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Transient granular shock waves and upstream motion on a staircase
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A granular cluster, placed on a staircase setup, is brought into motion by vertical shaking. Molecular
dynamics simulations show that the system goes through three phases. After a rapid initial breakdown of the
cluster, the particle stream organizes itself in the form of a shock wave moving down the steps of the staircase.
As this wave becomes diluted, it transforms into a more symmetric flow, in which the particles move not only
downwards but also toward the top of the staircase. This series of events is accurately reproduced by a
dynamical model in which the particle flow from step to step is modeled by a flux function. To explain the
observed scaling behavior during the three stages, we study the continuum version of this model (a nonlinear
partial differential equation) in three successive limiting cases. (i) The first limit gives the correct r~'/3 decay
law during the rapid initial phase, (ii) the second limit reveals that the transient shock wave is of the Burgers
type, with the density of the wave front decreasing as r~'/2, and (iii) the third limit shows that the eventual
symmetric flow is a slow diffusive process for which the density falls off as ! again. For any finite number
of compartments, the system finally reaches an equilibrium distribution with a bias toward the lower compart-
ments. For an unbounded staircase, however, the /3 decay goes on forever and the distribution becomes
increasingly more symmetric as the dilution progresses.
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I. INTRODUCTION

Granular flows and avalanches are abundant both in the
natural environment and in man-made applications, ranging
from giant landslides to the tiny, well-controlled flow of sand
grains in an hourglass [1-12]. In this paper, we study the
flow of vibrofluidized granular matter through an array of
connected compartments in a staircase setup (Fig. 1), being
an idealized model for the transport of particles—coal, grain,
etc.—along industrial production lines. Given that roughly
4% of the worldwide energy budget is yearly being wasted
due to problems with the handling of granular materials, this
is an issue of enormous economical and environmental im-
portance [13-15].

From a more fundamental point of view, it is also a prime
example of a many-body system far from equilibrium with a
preferential direction, closely related, e.g., to traffic flow on
the highway [16—18]. In any such system, the competition
between energy input and energy dissipation gives rise to the
spontaneous formation of patterns in the flow [19-21]. Traf-
fic jams on the highway are a typical instance and also on the
staircase of Fig. 1, one witnesses intriguing flow patterns as
a result of the interplay of the energy input (from the vibra-
tions) on the one side and the dissipation (from the inelastic
particle collisions) on the other.

These patterns are discussed in Sec. II. By means of mo-
lecular dynamics (MD) simulations, we follow the time evo-
lution of a cluster of particles placed near the top of the
vibrated staircase. We observe three successive flow regimes:
an initial fast breakdown of the cluster, followed by the for-
mation of a shock wave running down the stairs, which even-
tually transforms into a more symmetric diffusive flow with
particles moving both upward and downward. Given a long
but finite staircase, the system finally settles into a diluted
and nearly homogeneous distribution (biased toward the
lower steps) in which there is a dynamic equilibrium be-
tween any two neighboring compartments. On an infinitely
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long staircase, the diffusive process would continue forever.

To analyze this behavior, in Sec. III, we set up a theoret-
ical model, in which the particle flow from one compartment
to the next is represented by a flux function depending on the
number of particles in the compartment and the shaking
strength. The flow patterns obtained from this flux model are
in good agreement with the MD simulations. In order to
explain the underlying physics of the process, in Sec. IV, we
turn to the continuum version of the model, where the posi-
tion along the staircase is no longer treated as a discrete
variable but as a continuous one. The flux balance then takes
the form of a nonlinear partial differential equation in which
terms of first and second order in Ax (the width of the steps)
compete for dominance. This is worked out further in Sec. V.
(i) The rapid initial stage is dominated by the second-order
terms and the 7~'/3 decay is shown to be a direct consequence
of this. (ii) The shock wave behavior is dominated by the
first-order terms and the associated density decay goes as
Y2, (iii) Third, the diffusive regime is dominated by the
second-order terms again and the density falls off as r~!/3. In
Sec. VI, we comment on the role of the shaking strength and
demonstrate that the transient shock wave only shows up
when the shaking is not too strong; otherwise one witnesses
a direct transition to the diffusive behavior. A general con-
clusion is given in Sec. VII. The paper is accompanied by a
mathematical Appendix, in which we analyze the differential
equation that governs the approximate self-similarity of the
flow during the stages (i) and (iii).

II. MD SIMULATIONS

In our MD simulations, we use a three-dimensional event-
driven code. Between two events (collisions), the particles
move freely, describing parabolic paths under the influence
of gravity, until the next collision occurs. A collision can be
either between particles or between a particle and a wall. At

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.80.011305

VAN DER WEELE et al.

6016116216364 |65|66

time = 05.00 s

(a) (b)

time = 07.50 s

PHYSICAL REVIEW E 80, 011305 (2009)

60161162163 |64)65)66

601611626364 )65 |66

time =10.00 s time = 15.00 s

(c) (d)

FIG. 1. (Color online) Four snapshots of a partial view of the staircase system, showing compartment 60-66 of the 1000 connected
compartments used in the MD simulations [22]. The setup is vibrated in the vertical direction at frequency f=100 Hz and amplitude a
=0.2 mm, causing the particles to form a granular gas. At =0 s (not shown), the experiment starts with 1000 particles distributed equally
over compartments 50 and 51. (a) At r=5.00 s, the downward-moving particle front has reached the first of the displayed compartments. (b)
At t=7.50 s, it is traveling further to the right. (c) At r=10.00 s, the front has just passed through compartment 66. (d) Afterwards, as
exemplified by the snapshot at t=15.00 s, it leaves a trail of particles which becomes more dilute as time progresses.

any such event, the velocities of the particles after contact
are computed from the velocities just before contact using
Newton’s laws. The particles are hard spheres with a coeffi-
cient of normal restitution (for particle-particle collisions)
that is taken to be constant, e=0.95. The coefficients of tan-
gential restitution and dynamical friction are set equal to
their ideal, dissipationless values. Likewise, the collisions
with the walls and bottom are taken to be elastic.

The ground area of each compartment is (=25
X 25 mm?, the size of the rectangular opening between the
compartments is S=5X25 mm?, and the step height is
hgep=25 mm. The simulated system has a length of K
=1000 compartments [22]. The whole setup is vibrated ver-
tically with adjustable frequency f and amplitude a following
a sinusoidal wave form.

Figures 1 and 2 show the MD results for N,,,=1000 beads
of diameter d=1 mm, initially distributed evenly over com-
partments 50 and 51, vibrated at an amplitude a=0.2 mm
and frequency 100 Hz. The cluster is seen to dissolve quickly
into a downward rush of particles, which organizes itself in
the form of a shock wave, recognizable from its characteris-
tic dense front [see Fig. 1 and the profiles from r=4.0 s and
onward in Fig. 2(a)]. The density and speed of this wave
gradually diminish as it travels toward the right. After a cer-
tain time, when the flow has become quite dilute, it becomes
more symmetric toward both sides. The particles do not only
run downwards anymore but are also frequently seen to jump
uphill, against gravity, like trout swimming upriver. This is
illustrated in Fig. 2(b), where we see that the density profile
in the long-time limit develops a considerable tail in the
compartments 1-49, i.e., to the left of the original cluster. In
fact, there is a clear heaping effect visible in the leftmost
compartments.

In Fig. 2(c), the measured height of the maximum in the
density profile (n,,,,) is plotted as a function of time. This is
a measure of how fast the flow dilutes. Three successive
regimes can be discerned: (i) the initial breakdown of the
cluster, during which n,,,,(¢) decays as %, with @=-0.33, (ii)

the shock wave, decaying in height as B, with B=-0.63, and
(iii) the eventual symmetric flow during which the profile
decays as t7, with y=—0.31. The crossovers between these
stages, at log,, t=0.8 (1=6.3 s) and log,, =2 (t=100 s),
respectively, are seen to be quite sharp. All the above
observations will be rationalized—qualitatively and
quantitatively—within the context of a dynamical flux model
that we introduce in the next section.

II1. FLUX MODEL

The flux model we employ is based on the model that was
used earlier to describe the dynamics of granular material in
a nontilted array of compartments [23-29]. At the heart of
this model is the so-called flux function F; g(n;), which gives
the outflow from compartment & (to its left and right neigh-
bors, respectively) as a function of the fraction of particles
contained in it. If Ny(¢) denotes the number of particles in
compartment k at time ¢ and N, the total number of particles
in the system, then n,(t) =N, (1)/ Ny

In a horizontal system, the flux functions to both sides are
equal. In the staircase setup, however, the height difference
between the left and right apertures (see Fig. 1) produces a
bias toward the right. The general form of the flux function is
[23,24]

2
Fp r(ny) =An£e_BL-R"k, (1)

where the fraction n(f) is subject to the condition
3K n(t)=1, with K the number of compartments. In com-
bination with the fact that N, is constant, this expresses the
mass conservation in the system.

The factor A, which determines the absolute rate of the
flux, is given by [28]

NS g
Ao (1 =e?) =05 2
(I-e) = 7 )
with g=9.81 m/s? the gravitational acceleration and the pre-
cise value of the proportionality constant being dependent on
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FIG. 2. (Color online) (a) The particle distribution n(¢) obtained
from MD simulations with 1000 particles at 20 successive times
starting from a cluster in compartments 50 and 51 [150(0)=ns;(0)
=0.50, while the remainder of the K=1000 compartments is ini-
tially empty], at constant intervals of 2.0 s. The shaking parameters
are the same as in Fig. 1. (b) The particle distribution ny(¢) on a
much longer time scale at intervals of 400 s. To reduce noise, a
running average over 21 compartments has been taken (except for
the initial distribution at r=0 s). Note that a substantial—and
increasing—amount of granular matter flows upwards, toward the
left of compartment 50. (c) Doubly logarithmic plot of the maxi-
mum of the particle distribution [r,,,,(¢)] vs time. The three succes-
sive regimes (initial breakdown, shock wave, and symmetric diffu-
sion) are indicated by dashed straight lines with slopes —0.33,
—0.63, and —0.31, respectively.
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the details of the driving. There is no distinction between left
and right as far as this factor A is concerned, which stands to
reason, since in the dilute limit n,—0 the flux functions
Fy(ny) —An? and Fy(ny) — An} must become equal. This is
because the decrease in density over the step height Ay,
becomes negligible in this limit. The factor A may be incor-
porated in the time scale ¢ by introducing a dimensionless
time variable 7=At. We will adopt a similar strategy by keep-
ing the original time ¢ but taking A=1 s~! in all our flux
model calculations.

The dimensionless parameter B is given by (with the pre-
cise proportionality constant again depending on the driving)
[28]

Q 3)
This parameter Bj y is the product of three dimensionless
parts with a clear physical interpretation: (i) the factor
(1-¢*)? (equal to 0.010 for e=0.95), where (1—e?) repre-
sents the fraction of the center-of-mass kinetic energy that is
lost in a single collision between any two particles, (ii) the
filling factor r°N,,,/{) squared, and (iii) the ratio between the
energy needed for a particle to overcome the barrier (mgh; g)
and the typical kinetic energy conveyed to the particles by
the vibrating setup [<m(af)?].

The only difference between the particle fluxes to the left
and right lies in the barrier height /; . For jumps toward the
right, this height is zero (hz=0), so Bx=0, whereas for jumps
toward the left it is equal to the step height (;=hg,). This
gives

N, .2 2gh
B o« (] - 2\2 tot :| L,R.
ER [ (af)?

FR("k) = An,%, (4)

()

These two flux functions have been depicted in Fig. 3 for
A=1 s and B;=1000; this value of B, roughly corresponds
to the choice of parameters used in the MD simulations of
Fig. 2. Both Fy(n) and F;(n;) start out from zero at n;=0 (if
there are no particles in the compartment, it can give nothing
to any of its neighbors) and in the limit r; — 0, the two fluxes
are equal. This at once explains the observation that the flow
becomes increasingly symmetric toward both sides in the
long-time limit when all compartments are diluted.

We see that Fg(n;) is a monotonically increasing function
of n;: the more particles a compartment contains, the more it
will give to its right-hand neighbor. In contrast, the function
Fy(ny) shows a maximum: at small particle numbers, it in-
creases with n;, but beyond n;=1/\B, the increasingly fre-
quent (inelastic) collisions make the particles in the compart-
ment so slow that they are hardly able to overcome the step
height anymore and the flux starts to decrease. For large ny,
the function F;(n;) goes to zero again.

In contrast to the horizontal system studied by Eggers and
others [23-29], our staircase does not have the tendency to
form any clustered states with particles clogging together in
one compartment, not even at very mild shaking strengths.
This is a consequence of our choice hxg=0 mm (or Bg=0).
The stabilization of a cluster would require a flux balance

2
Fp(ny) = Anje B

011305-3



VAN DER WEELE et al.

0.003
0.002+ -1 b
Fo(n) s
0.001 1 b
—1
Fln) 157
O L L L
0 0.02 0.04 0.06 n 0.08
k

FIG. 3. (Color online) The flux functions toward the right
[Fr(ny), Eq. (4)] and the left [F;(n;), Eq. (5)] as function of n, i.e.,
the fraction of particles in the kth compartment. In the dilute limit
n;—0, the fluxes start out equal, but for larger n;, the difference
between them rapidly diverges. In this plot, we have taken A
=1 s7! and B;=1000.

between the well-filled compartment and the two diluted
ones around it (separately with each one of them), but this
could only be accomplished if not only F,(n;) but also
Fr(n) were nonmonotonic, i.e., if the height h; were non-
zero. We have intentionally ruled out this possibility because
our interest here lies in the flow of particles, not in their
clustering.

Given the above flux functions (4) and (5), the evolution
of the system is governed by the following balance equation,
which expresses the time rate of change of the fraction in
compartment k:

dnk

E = Fr(ny_y) = Fr(ny) = Fr(ng) + Fr(ng),

k=23,... . K—1. (6)

This equation holds for all compartments except the first and
the last one. For the first one (k=1), we must suppress the
terms Fr(n,_;) and F,(n;), representing inflow from and out-
flow toward the left neighbor, and for the last compartment
(k=K), we must likewise suppress the terms Fg(n;) and
F;(ng,1). The phenomena discussed in this paper are only
marginally affected by the finite size of the system. Indeed, it
is for this reason that we take a large number of compart-
ments (K=1000) and choose to position the initial cluster far
away from the boundaries [22].

It should be noted that Eq. (6) takes into account only
particle jumps between neighboring compartments, in accor-
dance with the fact that the compartments are divided by
walls leaving only a narrow slit near the bottom. This pre-
vents jumps to the next-nearest neighbors or beyond. Further,
the model does not include any statistical fluctuations (which
would introduce a Gaussian white-noise term in Eq. (6)
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FIG. 4. (Color online) (a) The particle distribution n(z) calcu-
lated with the flux model Eq. (6) at successive times ¢
=0,20,40,...,400 s starting from a cluster in compartments 50
and 51 [n54(0)=ns,(0)=0.50], while all the other of the K=1000
compartments are initially empty. The shaking parameters are B;
=1000 and A=1 s~'. (b) Doubly logarithmic plot of the maximum
of the particle distribution [7,,,,(#)] vs time. Indicated are the initial
breakdown stage (characterized by a slope —1/3), the Burgers re-
gime (with slope —1/2), and the diffusive regime (slope —1/3). The
oscillatory structures visible for small 7 reflect the filling and sub-
sequent emptying of successive compartments that are, each in its
turn, the best filled one; at the cusps, the maximum jumps from one
compartment to the next.

[23,30]), so it must be interpreted as a mean-field description
of the dynamics, corresponding to an ensemble average of a
large number of MD simulations starting from a given initial
condition.

How well does the flux model reproduce the MD results?
In Fig. 4(a), we show the density profiles calculated from Eq.
(6) for B;=1000, corresponding to the MD simulations of
Fig. 2, and with the same initial condition. The flow accord-
ing to the flux model is seen to go through the same three
stages as the MD simulations: (i) first the fast breakdown of
the cluster, followed by (ii) the buildup of a shock wave with
a steep front traveling toward the right, and eventually (iii) a
more symmetric spreading of the particles when the flow
becomes diluted.
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In Fig. 4(b), we plot the height of the maximum of the
particle distribution as a function of 7, just as we did for the
MD simulations in Fig. 2(b). We see that the first stage,
which lasts up to log;, 1= 1.6 (1=40 s), is consistent with a
density decay n,,,,(¢)># "3, meaning that the data fall on a
straight line with slope —1/3. During the second stage, last-
ing until some point between log;, r=2.4 and 3 (=250 s to
1000 s, depending on the eye of the beholder), the data
agree with a 172 decay, i.e., slope —1/2. Afterwards, in the
third, dilute stage we return to a r~'/* decay with slope —1/3.
The remainder of this paper is largely devoted to the justifi-
cation of the above exponents.

IV. CONTINUUM VERSION OF THE FLUX MODEL

A. Reformulating the model with a continuous
spatial coordinate

The physics of the flow process, including the exponents
observed in Figs. 2(b) and 4(b), is best understood in terms
of the continuum version of the flux model. A similar ap-
proach was followed for the nontilted system in Ref. [26].

In the continuum description, the discrete position vari-
able k (indicating the compartments) is replaced by a con-
tinuous variable x and hence the fraction n(r) is replaced by
n(x,1)Ax, where n(x,) is the number density per unit length
and Ax the width of a compartment. The continuum counter-
part of the conservation condition =5 n,=1 is

KAx
f n(x,f)dx=1. (7)

0

The above replacement of n;(¢) by n(x,f)Ax also needs to
be done in the balance Eq. (6) and for this purpose, it is
convenient to introduce the continuum counterparts

F 1.rln(x,1)] of the flux functions Fy g(n;) as follows:
T — 7.2 B, pn? 1
Fppln(x,t)] = An“e ™ LR" = A Fy gln(x,1)Ax], (8)
X

which means that A=AAx and B=BAx2. With Eq. (8), the
balance equation Eq. (6) takes the following form:

on(x,1)
ot

= Frln(x = Ax,0] = Feln(x,0]

— Fy[n(x,0)]+ F;[n(x + Ax,1)]

dFr dF
—_ Ax(—R _ _L)
ox ox

(m az_F)

AZ
+() x>

9)

where the second step follows from a Taylor expansion up to
second order in Ax. Using partial differentiation [&f R/ Ox
=(dFg/dn)(dn/ dx), etc.] this can be written as

an(x,1) B n J an
ot __P(n)aerax{Q(”)ax}’ (10)

with the first- and second-order prefactors given by

PHYSICAL REVIEW E 80, 011305 (2009)

dn dn

0 (n)=—Ax (dFR dF,

P(n)zAx(dﬂ dFL) 2A1n[1—(1—BLn2)e—BL"] (11)

y ):Azn[l+(l—§Ln2)e_§L”2]. (12)

Here, we have used the expressions for the flux functions
F r. given by Eq. (8). Further, we have defined A, =AAx
=AAx? and A,=AA=AAX°.

The partial differential equation (10) is the continuum
counterpart of the balance equation Eq. (6). If the prefactor
P(n) in the first-order term —P(n)dn/dx would be simply a
positive constant, this term would be associated with a trans-
lation to the right of the density profile, with wave velocity
P. Likewise, if the factor Q(n) in the second-order term
would be a positive constant, this term would reduce to an
ordinary diffusive term Qdn/dx?, tending to smoothen the
profile. However, although the factors P(n) and Q(n) are
both positive for n>0, they are not constant and hence the
behavior of Eq. (10) is richer and more complicated than in
the case with constant coefficients.

A word about the dimensionality of the problem is in
order here. By replacing the dimensionless variable k by the
variable x, which has the dimension of length ([x]=L), and
the dimensionless fraction ny(f) by the number density per
unit length n(x,7) (dimension [n]=1/L), the various param-
eters in the model have acquired a different dimensionality

too [B,]=L? and the dimensions of A; and A, can be inferred
immediately from their definitions below Eq. (12)
L? L3
[Ad=— [A]= (13)

For the sake of simplicity, we choose Ax=1, which means
(together with our earlier choices A=1 s™! and B;=1000)
that the parameters in the continuum model have the numeri-

cal values B;=1000 m% A;=1 m?/s, and A,=1 m?3/s. Con-
veniently, it also means that we may identify the density
profiles n(x,1)=mn(t), with x=kAx=k meter [31].

B. Changing dominance of the first- and second-order terms

In order to analyze the successive flow regimes, it is of
key importance to evaluate the relative magnitude of the
first- and second-order terms in the balance equation (10). To
obtain an estimate for this quantity, we first note that dn/dx is
of order n,,/€, where € denotes the half width of the den-
sity profile. Since €n,,,, is proportional to the total area under
the profile (which is equal to 1), we may set €~ 1/2n,,.
Thus,

on )

e Y (14)

with y a numerical prefactor in the order of 2. With this, the
estimated magnitude of the first-order term becomes

on
P(n)a ~ yP(nmax)nﬁlaX. (15)

In the same approximation, we have Q(n)dn/dx
~ YO (nya)n?,, and this gives for the second-order term

011305-5



VAN DER WEELE et al.

1—

transient
lo R
910 shock wave
—
0.5}
0 ““““““““““““““““““““““““““““““““““““““““““““““““
\
rapid
/ breakdown
-0.5) ]
symmetric
diffusion
) 0.05 0.1 n 0.15
max

FIG. 5. (Color online) Logarithm of the estimated ratio R be-
tween the first- (shock wave) and second-order (diffusive) terms in
Eq. (10), as a function of the profile height 12, for B;=1000 m?2
and y'=20 (solid black line, corresponding to the MD simulations
of Fig. 2 and the flux model results of Fig. 4). For comparison, the
gray curve represents the case for B;=10000 m? and 7' =20. At
this higher EL value, the first-order term has gained in importance.
The range of n,, for which log o R(11,,,,) > 1 increases, as well as
the magnitude of R itself, i.e., the shock wave lives longer and is
also more pronounced.

i(Q( >@) i L (16)
ax " ax € ’
where again €~ 1/2n,,,, leading to
J on
_(Q(I’l)_) =~ 71 7Q(nmax)nr311ax’ (17)
ox ox

where 7' is a second prefactor larger than 1.
The relative importance of the first- and second-order
terms is given by the ratio R(n,,,,) of Egs. (15) and (17)

P(H)Z—z 1 P(ny,y)
)= = = ’ 8
KO = 200 2] ™ Y maOld Y

The logarithm of this ratio is plotted in Fig. 5 for B,
=1000 m? and y'=20. When log,, R is positive, the first-
order term dominates and we get shock wave behavior, as we
will explain in the next section.

If on the other hand logy R is negative, the second-order
terms govern the behavior of the system. As we see in Fig. 5,
this is the case for n,,>0.10 (the initial breakdown stage)
and also for n,,,<0.01 (the symmetric diffusion at large
times). These values are in good agreement with the ob-
served transitions in Figs. 2(c) and 4(b).

In the next section, we will concentrate on the dominant
terms in the three successive flow regimes, neglecting any
other terms, and solve the associated simplified balance
equations. As we will see, this not only gives us a clear
picture of the physical processes at work but also yields the
proper decay exponents.

PHYSICAL REVIEW E 80, 011305 (2009)

V. ANALYSIS OF THE SUCCESSIVE FLOW REGIMES
A. Initial rapid breakdown of the cluster

During the initial breakdown of the cluster, the dominant
behavior is given by the second-order terms in the balance
equation (10). In our analysis, we will simply ignore the term

—P(n) dn/dx. Further, at this stage B;n?>1 and so the ex-
pression for Q(n) reduces to A,n. The balance equation then
takes the approximate form

gt 2ox\"ax )

This is a nonlinear heat equation [32], differing from the
usual (linear) heat equation dn/dt=Ddn/dx> by the extra n
in the right-hand term.

During the initial stage, the flow is directed almost exclu-
sively toward the right, since Fg(n)>F;(n) (see Fig. 3). In-
deed, the original discrete flux model Eq. (6) at this stage
reduces in good approximation to

i _ Fr(n_y) = Frlng). (20)
dt

This asymmetry is however not reflected by the nonlinear
heat equation Eq. (19) (on the contrary, this equation is in-
variant under the transformation x — —x, which means that it
is completely symmetric with respect to left and right), so we
have to impose the asymmetry ourselves as an extra condi-
tion. That is, from the family of solutions to the partial dif-
ferential equation Eq. (19), we must choose a sufficiently
asymmetric one.

The observed scaling behavior during the initial stages in
Figs. 2(b) and 4(b) (i.e., the density falling off as #~'/?) sug-
gests that we should try a self-similarity solution [33]. On
dimensional grounds [34] such a solution must be of the
form

n(x,0) = ¢, (A0)PH(), (21)

where the dimensionless function H(§) depends on x and
t only through the combined dimensionless variable
&=(x—x()(A,1)7"3. The prefactor c,, is a free constant, which
we choose to be ¢,,=2; the subscript br stands for break-
down. As we will see later, this choice makes the present
analysis also applicable to stage (iii), i.e., the long-time limit
when the system shows diffusive behavior.

Note that from Eq. (21), it immediately follows that the
profile height decreases as n,,,(f)%¢~!/3. Correspondingly,
its width increases as t'* because the area under the profile
remains constant (=1) in accordance with the conservation
condition Eq. (7).

Inserting the form (21) into Eq. (19), the partial differen-
tial equation for n(x,) is turned into an ordinary differential
equation for H(§),
dH (dH)2 d’H
H+&—+3c,| —5 | +3¢c,,H—5
dé dé dé§
or equivalently (d/d&)(éH+3c, HdH/d§)=0. This can im-
mediately be integrated to give (we simultaneously insert our
choice ¢,,=2)

-0, (22)
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FIG. 6. (Color online) [(a) and (b)] The distributions at =0.1,
0.2, 0.3, and 0.4 s in the numerical simulations, with B; =1000 and
A=1 m™! just as in Fig. 4, both (a) unscaled (where we have also
included the initial condition at r=0 s) and (b) rescaled as
0.5n,(1)1"3 vs (k=ko)t™'"3 [see Eq. (24)]. Here, ky=50 indicates the
position of the initial cluster. The cluster rapidly breaks down to-
ward the right with the same exponent 1/3 as in the symmetric
diffusion stage. (c¢) Solution H(§) of Eq. (23) for I'=0.5, represent-
ing the distribution for small times ¢.

H<§+ 6di{> =T.

dE (23)

Here T is an integration constant, the value of which is de-
termined by initial and boundary conditions, and it is pre-
cisely at this point that the asymmetry requirement men-
tioned above enters the analysis.

As detailed in the Appendix, Eq. (23) has a symmetric
solution (in the form of an inverted parabola) for I'=0 and
asymmetric solutions for all I" # 0. The solutions for +I" and
—I" are each others’ mirror images with respect to the axis
&£=0 and the amount of asymmetry grows with increasing
.

The initial breakdown stage, with its unidirectional flow
toward the right, requires a relatively large positive value of
I'. In Fig. 6(c) we give the solution H(£) for I'=0.5. The
point £=0 represents the location of the original cluster (the
boundary between the first well-filled compartment 50 and
its left neighbor), so H(0)=0. The profile still bears the
marks of the sharply peaked initial condition and the protu-
berance toward the right reflects the downhill stream of par-
ticles that immediately sets in for #>0.
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How does this compare to the observations? Figure 6(a)
shows how the profile evolves in the early stages from ¢
=0.0 stot=0.4 s, obtained directly from the flux model Eq.
(6). To compare this to H(¢), we apply the self-similarity
transformation Eq. (21), or rather its discrete version

w0 — HO) = (A",
br

k- ko

k—ko_) §= (AZ)I/S’

(24)
with A=1 s7', ¢,,=2, and k,=50 (the compartment number
of the initial cluster). The result is shown in Fig. 6(b). We see
that the rescaled profiles indeed coincide on a curve similar
to that of Fig. 6(c).

The correspondence is not perfect and should not be ex-
pected to be perfect. Not only have we neglected the first-
order terms in the above self-similarity analysis, but there is
also the fact that during these very first moments, the par-
ticles move only over 3 to 4 compartments, so the flux model
profiles necessarily bear conspicuous traces of the discrete
compartmentalization. A strong quantitative agreement with
the continuum prediction of Fig. 6(c) is therefore not fea-
sible. Qualitatively, however, the profile according to the
continuum model agrees with those in Figs. 6(a) and 6(b).
More importantly, the model reproduces the correct ¢~!/3
scaling behavior found in the rapid breakdown stage of the
MD simulation [Fig. 2(c)] as well as the flux model calcula-
tions [Fig. 4(b)].

B. Transient shock wave

We now come to the second stage, the shock wave behav-
ior, when the first-order term in the balance equation is domi-

nant over the second-order term. This requires a sizeable EL
value (see Fig. 5 and also Sec. VI). For definiteness, we
simply ignore the second-order term in Eq. (10) and assume

a typical value of ELleOO m?. Since at the beginning of

the shock wave stage we then have Eanz 10 (with 7,y
=~0.10, see Fig. 5), the flux to the left is still negligible in
comparison to the flux to the right, i.e., P(n)=2An.

So Eq. (10) now becomes to leading order

on on
—=-2An—.

25
ot ox (25)

This is known as the inviscid Burgers equation [35], famous
for its traveling shock wave solutions. These solutions have
the shape of a triangle [just like the waves in Figs. 2(a) and
4(a)], gradually elongating and decreasing in height

(x—x)/2A,t for x; =x=x,+2(A;1)"?

(26)
everywhere else.

n(x,1) =
The position of the front, xgon(f)=x;+2(A;1)"2, follows
from the condition Eq. (7) that the area under the triangle
must be equal to 1. The height of the front is gy (x,?)
=(A;1)™"2, i.e., it decreases as the square root of time. This is
the same power-law scaling (with exponent —1/2) as found
in Figs. 2(c) and 4(b).
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The triangular form Eq. (26) can be understood from Eq.
(25) by noting that on dimensional grounds [33,36], the so-
lution can be written in the form

n(x,0) = (4,07"?G(), (27)

where the—dimensionless—function G(7) depends on x
and ¢ only through the combined dimensionless variable
7=(x—x,)(A,1)""2. The approach is analogous to that of the
previous section.

Inserting the ansatz (27) into the inviscid Burgers equa-
tion (25), the partial differential equation for n(x,z) trans-
forms into an ordinary differential equation for the function
G(n),

dG dG
G+np—-4G—=0 (28)

dn dn
or equivalently, (d/dn)(nG-2G*)=0. This equation can be
integrated immediately to give G(7—2G)=C, where the con-
stant C is determined by the boundary condition G(0)=0 (the
shock wave is zero at the left end of the tail), i.e., C=0. So

G(n-2G)=0, (29)

and thus we find that either G(7)=0 (the trivial solution) or
G(n)=57.

Together, these give exactly the shock wave: the solution
G(‘I])=%7] holds for 0= 7= 7, and G(7)=0 holds every-
where else. The value of 7, is determined by the normal-
ization condition [[JnG(n)dn=1, yielding 7on=2. Trans-
forming back to the variables x and ¢, via Eq. (27), the shock
wave takes the form of Eq. (26).

To check the self-similarity of the shock wave, in Fig.
7(a) we perform the transformation (27) or rather its discrete
version

n(t) — G(n) = m(t)(AD)'"2,

k—k,

o o

k— kl — n=
on the profiles obtained from de MD simulations (cf. Fig. 2).
Naturally, we focus on the time interval when the density
falls off with an exponent close to the Burgers exponent
—1/2 [see Fig. 2(c)], from 40 to 220 s. The resulting curves
indeed coincide in fair approximation onto a fixed triangle.
In Fig. 7(b), the same transformation (30) is performed on
the profiles from the flux model (cf. Fig. 4) in the interval
100 s<t<<250 s where n,,,,(f)> 1> holds approximately.
Also here we find a good correspondence with the expected
triangular shape.

C. Long-time behavior: Symmetric diffusion until the
boundaries of the system are reached

Still assuming a typical value of EL= 1000 m?, the
behavior of the flow changes when n,,,, falls below 0.01. By
this time, Ean is everywhere well below 1, such that
exp(—B;n?) =~ 1-B;n? and the functions P(n) and Q(n) [Eqs.
(11) and (12)] take the form
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FIG. 7. (Color online) (a) The rescaled distributions during the
stage when the profile has the triangular form of a Burgers shock
wave in the numerical simulations, t=40-220 s, at time intervals
of 20 s (i.e., at much later times than in Fig. 6). A running average
over three compartments has been taken to smoothen the profiles to
some extent. The density is rescaled as n;(f)t'/? and the position
along the staircase as (k—k;)r"/? [Eq. (30) with A=1 s~!'], where
k1=50 indicates the compartment in which the tail of the triangular
profile is positioned, which happens to coincide with the compart-
ment in which we placed the initial cluster. (b) Idem calculated with
the flux model Eq. (6), under the same conditions as in Fig. 4, for
t=100-250 s at time intervals of 25 s.

P(n) =4A IELnS ,

0(n) = 2A,n(1 = B;n?). (31)

As the system is further diluted, B;n>—0 and only Q(n)
~2A,n survives up to order O(n). This means that in the
dilute limit (or equivalently, for ¢ sufficiently large) the bal-
ance Eq. (10) reduces to
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on J on
— =2A2—(n—).
X

32
ot 0 ox (32)

This is, apart from the factor 2, precisely the same nonlinear
heat equation as for the initial rapid breakdown—see Eq.
(19) [37].

As foreseen, the term —P(n) dn/dx has lost the important
role it played during the shock wave regime, although as a
result of it the density profile still is moving (very) slowly to

the right, with a velocity proportional to A,B;n’ [38]. We
will come back to this, but for the moment we concentrate on
Eq. (32). With its full mirror symmetry with respect to left
and right [noted already in the context of Eq. (19)], this
equation ignores the slow drift toward the right and must
therefore be interpreted as referring to the dynamics in the
comoving frame.

To explain the scaling behavior observed in this third
stage (i.e., the density falling off as #~!/3), we follow the same
line of reasoning as in Sec. V A and note again that on di-
mensional grounds, the solution to Eq. (32) can be written as
[34]

n(x,0) = cqAyt)”""H(8), (33)

where the dimensionless function H(&) depends on x and
t only through the combined dimensionless variable
&=(x—x,)(A,1)7"3. This ansatz is obviously of the same type
as Eq. (21) and at once explains the observed decay exponent
1/3, but this time we will set the free constant c ; (the sub-
script di stands for diffusion) equal to 1 instead of 2. This
compensates for the extra factor 2 in Eq. (32) and the result-
ing ordinary differential equation H(é+6¢,;dH/dé)=I" thus
becomes identical to Eq. (23) for the initial breakdown stage.

This is interesting. The same equation Eq. (23) describes
the (approximate) self-similarity during the very first stages
and in the long-time diffusive regime. It must be said, how-
ever, that the physics behind this equation—and in particular,

the reason for the absence of the parameter B,—is quite
different in each of the two cases. During the initial phase,

1§L does not appear in the equation because the correspond-
ing flux function F,(n) is negligible compared to Fg(n) as
long as Ean > 1. In the long-time regime, on the other hand,
the absence of EL is due to exactly the opposite feature:

namely, that F;(n) becomes equal to Fg(n) when Bn?<1,
i.e., in the limit when the density n goes to zero [37].

As noted before and as described in detail in the Appen-
dix, Eq. (23) has a symmetric solution (an inverted parabola)
for I'=0 and asymmetric solutions for all I' # 0. Now, which
value of I' corresponds to the diffusive regime?

To answer this question, we first note that the diffusive
regime does not start out with a symmetric initial condition
but with the triangle-shaped profile of the Burgers shock
wave (at time =100 s in the MD simulation or ¢
~1000 s in the flux model calculation).

As a second step, we investigate the form of the self-
similar profile by taking the observed density profiles from
Figs. 2(a), 2(b), and 4(a) at some large values of t and rescale
them as follows (with A=1 s! and c,;=1):
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FIG. 8. (Color online) (a) The distributions at =420, 910, 1410,
1910, and 2410 s [i.e., much later than in Fig. 7(a)] in the MD
simulations, rescaled as n,(£)t'? vs (k—k,)r""3. To smoothen the
profiles, a running average over 21 compartments has been taken.
The fact that the best fit is obtained for k,=45, i.e., five compart-
ments to the left of the original cluster, reflects the transition from
shock wave to diffusive regime, in which particles also move up-
wards. The upward twist at the left of the profiles shows that ma-
terial is heaping up in the leftmost compartments. (b) Idem calcu-
lated with the flux model Eq. (6), under the same conditions as in
Fig. 4, at times r=3000-23000 s at time intervals of 2500 s, and
rescaled as n(£)t'"3 vs (k—ky)t™"3 with k,=43. Although the diffu-
sion is governed by the same Eq. (23) as the initial breakdown, the
profiles differ considerably since the two regimes start out from
very different situations (cf. Fig. 6).

o)~ HO) = (149",
di

_k-k
- (At)l/3'

The result is shown in Fig. 8(a) and 8(b) for the MD simu-

k—k,— & (34)

011305-9



VAN DER WEELE et al.

lations and the flux model, respectively; we have used values
for k, that are slightly lower than the initial position of the
cluster. In both cases the rescaled profiles coincide on a
curve in which one recognizes an evolved form of the trian-
gular shock wave, spread out in both directions and with all
its sharp features being softened. The upward twist at the
left-hand side of Fig. 8(a) indicates that material is heaping
up in the leftmost compartments, where it meets the bound-
ary of the system and is unable to diffuse further to the left.

All the above evidence seems to point to some relatively
large negative value of the integration constant I'. In Fig.
9(a), we show the numerical solution H(&) of Eq. (23) for
I'=-0.5 and indeed, at first glance, the shape seems to re-
semble the curves in Fig. 8. If one is willing to translate the
numerical profiles of Fig. 8(a) toward the left [see the gray
curves in Fig. 9(a)] the coincidence becomes even striking.
However, this translation is physically not justified. The pro-
file H(&) for I'=—0.5 is almost entirely positioned to the left
of =0, corresponding to a situation in which the particles
would have moved exclusively upstream, whereas in reality
[both in the MD simulations of Fig. 8(a) as in the flux model
calculation of Fig. 8(b)], the particles have preferentially
moved downstream.

The true self-similarity of the diffusive process is only
revealed if we go to really long times. We therefore per-
formed flux model calculations in a much larger system of
K=10 000 compartments—with all particles initially distrib-
uted equally over compartments 4000 and 4001—and over a
much longer time span than before [39]. The results of these
calculations are shown in Fig. 9(b), where we see the profiles
at the exponentially increasing time scales t=10°, 10°, 107,
and 10° s. Here, the real long-time behavior becomes vis-
ible. The profile, extremely diluted by now, slowly converges
toward the symmetric solution of Eq. (23), i.e., the one with
I'=0 represented by the dotted inverted parabola. [For better
comparison, the support of each profile in Fig. 9(b) has been
rescaled to coincide with the support of H(§) with I'=0.] It
takes exceedingly long before the symmetric diffusion pro-
cess described by Eq. (32) has finally repaired the asymme-
tries in the profile acquired during the previous two stages,
but it keeps working at it, since the symmetric profile is the
only sensible self-similar solution to Eq. (32). It is merely
thanks to the extraordinary slowness of the convergence that
the profiles for a limited time span [such as those in Figs.
8(a) and 8(b)] can appear to be self-similar with a nonzero
value of I.

In this same context one may also note that the exponent
1/3 corresponds to a slow kind of diffusion. Normal random
walker diffusion has an exponent 1/2, i.e., the height of the
profile decays as /2 and its width grows as "2, which is
quicker than in the present case. The reason for the slowness
of the diffusion in our system is the nonlinearity in Eq. (32)
[the extra n in the right-hand term as compared to the linear
heat equation dn/dt=Ddn/dx*]. This slows down the dy-
namics where 7 is small, i.e., precisely at the outer edges of
the profile, hence the width grows slower than ¢'/? [26].

For any finite number of compartments K, the diffusion
alone would eventually lead to a constant level n;=1/K
along the entire length of the staircase. However, in reality,
there will remain a small bias toward the right [correspond-
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FIG. 9. (Color online) (a) Apparent but untrue self-similarity.
Solution H(§) of Eq. (23) for I'=-0.5. Although the shape bears a
marked resemblance to that of the MD results of Fig. 8(a) (gray
shaded curves), the depicted coincidence has only been obtained via
a nonadmissible translation of the MD profiles to the left. (b) Non-
conspicuous but true self-similarity. Rescaled flux model profiles
obtained in a much larger system (10 000 compartments with the
cluster initially in compartment 4000 and its neighbor) and on a
much longer time scale than in Fig. 4, namely, at r=10%, 103, 107,
and 10° s. The values of B,=1000 and A=1 s~' are unaltered.
These profiles reveal a slow convergence toward the symmetric
solution of Eq. (23), i.e., the one with I'=0 (see also the Appendix).

ing to the term —P(n)dn/dx, see our discussion below Egq.
(32)] because Fg(ny) is slightly larger than F,(n;) even for
the smallest, but necessarily nonzero, values of n,. Among
other things, this means that the heaping effect at the left-
hand boundary seen in Fig. 8(a) is really a transient phenom-
enon, which in the course of time will flatten out again. The
final state for r— o is characterized by a flux balance be-
tween adjacent compartments, Fg(n;_,)=F,(n;) for all k
=2,...,K, or equivalently n,%_lzn,% exp(—BLni), which in the
dilute limit BLni<1 reduces to
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FIG. 10. Approach toward the final state on a staircase of finite
length. Starting out from a dilute homogeneous distribution over a
staircase with K=1000 steps (and shaking parameters B;=1000,
A=1 s7!), we witness how the system slowly evolves toward a
biased distribution in which the fluxes between all neighboring
compartments are in equilibrium. In the last snapshot (r=10° s), the
convergence is complete, i.e., the density profile will not visibly
change anymore. This profile is accurately described by Eq. (36)
with C=1.56 10°.

Np_1 = n,\[l - %Ban + O(BLI’ZIE)Z] (35)

This demonstrates that n;_; is indeed a bit smaller than n,.
The approach to the final state is illustrated in Fig. 10, which
starts out from a dilute homogeneous distribution on a stair-
case consisting of K=1000 compartments. On the time scale
of this figure, we see how the system settles into the biased
equilibrium state described by Eq. (35).

In fact, this final distribution can be evaluated analyti-
cally. Given a sufficiently long staircase, Eq. (35) may be
rewritten in the differential form ny,—n,_,=dn;/dk= %Ban,
which is readily solved to give

1

n=————=—= for k=1,...,K. (36)
JC— Bk

The integration constant C follows from the conservation
condition [*m,dk=(2/B;)(N\C-B,~VC-B,K)=1. For B,
=1000 and K=1000, we find C=1 561 001, yielding a theo-
retical density profile Eq. (36) that perfectly matches the
curve in the last snapshot of Fig. 10.

PHYSICAL REVIEW E 80, 011305 (2009)

It is good to stress that the emergence of this profile is a
finite-size effect. On an infinitely long, unbounded staircase,
the diffusion would continue forever and the density profile
would simply be a hill [as in Fig. 9(b)] decaying as #~'/* with
a decreasing bias toward the lower compartments.

VL. VARYING THE SHAKING PARAMETER B L

The relative duration of the three stages—and the clarity
with which they show up—depends on the value of B,. This
can be seen from the ratio Eq. (18), which [via the expres-
sions for P(n) and Q(n)] is a function of B;n. Also, the final
equilibrium state (for any staircase of finite length) depends
on the value of EL, as can be seen directly from Eq. (35). The
bias toward the lower compartments becomes more pro-
nounced for growing EL.

In this section we discuss the effects of varying the value
of EL. Up to now, we have concentrated on the case EL
=1000 m?2, corresponding to our MD simulations, but what
happens when we make EL smaller or larger? Such a change
is easily accomplished by increasing (respectively, decreas-
ing) the amplitude and frequency of the shaking or by chang-
ing any of the other quantities appearing in the expression
(3) for B,=B,;/(Ax)% Ax being the width of a compartment.

In the limits of small and large B;n?, the ratio Eq. (18)
takes the form

2B ~
Ry~ = if B <1
Y
2 -,
R(n) =~ —— if Byn“> 1. (37)
yn

The two crossover points in Fig. 5, corresponding to R(n)
=1, can now be approximated using the above equation. The
crossover from the initial rapid breakdown to the shock wave
happens at a relatively large value n=n;_,;;, and hence we
may expect the second approximation of Eq. (37) to hold,
i.e., 2/y'n;_;=1. On the other hand, the crossover from the
shock wave to the diffusive behavior happens at a much
smaller value n=n;_,;, so now we can invoke the first ap-
proximation of Eq. (37). This yields [40]
!

and i = 7~’ (38)

L

i =~

leading to the following important conclusions:
First, the crossover from the rapid breakdown (i) to the

shock wave (ii) is independent of B, and thus cannot be
influenced by adjusting the amplitude or frequency of the
driving. This has already been illustrated in Fig. 5, where we
saw that this crossover happens at exactly the same value of
Nyae bOth for B, =1000 m? and B;=10 000 m>.

Second, the crossover from the shock wave (ii) to the
diffusive behavior (iii) is inversely proportional to B,. Thus,
if we increase B;, (e.g., by decreasing the shaking frequency),

011305-11



VAN DER WEELE et al.

0

I0g10(nmax)

3 . . . . . .
-1 0 1 2 3 4 5 6

log, ,(t)

FIG. 11. (Color online) Decay of np,,(f) calculated from the
flux model Eq. (6) for four different values of B;, each one starting
from the same initial condition n5y(0)=n5,(0)=0.50 in a system of
K=1000 compartments. (a) For B, =1 (green curve), the breakdown
of the cluster directly goes over into symmetric diffusion, without
intervention of any shock wave, hence the slope is permanently
close to —1/3. The deviation beyond log;, #=4.3 is caused by the
left boundary, which is reached relatively soon at this strong shak-
ing. [(b) and (c)] For B; =300 and 10* (blue and red curves) all
three regimes are distinguishable [(i) initial breakdown with slope
—1/3; (ii) shock wave with slope —1/2; (iii) diffusion with slope
—1/3], with the length of the shock wave regime growing for in-
creasing B;. (d) For B;=10° (black curve), the shock wave regime
extends all the way to the end of the depicted time interval, as the

(38). Dashed lines with slopes —1/3, —=1/2, and (again) —1/3 have
been added for reference.

the crossover value n;;_,;; becomes smaller and consequently
the duration of the shock wave stage increases (see again
Fig. 5). Vice versa, below ELx 100 m2, we find that
log,( R(n) always remains negative [i.e., R(n) <1] and hence
the shock wave stage vanishes altogether. That is, for small
values of B;, or strong shaking, the initial breakdown goes
over directly into the diffusive regime. The physical reason
for this is that, at strong shaking, the height difference be-
tween the left and right apertures is simply not sufficient to
generate the considerable flux unbalance required for a shock
wave. (Not surprisingly, in this case, also the bias in the final
state is very small.)

These conclusions are confirmed by Fig. 11 where we plot
the maximum profile height n,,,,(), calculated from the dis-
crete flux model, for four different values of B;:

(1) For B;=1 (very strong shaking), we only retrieve the
13 decay, meaning there is no shock wave in this case, just
as expected.

(2) and (3) For B; =300 and B; =10 000, we find all three
stages. As anticipated on the basis of Eq. (38), the transition
from the initial breakdown (slope —1/3) to the shock wave
(slope —1/2) occurs simultaneously for both B; values—
around logy=1.6 or r=40 s—whereas the next transition to
the diffusive stage (slope —1/3 again) occurs much earlier
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for the small B; value than for the larger one. We also note
that this second transition is accompanied by a momentary
steepening of the slope well beyond the Burgers exponent of
—1/2. This means that the decay of n,,,(f) is momentarily
accelerated, which has to do with the fact that the position of
the maximum is now being transferred from the front (where
it was located during the shock wave regime) toward the
center of the profile.

(4) Also for B,=10°% (very weak shaking), one gets all
three stages, but the transition to the third, diffusive stage
takes place beyond the end of the time interval shown in Fig.
11. We therefore see a clear £~/ scaling behavior all the way
up to the right-hand side of the figure. Indeed, the shock
wave regime can be protracted for arbitrarily long times by
going to higher and higher values of B;. All in all, the value

B;=1000 (or, for the continuum version, ELz 1000 m?)
adopted in the main part of the paper is seen to be an ad-
equate choice for bringing out the full dynamical potential of
the system.

VII. CONCLUSION

In conclusion, we have shown that a pile of granular ma-
terial, when it is brought into motion on a vertically vibrating
staircase, goes through three stages: (i) first, there is a rapid
breakdown of the cluster, with its particles moving freely
downstream. (ii) Soon afterwards, the downward flow orga-
nizes itself in the form of a Burgers shock wave and (iii)
when the granular material is sufficiently diluted, the flow
becomes diffusive with an anomalous diffusion exponent
—1/3. In this third stage, a substantial part of the particles is
moving upstream toward the top of the staircase.

The observed power-law decay of np,(f) (the maximum
particle density at time 7) has been explained in terms of a
dynamical flux model, in particular by the partial differential
equation constituting the continuum version of this model.
We identified the appropriate limiting cases of this equation
associated with the three successive stages and determined
the corresponding self-similarity solutions. This yielded the
power laws (i) nyp,, ()13, (i) ()2, and (iii)
Nopax(D) %1713, in full agreement with the observations.

Let us recapitulate the main points of the paper by con-
sidering the situation of Fig. 12, where we start out with one
large and one small cluster [41]. As soon as the shaking is
turned on, the granular material starts to move downward
and after a fast initial breakdown, we see the spontaneous
formation of two shock waves (see the snapshot at =80 s).
As indicated by the arrows, the velocity of the large wave is
considerably larger than that of the smaller one; this can
be understood from v e =dxXpron/ dt=(A1/1)"*=A ngon, [cf.
Eq. (26)]. As a result, the denser shock wave overtakes the
more diluted one, momentarily gaining in density—and
hence velocity—as it does so. The snapshot at r=170 s il-
lustrates this. Afterwards, as the height of the profile dimin-
ishes, we witness the crossover to a diffusive flow in which
the profile gradually takes on a more symmetric shape (see
the snapshots at 7=1300 s and t=5000 s). The extent of the
upstream motion—toward the left—can be read off from the
snapshot at r=5000 s, where about 4% of the granular ma-
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FIG. 12. Starting out with a large heap on the
steps k=12,...,17 and a small one at k
=34,...,39 (see the snapshot at 7=0 s), one wit-
nesses first a rapid breakdown and formation of
two Burgers-like shock waves (r=80 s). The
higher wave travels faster and overtakes the
smaller one (r=170 s), leading to a single den-
sity profile that diffuses out into both directions
(r=1300 s). Eventually, the upstream flow to-
ward the left becomes almost equal to the flow
toward the right. At r=5000 s, the compartments
1-11 have already received a substantial amount
of material. The shaking parameters are Bj
=2250 [41] and A=1 s~!, which makes the dy-
namics of the large cluster directly comparable
to Figs. 3-5, 6(a), 6(b), 7(b), 8(b), and 9(b).
The velocity of the large shock wave at
t=80 s is 0.100 compartments/s, against 0.077
compartments/s for the smaller one (indicated by
the arrows).
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terial is located on the first 11 steps of staircase, i.e., further
toward the left than any of the material in the initial situa-
tion. Given that the staircase has a finite length, in the long-
time limit 7 — o the system will attain the diluted equilibrium
state (with a bias toward the right, cf. Fig. 10) characterized
by a balance of fluxes between every adjacent pair of com-
partments.
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APPENDIX: SOLVING EQ. (23), CONCERNING THE
SELF-SIMILARITY DURING THE INITIAL BREAKDOWN
AND THE LATER DIFFUSIVE STAGE

In this appendix, we solve and explore some properties of
Eq. (23), together with the particle conservation condition
Eq. (7) written in terms of H and &,

dH
H<§+6d—§> =T, (A1)

f H(&)dé=1. (A2)

We first turn to the case I'=0. The corresponding equation
H(é+6dH/d§)=0 is easily solved to give a combination of
H(&=0 (the trivial solution) and H(&)=H(0)—-&/12. To-
gether, these two solutions comprise a symmetrically decay-
ing profile, in the form of an inverted parabola between &.
=+ +12H(0)= £2.08, and zero everywhere else [26]. The
value of H(0) is determined by the normalization
JEH(9dé=1, yielding H(0)=3"3/4=~0.361. A plot of this
symmetric solution is shown in Fig. 13 (dashed black line).

Solving Egs. (A1) and (A2) for I'# 0 presents more dif-
ficulties and it is convenient to first present some of its prop-
erties:

(a) The solutions for I' and —I" are each other’s mirror
image with respect to the axis £=0. This can be seen by
applying the transformation é— &' =-¢ to Eq. (A1), which
gives the identical equation with —I" instead of I'. Hence it is
sufficient to study the case I'>0.

(b) The dependence of I" can be transferred to the particle

conservation condition by a simple rescaling: H=T"?3H, E
=I"13¢ which transforms Egs. (A1) and (A2) into

~<~ dﬁ)
Al E+6%2 | =1, (A3)
dé
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FIG. 13. (Color online) Solutions of Eq. (A1), or Eq. (23) in the
main text, normalized on the interval —10= ¢=10. Dashed black
curve is the symmetric case for I'=0, which can be solved analyti-
cally. Solid blue, red, and black curves that deviate increasingly
from the symmetric solution correspond to I'=0.01, I'=0.11, and
I'=0.36, respectively. These were determined numerically. Nega-
tive values of T" yield solutions that are the mirror images (with
respect to £€=0) of those for positive T'.

J ’ H(HdE=1T. (A4)

This provides us with a welcome alternative to the somewhat
laborious task of numerically shooting—for some fixed
I'—the solution of Eq. (A1) that simultaneously satisfies the
conservation condition Eq. (A2). We can simply generate
any solution to Eq. (A3) [e.g., by fixing H(0) to some
constant value and numerically solving the differential
equation forward and backward in E], determine I' by inte-
grating this solution via Eq. (A4), and finally transform back
to H(&).

(c) For the maximum H,,,, at £€=¢&,.c, We have H, &nax
=I". This is because in the maximum, the slope is zero,
dH/dgl; =0, and evaluating Eq. (A1) in £=&p,, then gives
the quoted result.

(d) Similarly, we have 6H(0)dH/d&(0)=T", which follows
from inserting £=0 into Eq. (A1).

(e) For all I'#0, H(§) goes asymptotically to zero as
H(&) e &1 for §é— . This can be seen by writing Eq. (A1) in
the form H(&)=I"/(£+6dH/d€). Now if H(§) goes to zero in
the limit £é—oo, then certainly dH/d¢ will and thus H(¢)
=I/¢

An important consequence of the last property is that the
integral of H(&) diverges when & goes toward infinity and
therefore the particle conservation condition cannot be im-
posed onto the infinite domain [-o0,]. A practical
workaround is to restrict the upper integration boundary to
some finite value &, (if I'>0) or the lower integration
boundary to & (if I'<<0), corresponding, e.g., to the size of
the system. This however limits the interpretation of such a
solution as a self-similar profile, since it would imply that the

011305-14



TRANSIENT GRANULAR SHOCK WAVES AND UPSTREAM ...

physical boundary shifts in time. From the definition of &
[Eq. (33)] we have xg,,—x,=(A51)"?&,. Any solution with
I"'#0 can therefore only be an approximation to the profile
for some finite time interval, just as we concluded in the
main text.

In Fig. 13, we present (apart from the analytic symmetric
solution for I'=0) three numerical solutions to Egs. (A1) and
(A2) with £&,,=10 for increasing positive values of T,
namely, I'=0.01, I'=0.11, and I"=0.36. The solution with
I'=~0.36 corresponds to the most asymmetric solution that

PHYSICAL REVIEW E 80, 011305 (2009)

still crosses the point §=0 at some finite height. Increasing I
further produces profiles that lie entirely to the right of &
=0. This is precisely what fits the observations during the
initial phase, when the particle flow is unidirectional toward
the right [see the solution for I'=0.5 in Fig. 6(c)]. On the
other hand, such a one-sided solution (or its mirror image for
negative I') does not agree with the observed density profiles
during the diffusive regime. Indeed, it was upon these
grounds that the solution for I'=-0.5 in Fig. 9(a) was dis-
qualified.
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