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Motion of packings of frictional grains
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Friction plays a key role in controlling the rheology of dense granular flows. Counting the number of
constraints vs the number of variables indicates that critical coordination numbers Z.=3 (in D=2) and Z,=4 (in
D=3) are special, in that states in which all contacts roll without frictional sliding are naively possible at and
below these average coordination numbers. We construct an explicit example of such a state in D=2 based on
a honeycomb lattice. This state has surprisingly large values for the typical angular velocities of the particles.
Solving for the forces in such a state, we conclude that organized shear can exist in this state only on scales
€ <d/I, where d is the grain diameter and I=dy/ \J’Tpg is the dimensionless “inertia number.” Above this scale
the coherent shear is destabilized by the disappearance of normal forces between a significant fraction of the
grains. Moving to disordered lattices, we observe that rolling regions in such lattices are characterized by an
antiferromagnetic short-range ordering of the particle rotations; the frustration of this ordering links the shear-
ing states of the grain packing to low-energy spin-glass states on the same lattice. Random lattice states are also
expected to exhibit large values for the typical angular velocities and to also have regions of coherent shear

limited to be smaller than €.
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I. INTRODUCTION

Flows of hard granular systems are ubiquitous in nature
and technology, yet are still poorly understood. Compared to
truly microscopic dynamical or statistical mechanical sys-
tems, an unusual feature of granular systems is that they are
intrinsically frictional and dissipative. Not only can dissipa-
tion arise through inelastic collisions between the particles,
but also from frictional sliding between smooth or rough
grain surfaces.

In the quasistatic “critical state” regime [1], the strain
rates are smaller than any time scale of the system. In this
regime, there are clearly particle contacts whose lifetime is
comparable to an inverse strain rate y'. Over the past few
years, it has become increasingly evident that long-lived con-
tacts are also a feature of the “dense granular flow” regime,
marked by strain rates obeying

VPIpL> < < \Plp,d*, (1)

with P as the pressure, Pg the density, L a characteristic flow
scale, and d the grain diameter. These features distinguish
these regimes from a higher strain-rate regime dominated by
two-particle collisions, which has been the object of kinetic-
theory based studies [2].

The degree to which such studies can be extended into the
dense granular flow regime defined by Eq. (1) remains con-
troversial. A number of authors have claimed that key as-
pects of the rheology of dense granular flow can be recov-
ered within kinetic-theory treatments that include particle
inelasticity and interparticle friction [3]. Halsey and Ertag
[4], and Jenkins [5], have posited the appearance of coherent
structures in dense granular flows, which are difficult to rec-
oncile with the underlying assumptions of kinetic theories. A
significant work by the group author GDR Midi [6] pointed
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out that much of the phenomenology of dense granular flows
can be organized using the “inertia number”

1= dy\Plp,. (2)

An interesting feature of these results is the anomalously
large fluctuations in the grain velocities, which scale with 7
in the dense flow regime,

(G - @@DN?
(vd)*
where in dimensionalities D=2,3, y=1 [6,7].
Setting

X, 3)

I=d/t, (4)

defines the scale € of the coherent structures hypothesized by
Halsey and Ertas, which account for the overall structure of
the “phase diagram” for incline flow, but whose microscopic
meaning is still elusive [4,8,9].

In this work I turn to the role of friction at enduring con-
tacts in these flows. Provided that the microscopic coefficient
of friction w defining the maximum value of the tangential
force T at a contact divided by the normal force N is appre-
ciable, we would anticipate that a significant fraction of
long-lived contacts in a flowing granular packing will be
rolling as opposed to sliding.

Simple counting of the number of constraints vs the num-
ber of variables indicates that states in which all contacts are
rolling are not possible at coordination numbers Z.>3 for
D=2 or Z.>4 for D=4. These results are simple extensions
to the dynamical case of the famous “isostatic” criteria for
static packings [10].

An interesting soluble case in D=2 is presented by the
honeycomb lattice, for which all particles have a coordina-
tion number Z.=3 exactly. This allows for a general solution
of all states obeying the rolling constraint, corresponding to a
full solution of the kinematics for this packing, in the limit

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.80.011303

THOMAS C. HALSEY

pm— %, over times short enough that collisions do not de-
grade the lattice. It is also possible to solve exactly for the
both the tangential and normal forces exerted between the
particles in this lattice; I present this explicitly for a particu-
larly symmetric case of motion.

A striking feature of the kinematic solution is that even if
the overall shear remains moderate, the rotational velocities
of the particles are quite large. For a region of the packing of
size € with a constant shear 7, the typical rotational velocity
of the particles is w~ y€/d. Corresponding to these en-
hanced rotations, forces develop that limit the size of these
regions of constant shear to

(< L2 (5)

due to the requirement that all normal forces remain com-
pressive. (Dry granular packings are unable to support ten-
sions between the particles.) Equation (5) corresponds to the
definition of the coherent structure size € given in Egs. (2)
and (4) above.

Turning to disordered lattices, we see that the rotations
arise from an underlying short-ranged antiferromagnetic or-
dering in the rotational velocities of the individual grains.
This short-ranged ordering is frustrated by the existence in
disordered lattices of “odd plaquettes” with odd numbers of
links around the plaquette. In fact, it follows that it is not
possible, even for quite large values of the coefficient of
friction, for all of the particle contacts in a lattice with odd
plaquettes to be rolling contacts. However, if sliding contacts
are allowed, such that every odd plaquette has at least one
sliding contact, then the remaining contacts can be rolling
contacts; results on spin glasses then imply that it is possible
that long-range-ordered antiferromagnetic “spin-glass” re-
gions will form. Of course, given the lack of direct corre-
spondence between a statistical mechanical model (spin
glasses) and a driven dissipative nonequilibrium system, it is
not possible to draw rigorous conclusions from this analogy.

The remainder of this paper is divided into four sections.
In Sec. II, we derive the critical coordination numbers for
rolling states and we solve the rolling kinematics of the hon-
eycomb lattice. In Sec. III, we solve a special case for the
dynamics of this state. In Sec. IV, we turn to disordered
lattices in D=2, using a Fokker-Planck approach to show the
basis for the antiferromagnetic ordering and the analogy to
spin glasses. We also comment on the applicability of these
results to the three-dimensional case. In Sec. V, we conclude.

II. KINEMATICS OF ROLLING STATES

Consider a set of N, spherical grains of diameter d, in-
dexed by i, in D dimensions with velocities ¢; and rotational
velocities (in D=2 or D=3, the generalization to higher di-
mensions is obvious) @;. We further suppose the existence of
pairs of grains (ij) in contact with one another, and for which
there is no relative motion of the surface points in contact
(corresponding to frictional locking of the particles.) Sup-
pose that the vector connecting the pair (ij) is 6w, with
|6 ;y|=d. Then the requirement that the relative motion of
the surface points in contact be zero is
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FIG. 1. Two types of crisis can disrupt a lattice of rolling grains:
(a) two grains collide creating a new contact or (b) two grains
separate due to the normal force between them reaching zero.

|
Ui=0; = 80G) = 5 (@ + &) X 8. (6)

Taking the derivative with respect to time of this constraint
yields a constraint for the accelerations of the grains &; and

>

angular accelerations T,
N P e R

These equations substantially constrain both the motion of

the grains and the forces between the grains. Equation (6)

gives D—1 constraints per contact. The requirement that the

grains stay in contact gives one further constraint. Since each

particle has D(D+1)/2 degrees of freedom without contacts,

this means that the total number of degrees of freedom Ny is
Nrp

—:g(D+1—Zc), (8)

N,

where Z. is the average coordination number of the grains.
We thus see that the average coordination Z.=<D+1 in order
for the rolling state to be mobile at all, and Eq. (8) then gives
the effective number of degrees of freedom remaining to the
packing.

The forces are even more completely determined. The to-
tal number of contact forces is exactly the same as the num-
ber of constraints on the accelerations given by Eq. (7), with
the result that all of these forces are determined by the con-
tact network, the velocities and angular velocities of the par-
ticles, and the boundary conditions, even for Z, <D+ 1. (This
result can be extended to the case of sliding contacts [11].)

With the kinematics thus determined, the equations of
motion of the particles can be integrated forward, until one
of two possible types of crisis occurs to disrupt the network
(see Fig. 1).

(1) If two grains collide, they will very rapidly (within a
collision time set by the Young’s modulus of the particles)
establish a contact with a finite normal force. This also
changes the network, and hence the kinematics. In this case
the impulse arising from the collision will, in general, result
in a jump in the velocities and forces, which may be signifi-
cant in the neighborhood of the new contact. Corresponding
to the change in kinetic energy caused by the velocity jumps
there will be a net energy dissipation because of the collision
event [12].

(2) If the normal force between two grains becomes zero,
the grains will separate. This effectively changes the contact
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fundamental doublet

FIG. 2. A honeycomb lattice has the critical coordination num-
ber Z.=3 at which a frictional packing becomes mobile in D=2. We
work with a set of honeycomb lattices characterized by the single
parameter 6. We also show the fundamental “doublet” and the co-
ordinate system.

network and the kinematics must now be solved with the
new contact network. However, we do not anticipate that this
change in kinematics will correspond to any jump in the
velocities or forces. This event does not lead to any dissipa-
tion. In a statistical steady state, the number of contact fail-
ures per unit time should equal the number of new contacts
created by collisions per unit time.

A. Honeycomb lattice

In D=2, we can construct an explicit example of a rolling
state at the critical coordination number Z.=3 by considering
a honeycomb lattice (Fig. 2). We consider a relatively sym-
metric lattice, characterized by one angle 6; the basic
plaquettes of the lattice are equilateral (although not neces-
sarily regular) hexagons.

We describe the system as a lattice of “doublets” made up
of two grains in contact. The positions of these doublets we
index by (j,k), with either j,k both even, or j,k both odd.
The positions of the centers of the doublets are then (x,y)
=(cyf.cyk), with ¢,=d(1+cos ) and c,=d sin 6. Note that
the axes of the Bravais lattice of doublets are oriented along
the angles * 6/2. With the doublets oriented along the x axis,
the requirement that the two grains stay in contact and have
a rolling contact constrains the velocities and rotational ve-
locities of the left-hand and right-hand grains,
ui,uf,QL;uf,uf,QR,

d
Wy= Uy = Uy =y — Z(QL+ ), ©)

d
ul = U, + Z(QL+ OF,

which reduces the 6 degrees of freedom of the two grains
taken independently to the 4 degrees of freedom remaining
after the imposition of the constraint that the contact be a
permanent rolling contact. These 4 degrees of freedom are
conveniently taken as the average x and y velocities of the
doublet, u,, Uy, and two (redimensioned) combinations of the
two rotational velocities A=§(QL+QR), §=§(QL—QR).

Now let us consider the constraints imposed by the re-
quirement that the contacts between the doublet and other
grains be rolling. Consider the contacts between the doublet
at j,k and the doublets at j—1,k—1 and j+1,k—1. Let us
write the vector z(j,k) describing the doublet kinematical
state,
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net velocity

FIG. 3. The B, mode from Eq. (22) corresponds to grains
counter-rotating in each vertical chain, with the magnitude of the
rotations increasing linearly with the coordinate x. This generates an
overall pure shear with the velocity in the vertical direction.

2(7.k) = [u,(j. k), u, (k). AG,K), £(, k) ]. (10)

In Appendix A, we determine the contact rolling equations as
having the hyperbolic form

2, =Az(-1L,k—=1)+Az(j+1,k=1),  (11)

with A_(6) and A,(6) given by Egs. (A4) and (A5).
Solutions to this equation can be written in the Bloch-
Floquet form

w2 4
o= | DS a@n@Pola,  (12)
-2 T p=1
with
A(@)v,(q) =N, (@)v,(q), (13)
where A(g) is determined from Egs. (A4) and (A5),
1 0 0 O
_ 0 _
A(q) =cos(q) 00 -1 0 +1 sin(g)
00 0 1
0 —tan(g) 0 - ltan(é’)
2 2 2
1
—cot(6) 0 -5 0
2 cos 6
l+cos®  1+cos @
—2csc 6 0 1 0
(14)

We can now directly diagonalize A(g) to obtain the eigenval-
ues and eigenvectors:
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{Ni(@)svit={- 1;[0,- 1/2,1 cot(g/2), 1]}, (15)

{Na(q);v2} ={1;[0,- 1/2,- 1 tan(g/2),1]}, (16)
in 0 cos 0

{x3(q);U3}={e-"f;{S‘; %01” (17)

4

> a4, (@@ expligiv, = ai(q)(= DXL +1gj) + ay(@)(1 +1g))

n=1

+a;3(q)(1 +19(j = k))

To this, we can clearly add constant values of u,, u,, and A.
We can also add a constant value of é&=QF—QF, since in a
honeycomb lattice we can always set alternate grains rotating
in opposite directions with the same angular velocity without
creating any large-scale motion. We thus collect only those
terms that depend on j,k. For convenience, we also define

Bi=-2ay, (20)

Br3a=10r349, (21)

with B € fR, so that taking the limit ¢ — 0 and taking the real
part, we obtain the general solution (for constant velocity
gradients)

( , \
sz(a) [Bs(j—k) = Ba(j+ k)]

ST B B

= 2 (B3 =0+ B+ 0] = 25+ H=DF L
Bui(=1)*
Bui+ B =0+ B+ 0 - L 1)t
)

(22)

Note that for 8; #0, but 5,5 4=0, there is no large-scale
motion of the lattice, but rather compensating motions of
neighboring doublets. Although we have not introduced the
concept of an excitation energy, the 8; mode is reminiscent
of “optical” modes in standard lattice dynamics, which have
finite energy even at zero wave vector, and correspond simi-
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Ni(@)ivg) = {e’q;{— Shzl 0,0025 0,0,1” (18)

These modes can obviously be combined to give a wide
variety of different possible motions. We are most interested,
however, in motions corresponding to low wave number de-
formations of the lattice. We thus consider ¢<<1, and we
expand the integrand from Eq. (12), taking only one wave
vector for convenience,

0
-1/2
1 tan(gq/2)
1
sin 6 sin 6
2 2
cos 6 cos 6

+ay(q)(1 +14(j +k)} +0(q%) . (19)

—_— O N
—_ O N

larly to compensating motions inside a Bravais lattice cell.

The other three “acoustic” modes correspond to simple
shear motions. The 8, mode corresponds to shear along the y
direction (Fig. 3), while the B; and B, modes correspond to
flow perpendicular to the directions *+ 6 (see Fig. 4). Flows
such as extensional flows that combine simple shear motions
can be easily constructed from these three simple shearing
modes.

It is notable that in all of the simple shearing modes, the
parameter é=0F—QFR increases linearly across the shearing
region (Fig. 3). While the average angular velocity (w) obeys

() ~ 9, (23)
where vy is the overall shear, the average value of the angular
velocity squared, (w”) depends additionally on the size of the
system (or of the coherently shearing region within the sys-

tem) €,
o\ 2
(@) ~ (%) : (24)

III. FORCES IN ROLLING STATES

Simply showing that a state is kinematically possible does
not imply that it is dynamically feasible—to accomplish the
latter, we must also determine a set of interparticle forces
with which it is consistent. For a granular system, this will be
a set of normal forces N and tangential forces T across each
contact, subject to the two constraints that N> 0, since grains
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FIG. 4. The three acoustic modes of the kinematics correspond
to shear directed perpendicular to the y axis and perpendicular to
the directions = 6/2.

cannot exert tensional forces on one another, and 7= uN,
with w as the coefficient of friction.

Considering a doublet at position (j,k), we see that such a
doublet is influenced by eight forces exerted across its four
contacts, as well as by two internal forces exerted by the two
grains on one another. It is convenient to use a geographical
notation to describe the external forces—the forces exerted
by the doublet at (j—1,k+1) on the doublet at (j,k) are
termed Ny, Ty, With T defined so that a force in the coun-
terclockwise direction is positive. Similarly, we define the
forces exerted by the (j+1,k+1), (j+1,k—1) and (j—1,k
—1) doublets, respectively, as (Nyg,Tyg)s (Ngg,Tgg), and
(Ngw,Tsy) (see Fig. 5). The force exerted at the internal
contact is (Ny, T,), with T}y defined so that T, >0 corresponds
to a counterclockwise force on each grain.

With some tedious but straightforward algebra, we can
convert the six equations of motion of the two particles in the
doublet into four equations coupled to our natural kinemati-
cal variables, plus two equations determining the internal

(N Nw» TNW) (NNE’ TNE )

(NoTy)

fundamental doublet

(Nsws Tsw) (Nsg, Tse)

FIG. 5. Eight forces are exerted on a fundamental doublet of the
honeycomb lattice by its neighbors; two additional forces are ex-
erted by the doublet particles on one another.
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forces Ny, T,. We write M and I,, for the masses and mo-
ments of inertia of the grains, with k=1,,/ Md>. Details of the
computation are given in Appendix B. The result for the
dynamical equation for the doublet is

Nyw Ngw thy
_ | _ u
MW ZBo| Y | +2mC(0) S RS
Nyg Ngg (1+x)A
Tng T Ké

with B(6) and C(6) given by Eqs. (B11) and (B12).

Note that [NSW(.]’k) ’ TSW(j’k)]=[NNE(j_ 1 ’k_ 1) ) TNE(.]
—1,k—1)], with equivalent identities for the other forces.
The forces can be written as

Nywlj,k) Nyw(q,k)
Taw(j,k ™2 dg . | Tawlg.k
NWO. ) =f —qe"“ wwlq.k) - (26)
Nyg(j. k) —an T Nye(q,k)
Tyi(j.k) Tne(q.k)

We then can immediately write the equation determining so-
lutions to the homogeneous problem,

Nywlq.k) Nywlg.k—1)
T k - T k=1
w(q.k) — B(6)D(q) vw(q ) , (27)
Nyg(g.k) Nyg(g.k—1)
Tye(g.k) Tye(g.k—1)
with
0 0 e 0
_ 0O 0 0 e
D(q) = (28)

et 0 0 0
0 ¢4 0 0

The eigenvalues and eigenvectors {v,;u,} of B(6,q)
=B(60)D(q) are given by

{vi(q);u;}={-1;[e tan 6,79, —tan 6,11}, (29)
{vy(q);ur} ={1;[- e tan 6,—e™?,—tan 6,1]}, (30)
{VS(q);MS} = {e"q;[0,0,cot(ﬁ/Z),l]}, (31)

{va(q)sus} ={e";[- cot(6/2),1,0,0]}. (32)

These eigenvectors are in fact quite intuitive. Each of the
eigenvectors 2—4 corresponds to a set of parallel force chains
in one direction in the lattice, as is illustrated in Fig. 6;
eigenvector 1 is more complex.

Given the homogeneous solutions, it is straightforward to
determine the solution to the inhomogeneous problem for
which the packing is moving. Writing
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FIG. 6. The fundamental homogeneous modes of the forces cor-
respond principally to force chains, including both normal and tan-
gential forces, directed along the lattice directions of the honey-
comb lattice. The force chains shown correspond to the second
force eigenvector given in Eq. (30).

i,(q,k)
_ i,(q,k) ié
2MC(6 . = v,(q,k)u,(0,q9), (33
(6) 1+ AR |~ = (g, ku,(0,q), (33)
K€(q.k)
with
/2 dq o
v,(j.k) = —ey,(q,k), (34)
—m2 T

we have the inhomogeneous equation

Nyw(g,k) Nyw(q,k—1)
4
Tywlq.k) | — Tyw(q.k=1)
= B(G,q) + 2 Un(q’k)un'
Nyg(g,k) Nyg(g.k=1) n=1
Tne(g.k) Tye(q.k—1)
(35)
This equation is easy to solve. Writing
Nyw(g,0)
4
Tyw(q,0) E
= 2 T(q)uy, (36)
Nyg(g,0) n=1
Tye(q,0)
we immediately obtain
Nyw(g,k)
k=1
T, k ,
WSS W gk k) k) [
Nye(g.k) n=1| r'=o
TNE(q’k)

(37

As an example, let us consider extensional flow: u, ox,
u,>—y. This type of flow has the advantage that it preserves
the overall symmetries of the honeycomb lattice, and can
thus be interpreted parametrically by making the angle 6 a
function of time, 6(¢). Let us choose the simple case that
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0(t) =— At + 6, (38)

with A >0.
We now use Eq. (22) to write a standard form for the
velocities z(j,k),

5
S

—sin 0 si

\S)
\S)

cos 0 cos 0

_ gk

2(j,k) = ae'¥| ¢k

— O N
— O N

(39)

To recover the desired extensional flow, we set a=
—Ad/2igq, take the real part, and take the limit g— 0,

—cos(gk)sin 6

—dAe'Y| 1 sin(gk)cos 6
2(j,k) = Red Tlim ——= (4k)
—0 2i1g 0
21 sin(gk)
j sin 6
dA| —kcos 6
=— (40)
2 0
-2k

Note that we have chosen a to set the value of A(j,k) to be
consistent with Eq. (38). (Note that for a system of exten-
sions parallel to x and y respectively of L, and L,, the instan-

taneous Poisson’s ratio —(L,/ Ly)(I;y/ L,)=cot 6.) We can now
also write the acceleration vector as a limit,

— cos(gk)cos 0

dA%e'Y| — 1 sin(gk)sin 6
#(j,k) =Rey lim ¢ (gk)
q—>0 2lq 0
0
jcos @
dA?| ksin 6
=—— (41)
2 0
0

Note that the accelerations are approximately directed to-
ward the origin and are independent of the sign of A, as we
would expect for grains engaged in radial motion about one
another. We can now use this result to compute the {v} and
insert in Eq. (37) to obtain the forces. For the moment we
restrain ourselves from taking the limit ¢ — 0, although we
do omit some terms that will disappear in this limit, and we
obtain
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v(g.k) 0
vi(q.k) | dMA’[cos Otan(6/2)]| 1qk
uigk) | 2iq —et |
vy(g.k) — ek

(42)

from which the inhomogeneous contribution to the forces
from Eq. (37) can be easily determined, using the limiting
expression

Nywlj,k)
Tyw(j.k)
Nyg(j,k)
Tne(j,k)

inhom.

4 k—1
=Req lim 4> | > v’,‘l’vn(q,k—k’) u, (, (43)
q—0 n=1 k'=0

NNW(j’k) tan 6
Taw(i k dMA? 2
NW(I, ) = [cos Otan(6/2)] —
NNE(J’k) 2 2| tan 6
TNE(j9k) inhom. -1
—cot(6/2)
1
+ jk . 44
/ cot(6/2) (“44)
1

where we have neglected terms of less than quadratic order
in j,k.

It is clear that this inhomogeneous contribution includes
negative values of the normal forces at sufficiently low val-
ues of k/j, and that these scale with k* (at fixed k/j). In
addition, it is now easy to determine the inhomogeneous part
of the internal normal force within a doublet, Ny ;0 » using
Eq. (B5), which yields (at quadratic order in j,k)

dMA? sin 6 )
NO,inhom. == Tk > (45)

which is also negative, and also scales with k2.

Thus, no matter what the value of the homogeneous term
for the forces [corresponding to the term proportional to 7 in
Eq. (37)], the requirement that normal forces be positive will
ultimately be overwhelmed by the growth of the inhomoge-
neous term. Note that it is the contacts most perpendicular to
the direction of acceleration that are most at risk of losing
their normal forces. In addition, with a finite coefficient of
friction, the tangential forces will ultimately saturate the
Coulomb criterion and slippage will occur at grain contacts,
invalidating our kinematical assumptions. However, even
with an infinite coefficient of friction, the motion of the pack-
ing is limited to a domain size controlled by the requirement
that all normal forces be compressional. If the scale of the
homogeneous forces is determined by the average pressure in
the packing P, then the scale € of this domain size is deter-
mined by
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FIG. 7. The honeycomb lattice shear solutions correspond to
approximate counter-rotation of two alternating sublattices of
grains, here indexed by A and B.

L m (46)
d”-Ad e

with the density p,~M/d*. Comparing to Eq. (2), we see
that this is equivalent to

{=

~ X

; (47)

which connects the length scale over which frictionally
dominated motion can determine the kinematics with the in-
ertia number /, in a manner consistent with the physical pic-
ture of Halsey and Ertas.

Note that this result can also be obtained on dimensional
grounds. For a coherently shearing region of size ¢, the typi-
cal angular velocity w~ y€/d from Eq. (24). Corresponding
to this angular velocity, one would anticipate an acceleration
at the persistent contacts of

i~ —(yd) (48)
which will set a force scale of
N~ M%, (49)

which is the scale of the inhomogeneous forces computed
explicitly above. Note that this suggests that any state in
which Eq. (48) holds will also have its regions of coherent
shear limited to the scale €=d/I, including much more dis-
orderly states than the honeycomb lattice. I will return to this
point in Sec. IV below.

IV. KINEMATICS OF RANDOM GRAIN PACKINGS

Let us reconsider the kinematics of the honeycomb lattice
state, as defined by Eq. (12). An initially surprising feature of
this state is the role played by ¢=QL—QX, which increases
linearly with distance in states with overall linear behavior of
the average velocities u, and u,. Thus, one way to view the
motion of the honeycomb state is by decomposing it into
alternating sublattices, A and B (see Fig. 7), on which the
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FIG. 8. In the Fokker-Planck approximation, we consider ran-
dom walks from grain to grain passing always through contacts
between the grains.

particles are approximately counter-rotating with respect to
one another. The spatial variations of these counter-rotations
then determine the overall spatial structure of the flow. Now
we must consider random lattices, and determine, in particu-
lar, if there is any remnant of this feature for such lattices.

To determine the nature of the random lattice solution that
respects the constraining large-scale motions, we apply a
two-point Fokker-Planck approximation. Consider a random
walk that moves entirely between grains in contact with one
another (see Fig. 8). Provided that the instantaneous contact
network percolates, such a random walk can access arbi-
trarily distantly separated parts of the grain packing. Over
the set of all particle contacts (ij) we can define a probability
distribution p(#, 60) on the angles of the contacts 6; and the
differences in grain velocity across the contacts 60;;=0,-0,.
For simplicity of notation we are confining ourselves to two
dimensions; however, the generalization to arbitrary dimen-
sions is clear and is assumed in much of the discussion be-
low.

We now assume that in the random walk described in the
previous paragraph, subsequent steps in the random walk
correspond to uncorrelated choices of 6;,60;; from the dis-
tribution p(6, 60). (The neglect of correlations in this ap-
proximation is clearly dangerous, particularly in lower di-
mensionalities, of which more later.)

Let us define a matrix corresponding to the average
changes in position and velocity corresponding to one step in
this random walk,

(ow,dw,) (dw,dwy) (dw.dv,) (dw,dv,)
(6w, ow,) (Swydw,) (w,dv,) (Sw,dv,)
(bv, 6w,y (dv,owy) (dv,dv,) (dv,dv,)
(dvyow,) (dv,dw,) (dv,dv,) (bv,ov,)

M=

(50)

In this matrix, the averages are easily written, e.g.,

(6w 6w, = J dé f d(80)p(6,80)(d cos 6)>.  (51)
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We can now write directly the limiting result for the prob-
ability distribution p,(Aw,Av) after n steps of the random
walk, with n— oo,

1
(27mn)*det(M)

Xexp{— i[(Aw’ Aﬁ)ﬂ‘(ii”}.

(52)

P, (A, AG) =

We can use this probability distribution to compute proper-
ties of the velocity distribution arising from the fundamental
two-particle correlations expressed in M. Thus the expecta-
tion value of the velocity at the spatial point X is given by

f dnf dv(0)p,(X,0)

(0(®) = (53)

Jdnf dvp,(X,0)

As an example, consider a case in which (éw éw,)
=(v,6v,)=0, and (6w, dv,)=(éw,dv,)=(éw,dv,)=0, but in
which (dw,dv,) #0. In this case we can write

(6w, Ow,) 0 0 (ow,v,)
vl 0 (ow,owy) 0 0
0 0 (6v,6v,) 0
(v, 6w,) 0 0 (v, bv,)
(54)
We can now invert M and use Eq. (53) to show that
Hv,) _ <5WX502:>, (55)
dx (w7
and
J J ,
0y _ Koy _ 0 (56)
ax dy

corresponding to pure shear motion.

In this way, any motion that is linear in the coordinates
can be associated with values of the coefficients of the matrix
M, corresponding to particular correlations of neighboring
grains. This approach has an interesting feature; however, in
that it leads to divergent fluctuations in dimensions below
D=4.

The generalization of the above formulae to p,
with D>2 is simple, so we can consider, for instance,

(D)(

N
di (2 - () pP(x,0)

f dnf dvp(D)(x 0)

Simple power counting leads immediately to the conclusion
that

0

(B = (@) = Jim

(57)
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(G() = (@(%))*) ~ N>P2. (58)

If we suppose that € ~ VN corresponds to some maximum
“coherent” length scale that can be probed by the random
walk, then we see that

(@) = (@) ~ €. (59)

Note that assuming that /=d/¥, as is done in the theory of
incline flow of Halsey and Ertas [4], gives a divergence of
the squared velocity fluctuation

(@) = (@@ ~ 177, (60)
compared to the numerical result
(G = (@@ ~ I (61)

The numerical results for the values of y in D=2,3 are not
definitive on its actual value, although y=1 in D=2 is likely
[6], and a similar and perhaps smaller value seems to hold in
D=3 [7].

It is striking that an argument with so little physics pre-
dicts a divergence of the velocity fluctuations with an expo-
nent similar to that observed numerically [6,7]. However, the
neglect of correlations undermines the quantitative credibil-
ity of this argument [13].

Up to now, we have not implemented any requirement
that the velocities be determined by the angular motions of
the particles. This is seemingly quite straightforward, e.g.,
the averages of &0 appearing in M can easily be written in
terms of the angular motions of the particles, using Eq. (6),
for the rolling contacts. Then, as remarked above, the perco-
lation of the contact network insures that we can still con-
struct the master probability distribution for the fluctuations
of Aw,Av, as in the above argument. There is, however, a
subtle and important flaw in this procedure.

Restricting ourselves for the moment to two dimensions,
let us try to determine large-scale variations in the angular
velocities (); using a procedure analogous to that we used
above for large-scale variations in the velocity. Since the
velocity moments for neighboring particles are functions of
the sum of the angular velocities, 0;—0;=2X (W;—W)({),
+Q j), we will restrict ourselves to these variables in comput-
ing large-scale variations in (), which is feasible provided we
consider the combination of two successive steps on the lat-
tice of rolling contacts, as shall be seen below.

If we construct an analogous formula to Eq. (52) for the
evolution of the distribution of ) over a random walk, we
can write

o0 (ow,50)
o  ((ow))

Note that we have assumed above that there is a stationary
distribution p(#, 60;;). If such a distribution is not a function
of position, then there is no local indicator of position arising
either from the angular distribution of contacts, nor from the
nearest-neighbor velocity differences. For rolling contacts,
this implies, as utilized in the above, a stationary distribution
p(0,Q;+Q;). To use this to evaluate an average of ,~();
we can concatenate two subsequent steps in our random
walk, from i — j—k, and write that for this compound step

(62)
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<5Wx;iak(Qk - Qi)) = <(5Wx;iﬁj
X[(Qe+ Q) = (Q;+ Q)]
=d(cos 6;;(;+€)) —cos 0;(Q; + Q)
-0, (63)

+ 5W]~>k)

so that we conclude that it is not possible for a distribution
with a stationary p(6;;,€);+();) to describe a grain packing
with any large-scale spatial variation in ().

However, inspired by the discussion above regarding the
role of £€=Q,—Qp in the honeycomb lattice case, we can
immediately construct an exception to this. Suppose the
packing of grains connected by rolling contacts can be de-
scribed as consisting of two disjoint subpackings A and B, so
that no two A grains, nor any two B grains, are in rolling
contact with one another. In this case, we can posit that the
distribution used in the random walk depends on whether
one is passing from an A grain to a B grain or vice versa, i.e.,
Pap(0, Qs+ Qp) # pps (0, Qp+Qy) =psp(0+ 1,0y +Qp),
where this latter requirement follows from the reversibility
of the random walk. Then we see that in this case, supposing
that i,k are on the A packing, and j is on the B packing,

(Wi = ) = <(5Wx;iﬂj + 5Wj~>k)[(Qk + Qj)
= (Q;+ Q)]
= 2d<COS 011(91 + Qj)>AB’ (64)

where ( )45 is defined as the integral over p,z(0,Q4+Qp).
Now we can develop linear gradients in () on sublattice A,
provided that the gradient of () on the alternating sublattice
B has the opposite sign, as in the honeycomb lattice solution.

Thus, the state will be characterized by a function
Q4 (x,y) on the A sublattice, and by Qgz(x,y) on the B sub-
lattice, with

Q) - 3{p) - (cos 0;(Q;+ Q))yp
dx Jx d{(cos 6;))ap

This criterion will enforce that relative local particle sur-
face velocities will be small where an A-lattice particle con-
tacts a B-lattice particle, which is suitable to a slowly
strained system with frictional contacts. Both ), and Qg
vary linearly across a shearing region. Thus, the dimensional
constraint on the forces, Eq. (49), should still apply for ran-
dom lattices, resulting in a restriction of the coherently shear-
ing region to a scale {=d/l. Finally, the overall shear is
determined in this case by

Hv,) _ (cos® 0;,(Q + Q) ap
&Wx 2d<(COS 0ij)2>AB

(65)

(66)

In general, it is not possible to decompose a random lat-
tice into two such sublattices. The situation is analogous to
an antiferromagnet on a random graph, for which plaquettes
bounded by odd numbers of particles are frustrated; i.e., it is
not possible to assign each such particle to a sublattice in
such a way that no two particles of the same sublattice are in
contact with one another (see Fig. 9) [14]. In order to pre-
serve the structure of the state indicated above, with ), =
—Qp, we require that enough of the particle contacts are slid-
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FIG. 9. In a random lattice, a decomposition of the lattice into
two alternating sublattices will generally result in “frustrated” con-
tacts, across which sliding must occur.

ing so that all remaining contacts can be rolling contacts
between grains on alternate sublattices. It then follows that
pap 1s understood as the distribution across rolling contacts
only, not including sliding contacts.

If we wish to apply the reasoning of Egs. (46)—(49) to the
random lattice, and derive a length scale € beyond which a
coherently shearing patch will be destabilized by the disap-
pearance of normal forces, we must specify what we mean
by a “coherently shearing patch” in a random lattice. For a
general random lattice with some density of “odd”
plaquettes, there will be a number of possible choices of
which contacts must slide so that the others may roll. From
the argument of the preceding paragraph, it is clear that this
enumeration problem is exactly analogous to the enumera-
tion of the states of an antiferromagnet on the corresponding
random graph. The statistical mechanics of this latter prob-
lem has been studied—in two dimensions, there appears to
be a spin-glass phase at zero temperature, which does not
extend to finite temperature [15]. Although the granular
problem is not a thermal statistical mechanical problem, it is
natural to identify the coherence that is destroyed by the
disappearing normal forces with the zero-temperature spin-
glass order of the analogous antiferromagnet. With this inter-
pretation of the meaning of “coherence,” we again expect

d
€= ; (67)

to set the maximum size of a coherent domain, following the
argument of Egs. (46)—(49). A more dramatic indicator of the
existence of the state which we are discussing would be a
strong short-ranged antiferromagnetic order corresponding to
a predominance of rolling contacts.

The overall picture that we have developed should be
compared with recent literature on “rolling bearings” [16],
which are three-dimensional frictional bearings made up of
particles of differing sizes (but lacking odd plaquettes). We
can also contrast our results with numerical simulations re-
ported by Alonso-Marroquin er al. [17]. In a two-
dimensional shear cell, this group observed that the macro-
scopic shearing motions of a dense granular packing
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(simulating fault gouge) decomposed, on smaller scales, into
regions of coherent vorticity (which in our notation corre-
sponds to A constant, £=0), regions of “ball-bearing mo-
tion” (corresponding to the counter-rotating motion of our
two sublattices), and shear zones in which sliding dominated.
Due to the predominance of rolling contacts, particularly at
high coefficients of friction, the overall macroscopic friction
observed in the shear cell was considerably less than the
microscopic coefficient of friction. The decomposition of the
solution into regions with qualitatively different properties
violates the assumption that there is a uniform distribution
p(6, 80), on which our argument above was based.

The first of the Alonso-Marroquin motions, corresponding
to large-scale vorticity, was not observed in three-
dimensional numerical studies specifically designed to look
for velocity correlations in chute flows [7]. Also, at high
coefficients of friction, the Alonso-Marroquin kinematics
was “earthquakelike,” with much of the slip occurring in
discontinuous jumps. We might suspect that such discontinu-
ous kinetics, associated with pattern formation, are more
characteristic of low values of I (corresponding to ¢>1L,
with L an overall flow scale), than they are of the interme-
diate values of I that have been our concern.

Finally, we are also able to use this picture to speculate on
the nature of the w— o limit. Consider the tangential and
normal forces 7,.,N,. at a typical sliding contact, T./N.=pu.
These forces will be determined by the overall force balances
subject to the motions of the grains, and we expect that both
T, and N, will be ~PdP~!. Since these forces have a fixed
ratio at the sliding contacts, we see that limM_m N,.=0, since
this will be the solution to the force balances in preference to
a case in which 7.— . Thus, in the limit, the sliding con-
tacts will see their normal forces driven to zero; i.e., these
contacts will be eliminated as physical contacts. We would
thus expect that in the limit u— o0 all of the plaquettes will
have even numbers of sides, and the frustration will be elimi-
nated, in any mobile state.

A. Three-dimensional case

The extension of these arguments to three dimensions is
straightforward. The original contact-rolling equations [Egs.
(6) and (7)] clearly apply in three dimensions, and the dia-
mond lattice plays the same role in D=3 of a potential model
system as did the honeycomb lattice in D=2. To conserve the
labor of the author and the patience of the reader, we are not
presenting details of the diamond lattice kinematics in this
work; we only wish to point out that the diamond lattice does
support alternating A and B sublattices analogously to the
honeycomb lattice case, which allows shearing states obey-
ing QA %—QB to be constructed.

For random lattices, the arguments of the previous section
should hold in three dimensions just as in two dimensions
(indeed, they should be more valid, since the upper critical
dimension of D=4 is closer). Again, the optimal decomposi-
tion of the random lattice into two alternating sublattices is
analogous to the problem of determining a ground state for
an antiferromagnet on a random graph. Again, odd plaquettes
must have at least one sliding contact corresponding to a
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frustrated bond in the random antiferromagnet. In three di-
mensions, these odd plaquettes can be viewed as threaded by
“odd lines,” introduced by Rivier and Duffy [18]. For pure
shear, we expect the direction of the typical angular velocity
to be perpendicular to the shearing motions, so that the anal-
ogy is to an Ising antiferromagnet and not to a Heisenberg
antiferromagnet. Note that the degenerate case in which par-
ticles rotate about an axis through the contact between the
particles is assumed not to play a significant role.

V. CONCLUSIONS

The principal conclusions of this study are as follows:

(1) Frictional packings, dominated by rolling contacts,
cannot be mobile above a coordination number Z,=3(D=2)
or Z,=4(D=3). These thresholds are consistent with those
obtained using similar arguments by authors studying the
isostaticity of static packings.

(2) The honeycomb lattice in D=2 offers a case in which
the rolling kinematics can be exactly solved. The most sur-
prising feature of the result is that the scale of the angular
velocities w grows linearly with the size of the system, al-
though the average of the angular velocity is moderated by
the fact that the rotations on two alternating sublattices
roughly cancel.

(3) The dynamics of the honeycomb lattice can also be
solved. The conclusion is that the requirement that all normal
forces be compressive can only be satisfied for packings
smaller than €, with

¢ ~dll, (68)

where [ is the inertia number, given by Eq. (2).

(4) For random lattices, a Fokker-Planck approximation to
the kinetics yields the same key result as for the honeycomb
lattice, i.e., that the typical angular velocity grows linearly
with the size of a coherently rolling region. Again, the aver-
age angular velocity is much smaller. The presence of odd
plaquettes of particles in contact will require compensating
sliding contacts even if the coefficient of friction is large; the
statistics of these sliding contacts are analogous to those of
frustrated bonds in random antiferromagnets.

Clearly, many aspects of the overall kinetics and dynam-
ics of frictional packings remain unaddressed by this study,
notably the computation of forces in a random network, and
the corresponding overall rheological response of the pack-
ing to applied stresses. To solve this latter problem, it will be
necessary to understand how regions of coherent rolling or-
ganize themselves with respect to one another—is the system
still homogeneous in some sense or will sliding contacts or-
ganize themselves into defined shear bands?
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APPENDIX A: HONEYCOMB KINEMATICS

We wish to determine the kinematic constraints on a dou-
blet imposed by the requirement that its internal contact and

PHYSICAL REVIEW E 80, 011303 (2009)

all contacts with other doublets be rolling. Recall that the
doublet under consideration is indexed by the coordinates
(j,k), and that the velocity and angular velocity of the left-
and right-hand members of this doublet are u“*, u"R QLR
respectively. Consider the contact between the left-hand dou-
blet member at j,k and the right-hand doublet at j—1,k—1.
We indicate the velocity and angular velocity of the particle
in the j—1,k—1 doublet by (vf,vf,wR). Then we can con-
veniently write the new constraints on the velocities by the
matrix equation

(cosﬂ sint9)<vf) d(O)
ilhad
—sin 6 cos 6 vf 2\ of

cos # sin 6 uf d( 0
= . L]~ A L/ (Al)
—sin 6 cos 0/ \uy 2\Q

Applying these equations repeatedly to each doublet, we ob-
tain after some labor an equation linking the kth row in the
lattice to the k—1’st row. Recalling that u"=u"=u,, uf,:uy
— Q0. uf=u +{(QL+OR), A=5(QF+0F), and &
=5(QF-QR), and writing the variables characterizing a dou-
blet as

2(7,k) = [ (7, k), uy(7,k), A, k), (. k)], (A2)
we can write the contact rolling equations as
2, =Az(-1,k—=1)+Az(j+1,k—=1), (A3)
with
1 1 (0) 1 ( 0)
— —tan| — 0 —tan| —
2 2 2 4 2
t(0 1 1
cot(6) 1 1 0
_ 2 2 4
A_=
0 1 l l cos 6
1+cos @ 2 21+cos @
1 1
csc 6 0 - = —
2 2
(A4)
and
1 1 (e) 1 ( 9)
- — —tan| — 0 — —tan| —
2 2 2 4 2
t(0 1 1
_co() 11 0
_ 2 2 4
A=
0 1 l l cos 6
1+cos 6@ 2 21+cos 6
1 1
—csc 6 0 - —
2 2
(AS)
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APPENDIX B: HONEYCOMB DYNAMICS

Recalling the doublet experiencing forces from its neigh-
bors as in Fig. 5, we see that four of the equations of motion
for this doublet can be written as

(Nnw + Nsw = Nyg — Nsg)
Xcos 6+ (Tsw+ TSE_ TNW_ TNE)SiIl 0= 2Mﬂx,
(B1)

(Nsw + Nsg = Nyw — Nyi)
Xsin 0+ (TNE+ TSE - TNW_ Tsw)COS 0= 2Mb.ly,
(B2)

(Nyw + Nz = Nyg = Ngy)sin 0+ (Tyg + T+ Ty + Toy)

20\ .
X (1 + cos 0)=(2M+d—§4>A, (B3)

L .
d—fg. (B4)

Tyw+Tsw—=Typ—Top=
The other two equations of motion are

(Nyw + Nsw+ Nyg + Nsg)
Xcos 0+ (TNE + TSW_ TNW_ TSE)Sin 0: 2N0,
(BS)

I, .
Tye + Tw+ Tsg + Ty — d—fA =2T,. (B6)

It is now straightforward to write

2 sin%(6/2)
sin 60— tan(6/2)
cos 6
sin 0— tan(6/2)

B(6) =— By (6)By(6) =

and
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Nyg SE
Tye Tsg
2Mu,
2Mii, N
ZIM) u)'
= M+ =LA | =2M .|, (B7
( d4? (1+x)A B7)
ZIM ¢
d? Vil «€
with
cosf —-sinf —cosfh —sin b
_ —sinf® —-cosf -—siné cosb
By(0) = .
sinf@ 1+4+cos@ —sinf 1+cosb
0 -1
(B8)
and
cos 6 sin 6 —cos 0 sin 6
_ sinf@ —cosf sin @ cos 6
B(6) = .
—sinf 1+cos@® sinfh 1+coséb
1 0 -1
(B9)
or
Nyw Ngw thy
T T _ u,
MWl =Bl 5V | +2mC(0) b
NNE NSE (1 + K)A
Tyg Tse k€
(B10)
with
—sin 0 cos 60 —sin 0
—cos O —sin O+tan(0/2) 2 sin*(6/2)
. . 9 . , (B11)
sin 6 2 sin”(6/2) sin 6
2 sin’(0/2) —sin O+tan(#/2) —cos 6
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1
- tan(6/2)
co=syo=2| _|

—tan(6/2)

and k=1I,,/ Md’.
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—csc 6 tan(6/2) —cot @
cos 0
0 S EEE— 1
1+cos 6
(B12)
—csc 6 —tan(6/2) —cot @
cos 6
0 —_— -1
1+cos 6
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