

�
��1 +

sin�qb�
qb

�−1

. �B5�

We now numerically compare vertex functions for diatomics
of three aspect ratios L /D=1.15, 1.43, and 2.0 at a fixed
volume fraction of �=0.5. In Fig. 8�a�, force vertex func-
tions in the frozen rotation limit �CM-NMCT �18�� are
shown. As previously demonstrated and theoretically under-
stood �26�, the generic behavior is an essentially constant
amplitude, which is a nonmonotonic function of L /D, for
wave vectors beyond the first two oscillations. For L /D
=1.43, the amplitude is the smallest. This nonmonotonic be-
havior of the force vertex is consistent with the nonmono-
tonic CM frozen line �black circle curve in Fig. 1� described
by Eq. �25�.

In Fig. 8�b�, the force vertex functions in the ergodic ro-
tation limit �relevant to the plastic glass phase� are com-
pared. For all aspect ratios, the vertex vanishes at large wave
vectors and more rapidly with increasing aspect ratio. This is
consistent with the monotonically increasing ergodic rotation
ideal glass boundary �blue curve� in Fig. 1. For the largest
aspect ratio L /D=2, the vertex vanishes after just one oscil-
lation. Hence, the force vertex functions of frozen rotation
and ergodic rotation are qualitatively different. The former is
dominated by the largest wave vectors, while the latter is
dominated by smaller wave vectors.

In Fig. 8�c�, the torque vertex functions for the frozen CM
limit model are shown. The amplitude is also nonzero in the
large wave vector limit. A new feature �revealed in the inset�
is an additional oscillation with wave length �2� /b, which

arises from the sin�qb� factor in Eq. �B5�. The magnitude of
the vertex monotonically increases with aspect ratio, consis-
tent with the monotonic frozen CM glass boundary �red tri-
angle curve in Fig. 1�.

The force and torque integrands must vanish at large wave
vectors due to the DW factors. Hence, the integrands are
dominated by wave vectors of order the inverse of the CM
localization length or characteristic q value of decay of the
square of j2l�qb�. To estimate the effective cutoff wave vec-
tor for the integration in Eqs. �B1� and �B2�, we present the
force integrand �Fig. 9�a�� and torque integrand �Fig. 9�b��
for L /D=1.15, 1.3, 1.43, 1.6, 1.8, and 2.0 along the double-
frozen glass line �Fig. 1�. Both integrands decay at a rate that
increases with aspect ratio. For the slowest decaying case of
L /D=1.15, the integrands vanish beyond qD�40.

Finally, there is the question of how many “angular-
momentum” terms in the infinite series 
l=0

	 j2l
2 �qb /2��4l

+1�exp�−l�2l+1��loc
2 /2� are required to achieve the con-

verged numerical results. Figure 10 shows that the answer
depends on aspect ratio where results for L /D=1.15, 1.43,
1.6, and 2.0 are presented along the double-frozen glass non-
ergodicity boundary. The notation “one term” indicates that
only the l=0 contribution is included in the calculation, “two
terms” indicates only l=0 and l=1 contributions are in-
cluded, etc. In all cases, the convergence is fast. For L /D
=1.15 and 1.43, only two l terms are needed to produce
accurate results. Even for the system which needs the most
angular-momentum states �L /D=2�, four terms produce
nearly the exact infinite series result. The reason that more
terms are required for convergence at larger aspect ratios is
that the localization angle is generally smaller and hence the
l-dependent exponential in the infinite series decrease more
slowly.
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