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Anomalous diffusion in a field of randomly distributed scatterers
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We consider the motion of particles which are scattered by randomly distributed obstacles. In between
scattering events the particles move uniformly. The governing master equation is obtained by mapping the
problem onto a master equation which was previously devised for the description of anomalous diffusion of
particles with inertia [R. Friedrich et al., Phys. Rev. Lett. 96, 230601 (2006)]. We show that for a scale-free
distance distribution of scatterers a time-fractional master equation arises. The corresponding diffusion equa-
tion which exhibits a power-law diffusion coefficient is solved in d dimensions via the method of

subordination.
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I. INTRODUCTION

Many complex systems in nature show significant devia-
tions from the predictions of the standard theory of Brownian
diffusion [1-4]. In general the dynamics of such systems
cannot be described suitably by the standard theory of
Gaussian fluctuations. In many cases the properties of sys-
tems exhibiting anomalous diffusion can be related to scale-
free probability distributions. For example, the theory of
Lévy flights, i.e., random walks with a scale-free distribution
of displacement distances, has become a well-established
scheme to quantitatively describe superdiffusive dispersion
[3]. On the other hand, a common description of subdiffusive
processes is in terms of the fractional diffusion equations
which can be derived from a continuous time random walk
model governed by scale-free waiting time distributions of
the random walker [4].

In a recent work we have considered the motion of par-
ticles, which are subjected to random scattering events in-
stantaneously changing the particle velocities [5,6]. The oc-
currences of these impacts are assumed to happen after
randomly distributed time intervals. The time in between the
impacts is characterized by a waiting time distribution
W(v|v';t—t"), which denotes the probability that two im-
pacts are separated by the interval f—¢', changing the veloc-
ity from v’ to v. This waiting time distribution can also be
regarded as a free flight distribution. Accordingly this pro-
cess can be considered as a continuous time random walk in
velocity space. In [5,6] we have derived the master equation
for the probability distribution f(x,v,f) of the particle lo-
cated at time 7 at x moving with constant velocity v. This
master equation takes the form

[aﬁt +v- Vx]f(x,v,t)

= f dt'f av'[QvV i =) f(x=v'(t=1t"),v',t")
0

-0 |v, =t )f(x=v(t=1"),v,t")]. (1)
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A derivation of this equation is given in Appendix A. The
quantity Q(v|v’,?) is defined in terms of the waiting time
distribution W(v|v’,r—t") which denotes the joint distribu-
tion for the probability that a change of velocity has occurred
at time ¢’ where the particle has achieved the velocity v’ and
that after the time interval 7=¢—1¢" the next change happens,
where the particle takes on a new velocity v. The kernel
Q(v|v',t) arising in the master equation is of the same form
as the standard kernel of continuous time random walks [7]
and can be defined in terms of its Laplace transform

AW(v|v',\)
1 —fdvW(v|v' . \)

O(v[v'.N) = 2)

We note that the master equation guarantees the conservation
of the positiveness of the probability distribution provided
the kernel Q(v,v’,1) is related to a waiting time probability
distribution W(v,v',t) obeying the following properties

W(vlv',7) =0,

fdvW(v|v’,T) =1. (3)

The choice Q(v|v',t—t")=F(v,v')8(t—t") obviously yields a
Markovian master equation.

For a scale-free kernel with a power-law dependence on
the time interval 7 the master equation can be related to the
class of fractional master equations which are widely used
for the analysis of anomalous diffusion in complex systems
[1,2,4]. For the corresponding Fokker-Planck equation,
which can be interpreted as a fractional Kramers equation
[8], it is possible to derive a description in terms of Langevin
equations which can be used to investigate sample trajecto-
ries of the process [9]. The subtle differences between the
fractional Kramers equation proposed in [5,6] and the one
considered in [8] are also discussed in [9].

As we show in the present paper a similar approach can
be applied to the problem of a particle freely moving in a
field of randomly distributed scatterers. Originally our work
has been motivated by numerical simulations of particle mo-
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tion in magnetohydrodynamic turbulence performed by
Homann er al. [10]. They found that the particle motion is
strongly influenced by the presence of current sheets which
are localized structures where an electric current is confined
to a surface. Particle trajectories are characterized by long
straight flights interrupted by localized events of high accel-
eration leading to a sudden change of the direction of flight.
The occurrence of these events is determined by the spatial
distribution of current sheets in magnetohydrodynamic
(MHD) turbulence. Assuming the velocity changes to occur
almost instantaneously the motion of the particle can there-
fore be described by a particle flying in a field of scattering
current sheets. Within the approximation that the velocity in
between two consecutive scattering events remains constant,
the statistics of the current sheet distribution can be formu-
lated in terms of waiting time distributions. In turn, the sta-
tistical description of the particle’s motion can be mapped
onto the problem considered in [5,6].

However, our treatment is not limited to a specific prob-
lem but is a generic stochastic model for the description of
anomalous diffusion of particles in a field of randomly mov-
ing scatterers. To state another possible application one can
think of a generalized Drude model to describe electrical
conduction in dilute gases [11].

In this paper we first formulate the governing master
equation by translating the statistics of random distances to
random free flight times and thereby mapping the problem to
Eq. (1). Then we discuss two important classes of distance
distributions of which one leads to the class of fractional
equations which is central for the description of anomalous
diffusion. Applying a diffusion approximation we state the
corresponding generalized diffusion equation and obtain a
scaling solution. The necessary background is comprised in
two appendixes.

II. MOTION IN A RANDOM FIELD OF SCATTERERS

In this section we shall map the problem of the descrip-
tion of the motion of particles in a field of randomly distrib-
uted scatterers onto the master equation (1). We base our
treatment on the definition of the probability distribution

P(v|[v';R), (4)

which is the spatial analog of the free flight time distribution
W(v|v',t—t"). More specifically, P(v|v’',R)dRdvdv’ is the
probability that two scatterers are separated by a distance R,
whereby the first scatterer changes the particle’s velocity to
v’ and the second scatterer, after a free flight of the particle,
to v, respectively.

In order to apply the master equation (1) which is formu-
lated in terms of free flight times to the description of par-
ticle trajectories in a field of randomly distributed scatterers,
we have to determine the waiting time distribution
W(v|v',7) from the distance distribution P(VJ_V' ,R). Intro-
ducing the absolute value of the velocity v=\v~ the particle
travels the distance R=v’(z—1t") between the two scattering
events. The waiting time distribution is therefore obtained
according to
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W(vlv';t—t') = J“" dRP(V|V’;R)§<t— t - 5,) (5)
) v

(
Using the identity
Sx = x:
o) =3 11 ©)

of the delta function, where the x; are the zeros of the func-
tion f(x), this yields the explicit relationship

W(v|v',t=t")=v'Plv|v';v' (t—1")]. (7)

If we assume the scattering statistics to be statistically inde-
pendent from the spatial distribution,

P(v|[v',R) = p(v[v")g(R) )

we obtain
W(v[v',t=1") =v'p(v|v))g[v' (1~ 1')]. )
Here, p(v|v')dvdv' is the joint probability relating the ve-

locities v', v after the two scattering events, and g(R)dR is
the probability finding two scatterers at distance R.

The master equation (1) is formulated in terms of the
quantity Q(v|v’,z—t'), which is defined in terms of the
Laplace transform by Eq. (2). Applying Eq. (9), one obtains

()
QOlY M) =y ) — 5 (10)
)

!

where the scaling property of Laplace transforms was used.
Inverse Laplace transform finally yields the desired form of
the time evolution kernel

O(v|v',t—1") =p(v|v)v'qlv' (1 -1")]. (11)

where the Laplace transform of ¢(£) is determined via the
Laplace transform of g(&)

Ag(N\)

g(\) = PTNE

(12)

Thus we have succeeded in expressing the spatial statistics in
terms of waiting time statistics.

Lumping Eq. (11) into Eq. (1) the master equation de-
scribing the motion of particles in a field of randomly dis-
tributed scatterers in joint position-velocity space reads

[{% +v- Vx]f(x,v,t)

= ftdt’J av'{p(v[v)v'qlv'(t-1")]
0

—8v=vuglv(t-t")}fx-v'(t-1),v' ']
(13)
This master equation has a straightforward interpretation.

The first summand in the bracket on the right-hand side in-
dicates that the probability to be at time ¢ at position x with
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velocity v is increased by particles starting at x’
=x-v'(r—1") with velocity v’ and performing after a free
flight of duration #—¢" at x a transition to the velocity v. On
the other hand the second term in the bracket evidences that
the probability is decreased by particles which perform at x
after a free flight time of duration 7—¢' a transition away
from v to some other velocity.

In the following we shall consider various forms of the
quantities p(v|v') and waiting time distributions defining the
kernel g(&). Thereby we shall focus on the corresponding
probability distribution h(v,7) for the velocity of the particle

h(v,t) = J dxf(x,v,1). (14)

Integrating Eq. (52) with respect to the particle coordinate x
we obtain a generalized master equation in velocity space

L vt = f dr J Ay {pvv Yo' g[v' (= )]
it .

= 8(v-v)uglv@-1)h(v't'). (15)

We can consider the Laplace transform of this equation. It
reads

MG =500+ [ dv'[p<v|vr>q(§)

—&V—V’)q(%)]h(v',)\). (16)

In the following we consider two generic forms of waiting
time distributions, namely exponential and power law dis-
tributed waiting times. Eq. (16) will be especially convenient
for the later.

III. WAITING TIME DISTRIBUTIONS AND STATISTICS
OF SCATTERERS

Let us now consider several examples for the spatial sta-
tistics of the distance R between the scatterers. In the follow-
ing d denotes the dimension of space. Our first example is
the exponential probability distribution

g(R) = yR" e, (17)

To calculate the evolution kernel ¢ we have to switch to
Laplace space. We obtain

yI'(d)
N+

where I' denotes the well-known Gamma function. The func-
tion g(\) then takes the form

g\ = (18)

Y\'(d)
N+ Y= (d)

The inverse Laplace transform of Eq. (19) in arbitrary di-
mensions cannot be stated in a closed form. Let us therefore
consider two special cases. In one dimension the inverse
Laplace transform of Eq. (19) reads

q(\) = (19)
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q(&) = yd(¢) (20)

leading to a Markovian master equation for the velocity

J
Eh(v,t) = 'yf dv'[pwlv’) - 8v-v")]r@’,t"). (21)
In two dimensions the kernel takes the form

q(9) = ye " (cosh[Vy€] - Vysinh[\y&]).  (22)

Insertion of this expression into the master equation (15)
yields the desired equation in two dimensions. This equation
simplifies significantly if we consider the case y=1. Then
Eq. (22) reads

g =e* (23)

and we obtain the master equation
J ! ot
Eh(v,t) =f a’t'f av'[p(v[v')v' e (=)
0

—8(v =V e (v 1), (24)

In more than two dimensions even the special case of y=1
leads to rather lengthy expressions.

As a second example we want to consider the important
class of scale-free probability distributions g(R) which play a
prominent role in the theory of anomalous diffusion [4].
These are characterized by an algebraic decay in the limit
R— . In d dimensions they take the generic form

g(R) = Rd—lRLy. (25)

In order to lack a typical length scale, the first moment of
these distributions has to diverge

(R) = J ’ dRg(R)R — . (26)
0

This means that the integral diverges for large values of R

f dR'R IWR =f dR R (27)

Introducing the dimension dependent exponent a=7y—d, we
observe that the distribution is scale free for 0 <a=1.

Note that the distributions under consideration belong to
the class of spherically symmetric d-dimensional Lévy stable
probability distributions, denoted p?(R), which display a
large R asymptotic behavior of the form p%(R)=~R-(e+d
=R~” which are scale free for 0<a=1 (see, e.g., [12]).

To establish the kernel vg[v(r—¢")] for this case we have
to consider the Laplace transform again. According to the
Tauberian theorems the large R behavior is determined by
the behavior of the Laplace transform g(\) of the probability
distribution g(R), i.e., its characteristic function, at small val-
ues of \ [13]. For the considered distributions with algebraic
decay we can expand the characteristic function for small A
according to

011137-3



AFFAN, FRIEDRICH, AND EULE

g =1 —RINT4 - (28)

In order that the distribution is scale free, we have to demand
that g(\) is not differentiable at A=0, which indicates that
the first moment diverges. We remind the reader that

aa=—[§%gm} . (29)
A=0

This restricts the value of « again to the interval 0<a<1.
Next we have evaluate the quantity

Ag(\) _
1-g(\)

Inverse Laplace transform yields an approximation for the
kernel vg[v(t—1")] for large values of v(z—1'). As we will
now indicate this leads to the introduction of fractional de-
rivatives.

We consider the convolution

1= (Rp\)®
(Rp\)*

qg(\) = ~RyA\" (30

t dt/
—G(t' 31
Luﬁww() (1)
whose Laplace transform is simply

C(a)N"*G(N), (32)

where I'(a) denotes the Gamma function and the relation
holds for a>0. If we now consider the product

MGV (33)

in Laplace space, we can represent this in real space as the
following integral

Lo (" ar N
anLuqmwaﬂ—a G, (34

which defines the Riemann-Liouville fractional derivative.
For the discussion of the fractional derivative we refer the
reader to, e.g., [14].

In fact, we are interested in the expression

q<5>G(>\) = NG (N), (35)
U

which in real space yields
v DG (r). (36)

After insertion of the kernel (35) into Eq. (16) we can now
formulate a fractional master equation for a scale-free distri-
bution of distances between the scatterers

J
Eh(v,t) :Dll_”‘f av'[p(v|v)o'* = 8(v=v" o n(v',1).

(37

It is quite interesting to notice how our approach connects
Lévy distributed scattering distances with a time-fractional
master equation for the velocity distribution.
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IV. FRACTIONAL EQUATIONS AND VELOCITY
DISTRIBUTION

In this section we shall construct the solution for the frac-
tional master equation (37). For convenience let us first de-
fine the operator L(v,v')

Lv,v') =[p(v|v))o'* = §(v-v")o*!] (38)

since we can thereby cast the master equation into the form
J I-a ’ ’
a—th(v,t) =D, dv'L(v,v)h(v',1). (39)

A well-known method to solve fractional master equations is
by applying an integral transform which maps the solution of
the ordinary equation to the corresponding solution of the
fractional equation [15]

f(v,1) :f dsp(s,0)fo(v,s), (40)
0
where f((v,s) is the solution of the ordinary equation

%fo(v,s) =de’L(V,V’)f0(V’,S). (41)

The quantity p(s,?) has the meaning of a probability density.
As we show in Appendix B, this distribution is characterized
by

d ! d
—p(s,t)=— | dt’'q,_(t—t")—p(s,1), 42
atp(s ) fo q1-al )&sp(s ) (42)

where ¢,_,(t—1") is specific time kernel. For the case of frac-
tional equations this equation can be solved analytically and
yields

1 ¢ t
p(s,1) = ;SH—WLQ(SW)- (43)

Here, L,(x) denotes the one-sided Lévy stable distribution of
order a [15]. The distribution (43) plays a central role in the
theory of fractional equations and is often referred to as in-
verse Lévy distribution.

Interestingly the solution of fractional equations via inte-
gral transforms is closely related to the mathematical concept
of subordination [16—18]. One can think of the variable s to
denote a form of internal time, which is randomly mapped to
the physical time t. This map is specified by a stochastic
process

s=S(). (44)

In this context p(s,t) denotes the probability distribution to
find the internal time s at physical time ¢. The master equa-
tion (41) specifies a Markovian stochastic process in internal
time v(s) and the process under consideration is constructed
by subordination, i.e.,

V() =v[S()]. (45)

Let us summarize. For the case of a self-similar distribu-
tion g(R), the determination of the probability distribution of
the scattered particle can be reduced to the determination of
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the probability distribution fy(v,s) of a Markovian process
and a subsequent evaluation of the integral transform (40)

N B t
f(v,1) = fo ds;sHmLa(Fy)fo(V,s). (46)

The presented method is especially useful if the solution of
the ordinary master equation has a scaling form with scaling

exponent 7, i.e.,
1 ~(v
Jo(v.s) = 77F<s_’7) (47)

A straightforward calculation then shows that the probability
distribution f(v,#) exhibits a scaling behavior with scaling
exponent {=amn,

o [ atzt )

v,t) = s———-L,
0 asl+l/a Sl/a dn s7
R AR
© ) FVagdngdant \ gugen | 4\ gl )

In the following we shall discuss the determination of the
probability distribution f(v,s) for the diffusion approxima-
tion of the transition probability p(v,v’).

(48)

V. DIFFUSION APPROXIMATION

Since master equations are hard to tackle analytically for
general transition amplitudes, we shall consider now the dif-
fusion approximation of the velocity jump process under
consideration. This approximation holds for specific case
where the scatterers change the velocity only slightly corre-
sponding to almost elastic small angle scattering. Employing
the appropriate diffusion approximation for the velocity tran-
sition amplitude we can write [19,20]

p(V[v)g= 8v=v)[1 + BA, + O(B)], (49)

where A, denotes the Laplace operator in velocity space.
This formal representation is obtained in case that a Gaussian
transition amplitude

6_(V -v)H2%4p (50)

p(v|v') =

1
Vampe

in the limit 8— 0 is considered [19]. Inserting the transition
amplitude (50) into the master equation (13) and demanding
simultaneously the limit

1
q(R)=—4(R) (51)
B
to be well defined we obtain

{% +v- Vx}f(x,v,t)

=f di' Ayuqu(t—1)f(x=v(t—1t"),v,t'). (52)
0

Equation (52) is a generalized Fokker-Planck equation deter-
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mining the joint position-velocity distribution of diffusing
particles in a field of randomly moving scatterers that change
the velocity of the particle only slightly.

It is now interesting to consider the probability distribu-
tion of the velocity only. Integrating Eq. (52) with respect to
the particle coordinate x we obtain a generalized diffusion
equation for the velocity

ih(v,t) = ft dr' Ayuglv(t—1")h(v,t'). (53)
at 0

Note that the nonuniformly distributed time intervals be-
tween the scattering events lead to a time-dependent diffu-
sion coefficient which is furthermore nonlocal in time.

Let us now consider the case, where the distances be-
tween two consecutive scattering events are governed by a
spherically symmetric Lévy distribution of order a. Accord-
ing to the last chapter we have to consider a scale-free kernel
for which we obtain the fractional equation

]
Eh(v,t) =D A h(v,1). (54)

As outlined in the previous section this equation can be
solved by an integral transform related to the method of sub-
ordination. According to Egs. (40) and (41), we have to solve
the ordinary equation for the probability distribution /y(v,s)
determined by the Fokker-Planck equation with respect to
the internal time s,

d
&—ho(v,s) = A0 hy(v,s). (55)
A

A solution of this equation in one dimension has been stated
in [21]. However, this equation can also be solved in d di-
mensions for isotropic initial conditions. Transforming to
spherical coordinates the determining equation for &, then
reads

1 9 J
—— v —v* Ry (v,s). (56)

% hofv.s) =
- v,S
ds ° v oy g

To find a solution of Eq. (56) we perform the scaling ansatz

hy= (57)

1
—H
P(s)
where the transformation f— has been introduced. Insert-
ing this scaling ansatz, Eq. (%3 is transformed to

Yls) 1 :
%&@%@3Wﬁ

Separation of variables then yields the determining equation

for i(s)

§“‘1H(§) (58)

)
P3(s)

where C is some constant factor. This equation can be solved

=C, (59)
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—-a 13—«
¢(s)={(a—3)<lﬂ30——Cs>} , (60)

a-3

where #,=(0) is the initial condition. Without loss of gen-
erality we set (0)=0 and obtain

#(s) =[C(3 — a)s]V3 . (61)

To solve the equation for H(£) we observe from Eq. (58) that
the determining equation reads

1d
—CH(§) =~ — £ H(§), (62)
£d¢
where the remaining integration constant has been set to
zero. We then obtain
Q §3—a
HO = Zorexp| - Cy | (63)

where Q is some integration constant. Finally, we employ the
scaling ansatz (57) to obtain

vl—a v3—a
hO(v’s) :N[(3 _ a,)s](d+1—a)/(3—a)exp - (3 _ a’)2S >

(64)

where N is a suitable normalization constant.

Observe that for a=1 Eq. (64) reduces to the solution of
an isotropic d-dimensional diffusion process as it should.
However, even the ordinary diffusion equation without sub-
ordination already shows for 0 <@ <1 anomalous behavior.
Calculating the behavior of the second order moment

(v(s)?) ~ 5737, (65)

we observe a subdiffusive behavior for the a-range of inter-
est.

As we have discussed above, the scaling behavior of the
probability distributions p(s, ) as well as scaling behavior of
the function (v, s) infers the scaling behavior of the prob-
ability distribution of i(v,r). Applying the relation (48) we
obtain for the present case

1 v
h(U,t)=mF(m). (66)
This implies that velocity moments scale like
(v(t)”) _~ tna/(S_a). (67)

It is tempting to consider our diffusion approximation as a
1td interpretation of an underlying stochastic process, while
the Hinggi-Klimontovich (postpoint) interpretation would
lead to an fractional diffusion equation of the form [22]

d
&—th(v,t) =DV u* 'V h(v,1). (68)

The underlying ordinary diffusion equation is for this case
just the equation describing diffusion on fractal structures to
which the solution is well known [23]. Interestingly, a frac-
tional equation of the form (68) arises in the context of Lan-
grangian fluid turbulence as well [24].
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VI. CONCLUSIONS

We have discussed a generic stochastic model describing
anomalous diffusion of particles in a field of randomly mov-
ing scatterers. The governing master equation of this model
has been derived by mapping the problem onto the descrip-
tion of anomalous diffusion of inertial particles. Two natural
forms of distributions for the distance traveled between two
consecutive scattering events have been considered. For a
scale-free distance distribution a time-fractional master equa-
tion could be established. This is particularly interesting
since this equation connects Lévy distributed distances, com-
monly described by space-fractional equations, with the class
of time-fractional equations. We have outlined how this
equation can in principal be solved by an integral transfor-
mation and the related method of subordination. For the dif-
fusion approximation of the master equation, we have ob-
tained the corresponding fractional Fokker-Planck equation.
We have established a d-dimensional fractional diffusion
equation with a power-law diffusion coefficient for the ve-
locity. For the corresponding ordinary (nonfractional) equa-
tion a scaling solution has been derived. By subordination
the scaling form of the fractional equation has then been
devised.

This work has been motivated by numerical investigations
of MHD turbulence which show that tracer particles are
strongly influenced by localized structures leading to a sud-
den change of the direction of flight. Due to the general
character of the model, one can also think other applications.
If for example an external field is incorporated, it could be
possible to construct a generalized Drude model for electrical
conductance in dilute disordered media. Concluding we
would like to point out that the solution of the d-dimensional
fractional diffusion equation with a power-law diffusion co-
efficient is of interest itself (see [21] and references therein).

APPENDIX A: DERIVATION OF THE MASTER
EQUATION

In the following we shall derive the master equation. To
this end we introduce the probability distribution 7(x,v,z).
This distribution is related to the probability having arrived
at time ¢ at the infinitesimal volume element dx close to x
achieving the new velocity v from the interval dv

7(x,v,t)dxdv. (A1)
This probability can be related to the quantity
W(v|v',t—t")dt' dv’ (A2)

which gives the probability that the particle has achieved the
velocity v’ from the interval dv’ at time ¢ and has changed
this velocity at time ¢ to the velocity v'. It is related to the
waiting time distribution
WT(t—t’)=JdVW(V|V’,t—t’). (A3)

The introduction of this distribution immediately allows
us to establish the relationship
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t
n(x,v,t):f dt'fdx'fdv'W(vh',t—t')
0

Xgx—x"=v'(t=1")]nx" v ")+ f(x,v,0)8(),
(A4)

where the last term accounts for the initial condition. It de-
scribes the change of the probability 7(x,v,f) between two
consecutive changes of the velocity at times ¢’ and ¢. At time
t' the particle has achieved the velocity v’ and has changed
this velocity at time ¢ to v. We have taken into account that
the particle has traveled during the waiting time t—¢" from x’

to
x=x"+v'(t-1). (AS5)

We are interested in the probability distribution f(x,v,?).
This distribution is obtained from 7(x’,v,t") according to

f(X,V,t)=de’f di'w(t—1")
0

Xx—x"=v(t=1")]nx',v,t"). (A6)

Thereby, we have introduced the probability

t t
w(t):l—f dt’f dvW(V,V’,t—t’):l—f dt'Wit—1")
0 0

(A7)

that no transition of the velocity of the particle is observed in
the interval 7—1'.

In the following we shall combine both equations, Eq.
(A4) and Eq. (A6) in order to obtain the desired master equa-
tion for f(x,v,?).

From Eq. (A6) we obtain by taking the time derivative

[% +v- Vx]f(x,v,t)

t
d
=7](X,V,t)+f dt’f dx'—w(t-1")
0 dt

Xx—x"=v(t=1t")]nx',v,t"). (A8)
Due to the relationship
d
d—tw(t— == | avW(v|[v',t-t") (A9)

we arrive with Eq. (A4) at

J
{at+v Vx]f(x,v,t)
t
=f dt’fdv’W(V
0
t
—f dt’J dav' w(v'
0

+ f(x,v,0),

where we have introduced the free streaming operator

R t/)e—v'Vx(t—t')n(xl’vl,t/)

Vot —1)e VN p(x! v r')

(A10)
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f dx'S(x—x"—v(t-1")f(x',t') = e‘v'vx("’/)f(x,t’).

(A11)

A closed master equation is obtained by eliminating
n(x,v,t). This can be achieved by considering Eq. (A4) in
the form

t
f(x,v,t)=f dt’w(t—t’)e‘v'vx("’l)n(x,v,t’). (A12)
0

This equation can be solved introducing the Laplace trans-
forms

fx,v,\) = f”’ dte™Mf(x,v,1),
0

n(x,v,)\)=f dte ™M p(x,v,1),
0

w(\) = J dte™Mw(r). (A13)
0
This yields the operator equation
fx,v,N)=w(A+v-V,), 7(x,v,\) (A14)
which can be inverted
v, M) =[wh+v- V)OI f(x, v, (AlS)

This can be expressed as a convolution in real space,
1
(X, v,1) =f di'w Nt =t")e VD f(x,v,1'). (A16)
0
The Laplace transform of w™!(¢) is simply

(. A
w\) 1= fdv' W(v]v',\)

(A17)

Inserting this relation into Eq. (A10) we obtain a closed
evolution equation for the probability distribution f(x,v,7)

{i +v- Vx]f(x,v,t)

ot
t
=f dt'fdx’fdv'W(v
0

t/
Xf dt”w_l(t' _ t”)e“"'vx("’”)f(x,v’,t")
0

1
—f dt’f dx’f dv' w(v'
0

t
X f dr'w 't = )e "V f(x, v, ). (A18)
0

vir—t")

v,t—1")

Now, we can introduce the quantity
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Q(V|V',t)=Jldt’W(V|V’,t—t’)w_l(t’). (A19)
0

This convolution can be evaluated in Laplace space, which
yields
AW(v|v',N)
1= fdv'WH'|v,\)
(A20)

O(V[v' .\ \) = W(v|v' M)[wN)] ! =

This leads us to the final version of the master equation

{; +v- Vx]f(x,v,t)

t
=J dt’fdx’JdV'Q(V
0

Xgx—x"=v'(t-1")]f(x",v',1)

—f dt’f dx’f dav'Qo(v’
0

Xgx-x"=v(t-1")]f(x",v,t).

Vit—t")

v,t—1")
(A21)

APPENDIX B: SUBORDINATION

We consider the solution of the generalized Fokker-
Planck equation

ih(v,t) = jt dt'q(t—t")Lh(v,t'), (B1)
at o

where L is a Fokker-Planck operator. We shall construct this
solution in terms of the integral transform

h(v,t) = f dsp(s,t)ho(v,s), (B2)
0
where we assume
Jd
—hy(v,s) = Lhy(v,s). (B3)
as
Inserting Eq. (B2) into Eq. (B1) we obtain with Eq. (B3)
(9 t
Ef dsp(s,t)hy(v,s) = f dt'f dsq(t—1t")p(s,t")Lho(v,s)
0

t
J
=fdsf dt'q(t=1t")p(s,t')—hy(v,s).
0 as

(B4)

Partial integration yields

PHYSICAL REVIEW E 80, 011137 (2009)

(%J dsp(s,t)ho(v,s)
! J
=—fdsf dt' q(t=t")—p(s,t" ) hy(v,s)
0 as

t
—f dr'q(t—t")p(0,t")hy(v,0). (B5)
0
The Laplace transform of this equation gives

)\f dsp(s,)\)ho(v,s)—fdsp(s,O)hO(v,s)—

- —q(k)%ms,ﬂ)ho(v,s) — g0 N)o(0,0).

(B6)
We have to require the initial condition
p(s,0) = &(s), (B7)
which leads us to the relation
O(M)p(0.M) =1. (B8)

As a consequence, we obtain
d ! d
— | dsp(s,t)== | ds | di'q(t=1t")—p(s,t') (B9)
ot 0 ds
with the initial condition

fldt’q(t— t")p(0,t") = &(1).

0

(B10)

This equation can easily be solved using Laplace trans-
forms. We obtain

1
pls,\) = ——eMaWs,
q(\)
where we have taken into account the initial condition (B10).
For the fractional case

(B11)

g(\) =\ (B12)
this leads to
pls,N) = Nl (B13)
Laplace inversion yields
1 ¢ t
p(s,t) = ;—SHWLQ(SW)- (B14)

Thereby, L,(x) is a one-sided Lévy stable probability distri-
bution of order « which is defined in terms of its Laplace
transform

L,(\)=e". (B15)
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