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Fluctuation relation and heterogeneous superdiffusion in glassy transport
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Current fluctuations and related steady-state fluctuation relation are investigated in simple coarse-grained
lattice-gas analogs of a non-Newtonian fluid driven by a constant and uniform force field in two regimes of
small entropy production. Non-Gaussian current fluctuations and deviations from fluctuation relation are ob-
served and related to the existence of growing amorphous correlations and heterogeneous anomalous diffusion

regimes.
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I. INTRODUCTION

Fluctuation theorem (FT) and nonequilibrium work rela-
tions are results of remarkable generality representing an im-
portant step toward the formulation of statistical mechanics
far from equilibrium [1-3]. FT states that the ratio of prob-
abilities of observing an entropy production W over a long-
time interval 7, to that of observing the opposite value, -W ,
is
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Nevertheless, the class of systems obeying Eq. (1) is
unknown—even for stochastic dynamics, where FT is most
easily derived [4,5]—for it is not clear a priori when the
asymptotic large-deviation/long-time regime understood in
Eq. (1) is attainable and whether it does generally reflect
most situations of physical interest. In fact, genuine devia-
tions from Eq. (1) have been early observed [6] and are now
well established in various contexts [7-13]. Their general
characterization—if they are accidental in nature or rather
bring relevant information about the stationary measure—
however, remains a widely open problem.

In this paper, I show that deviations respecting the time-
reversal invariance of Eq. (1), W,——W_, generally occur in
a large class of stochastic dynamics and are a signature of
glassy correlations. Their origin is traced back to the pres-
ence of heterogeneous anomalous diffusion regimes that ex-
tend possibly beyond any range of physically accessible val-
ues of 7. Two distinct small entropy production limits will be
considered: (i) vanishing forcing, i.e., near equilibrium, and
(ii) far from equilibrium when currents become small at in-
creasing drive, i.e., a negative-resistance regime. Deviations
in the former limit are induced by a transient subdiffusion
and tend to decrease at long times. On the contrary, devia-
tions in the latter limit increase with 7 and are due to a
long-lived superdiffusion regime. Against our naive expecta-
tion based on the behavior of relaxational glassy systems
(where dynamics is typically subdiffusive in the aging re-
gime), we find that mean-square current fluctuations grow
superdiffusively at high density, even though the average
current becomes vanishingly small at increasing field. This
particularly surprising behavior is suggested to occur gener-
ally in driven systems dominated by steric hindrance and
cage effect. Systems of experimental relevance include
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shear-thickening/jamming fluids, where the glassy correla-
tions are intimately related to dynamic heterogeneity. The
existence of nonmonotonic responses is a peculiar feature of
nonequilibrium steady state (NESS) and gives us the possi-
bility of testing FT beyond the linear response and in situa-
tions which are of physical interest for driven soft matter.

II. MODELS

The models we study are emerging as a new paradigm for
the interpretation of glassy phenomena [14]. When driven
into a NESS, they show a nonmonotonic dependence of the
relaxation time on the applied force, a feature which is quali-
tatively similar to the behavior of viscosity in sheared con-
centrated suspensions [15]. Two ingredients characterize the
dynamics: (i) the cage effect—a universal feature of glassy
systems, which is implemented on a coarse-grained scale
through a local kinetic constraint and (ii) a nonconservative
force which consists of a uniform and constant drive, allow-
ing for nonzero net current in the NESS. For simplicity, we
consider two-dimensional (2D) square lattice systems in
which the force is applied along a lattice axes and the kinetic
constraint takes the following form: a randomly chosen par-
ticle can move to a randomly chosen nearest-neighbor site if
(i) the site is empty and (ii) the particle has at most two
nearby particles before and after the move. Further, if the
move of a mobile particle is attempted in direction opposite
to the field, the probability is e PE_ otherwise it is 1.

The interplay of the two above ingredients gives a rather
rich dynamic behavior [15]. At small forces, the cage around
a given particle is just slightly distorted allowing easily for
particle flow. At increasing forces, however, particles be-
come generally more caged by their neighbors, as moves
against the field direction are much less probable. Local re-
arrangements are thus more difficult and transport more ob-
structed. As we shall see, this situation leads to non-Gaussian
current fluctuations, growing heterogeneous spatiotemporal
correlations and anomalous diffusion regimes.

For locally reversible and irreducible Markov chains, such
as the one introduced above, the proof of FT is straightfor-
ward [5]. One considers the action

W, ({o}) = E RACALA 2)

=0 w(o1, O't)

where w(o, ') =0 are the transition probabilities for jump-
ing from configuration o to o'. If the “border term” B
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FIG. 1. (Color online) 2D constrained exclusion process driven by a small applied field E=0.1 at particle density p=0.8. The time 7 is
measured in MCs and L is the linear system size. (a) PDF of current fluctuations in normalized unit. Full line represents the Gaussian. (b)
Temporal evolution of relative fluctuations for several system sizes. (¢) Logarithmic probability ratio In[TI(J)/IT(=J)] vs entropy produc-
tion W, =EJ, (B=1). Full line, with slope 1, represents the prediction of Eq. (1).

=In[u,(0o,)/ u(op)] (where u, is the stationary measure) is
subextensively small in 7, then the generating function of the
action verifies (e M =(e"("MW5  which is just another
form of FT. In particular, when u, is flat over fixed density
configurations, then B=0 and FT holds at any time 7. This
special case occurs in the asymmetric simple exclusion pro-
cess (ASEP) to which our model reduces in the absence of
constraints. In the presence of constraints, however, the
NESS measure is not trivial: while the density profile is flat,
particles are statistically more clustered in the transverse di-
rection at larger field. This nonequilibrium fluctuation-
induced attraction appears in the transverse pair-correlation
function and is a consequence of the more hindered longitu-
dinal transport at increasing field. Nonetheless, while the
transverse diffusion slows down (due to the stronger attrac-
tion), longitudinal diffusion is enhanced and becomes super-
diffusive over a growing range of times at increasing field.
Neglecting border terms in this situation is not generally al-
lowed even for large 7 and that is the ultimate reason of the
observed deviations from Eq. (1). The importance of border
terms is discussed thoroughly in Ref. [10]. We now explore
their physical implications for driven systems with glassy
dynamics.

III. FLUCTUATION RELATION

To test Eq. (1), we perform Monte Carlo simulations of
the above-driven stochastic dynamics. A system of linear size
L is initialized with a uniform distribution of particles at
fixed particle density p and is let to reach the NESS. Observ-

ables of interest are evaluated over time intervals of duration
7, along a trajectory of motion lasting 10’—10° Monte Carlo
sweeps (MCSs), depending on the system size. In particular,
we consider the particle current J, that is the signed number
of jumps over 7 along the applied field, and compute its
probability density function (PDF), I1.(J,). Since w(o,0”)
=0(constraint)min{1,e P}, local detailed balance
holds irrespective of local kinetic constraints. For mobile
particles, one has w(o,o")/w(o’,0)=1,e"PE, depending on
the relative direction of unit displacement and applied
field (E -dr=0, *+FE). Whereas for immobile particle,
w(o,o')/w(o’,0)=1 no matter the value of E-dr. The ac-
tion functional (2) can then be easily identified as W,
=pBEJ,, consistently with the standard definition of entropy
production obtained from the time-dependent Gibbs entropy
formula [5]. Thus, computing I1.(J,) allows for a direct
check of FT. Notice, that the absence of both potential- and
kinetic-energy terms makes the PDFs of current, work, and
heat exactly identical.

We have first checked that in the standard ASEP current
fluctuations are Gaussian distributed and that Eq. (1) is
obeyed for time as small as 7=1 MCs, as expected because
of flat measure. Similar behavior is found for constrained
driven dynamics at small density. At moderately higher den-
sities and small fields, the particle motion becomes weakly
correlated and small non-Gaussian tails appear in the PDF of
current fluctuations [see Fig. 1(a)]. Since the average current
J={J ) does not depend on 7and the PDFs for various values
of 7 fall on the top of each other when plotted in normalized
units, one might naively expect that the asymptotic large-
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FIG. 2. (Color online) Same as in Fig. 1, but in the negative-resistance regime, with a large applied field E=2.8 and L=45. (a) The full
line is a generalized Gumbel function, with fitting parameter a=11 (see [16]). (b) Temporal evolution of PDF high-order moments. Notice
that relative fluctuations are rescaled by a factor 65. For systems of linear size L=45, the time scale for observing current-reversal events is
at most of the order of 10> MCs. (c) Deviations from Eq. (1) here increase with 7.

deviation regime has been attained. Actually, current fluctua-
tions, o%, still retain a dependence on 7 and increasing the
system size makes it harder to reach the asymptotic value
[Fig. 1(b)]. The slow decay of current fluctuations leads to
deviations from Eq. (1) which become smaller and smaller at
increasing 7 [see Fig. 1(c)]. Though such deviations are ex-
pected to disappear at longer 7, in fact recovering FT maybe
difficult at larger density because the Ohmic regime shrinks
[15].

On approaching the negative-resistance transport regime,
which is a simple rheological analog of shear-thickening be-
havior [15], something more interesting takes place. First,
current fluctuations becomes strongly non-Gaussian and
asymmetrically distributed [see Fig. 2(a)]. Similar asymmet-
ric PDFs have been observed in a wide range of systems
[17]. Second, although the average current quickly attains its
asymptotic value, the PDF keeps evolving with 7, as shown
by the behavior of high-order moments in Fig. 2(b). Skew-
ness and kurtosis generally display a nonmonotonous depen-
dence on 7, which is suggestive of that found in the local
correlations during the aging dynamics of glassy systems
[18] and can be qualitatively understood as follows. On
short-time scales, most particles are blocked and only a small
fraction of them is able to move in the field direction, thus
the PDF is left-skewed. Local rearrangements involving
backward steps, however, are needed to sustain the system
flow. Indeed, on intermediate time scales, current-reversal
events become more probable and, correspondingly, the PDF
is less asymmetric. On longer time scales, most particles
have moved and the probability of observing negative

current is pretty small (although current-reversal events
keep happening on shorter time scales). The PDF thus
changes to a right-skewed shape before eventually reaching
the Gaussian form typical of diffusive, uncorrelated motion.
Figure 2(b) shows that the latter diffusive regime occurs at
times that are much beyond the time-scale required for ob-
serving negative currents (at least 2 decades larger in the
most favorable case, corresponding to parameters of Fig. 2).
Therefore, the asymptotic regime of large deviation under-
stood in Eq. (1) is hardly attained, even for such small sys-
tems. What type of deviations should we expect in the
present case and what features of NESS they possibly en-
code? In spite of PDF asymmetry, we find that deviations
from Eq. (1) are still well described by straight lines with a
slope smaller than 1 and their temporal evolution is mainly
determined by current fluctuations, o% However, unlike the
previously discussed linear transport regime, the slope ap-
pears to decrease at longer 7 [see Fig. 2(c)]. The numerical
extrapolation of the asymptotic slope is difficult in this re-
gime because the accessible values of 7 are limited by the
larger system-size used. In fact, sampling the PDF requires
some care at high density and large force: to avoid finite-size
induced dynamical blocking effects (leading to bimodal
PDFs), one needs to use moderately larger systems. Since,
this obviously decreases the probability of observing current
reversal, we consider density barely larger than the negative-
resistance threshold. Even in this most favorable situation (in
which the saturation current is finite [15]), current-reversal
events become unobservable well before the asymptotic re-
gime is attained. The trend of high-order moments thus
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FIG. 3. (Color online) Time averaged longitudinal mean-square
particle displacement, Arﬁ/ t, Vs time ¢.

makes us confident that Eq. (1) will never be recovered in
any realistic simulation.

IV. HETEROGENEOUS ANOMALOUS DIFFUSION

Further insight into the nature of deviations from Eq. (1)
is obtained by looking at the behavior of the longitudinal
mean-square displacement relative to the center of mass,
Arﬁ(t). Since the latter quantity is proportional to o%, the
physical origin of the above behavior can be traced back to
the existence of heterogeneous anomalous diffusion regimes
(see Fig. 3). In the linear transport regime, Arﬁ(l)/ t first de-
creases with ¢ and then reaches an asymptotic diffusive pla-
teau that increases with the applied field. This enhanced dif-
fusion behavior is also displayed by a driven particle probing
an equilibrium glassy environment [19]. On approaching the
negative-resistance regime, the early subdiffusion range
tends to shrink and connects to the late normal (enhanced)
diffusion through an intermediate (logarithmic) superdiffu-
sive transient. Similar nonmonotonic changes of the effective
anomalous diffusion exponent have been observed in simu-
lations of biased Brownian motion in a crowded environment
[20] and are consistent with some continuous-time random-
walk models [21]. In the negative-resistance regime, subdif-
fusion is strongly suppressed and one only observes a long-
lived superdiffusion behavior (see Fig. 3). Although, we
expect normal diffusion to occur eventually for any finite
system, interestingly, we find that the crossover time to nor-
mal diffusion increases with the system size. The appearance
of superdiffusion is particularly intriguing in this context. It
signals the simultaneous onset of long-time correlations in
the motion of particles and the growth of their spatial corre-
lations, as shown by the increasing peak of dynamical sus-
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ceptibility [15]. A strikingly similar connection between
anomalous diffusion and dynamic heterogeneity has been re-
cently observed in vibrated granular packings, albeit in a
distinct jamming/rigidity regime [22] (see also [23]). It is
tempting to conjecture that the most peculiar feature distin-
guishing the approach to the near-jamming/shear-thickening/
negative-resistance regime from the glassy behavior is that in
the latter, diffusivity tends to vanish, while in the former it
grows unboundedly.

Finally, it should be remarked that the results reported
above are not specific of 2D: they were observed in three
dimensions (3D) for different direction of the applied force/
lattice geometry and for different types of kinetic constraints
as well.

V. CONCLUSIONS

To conclude, our results generally show that for a large
class of driven stochastic dynamics, the asymptotic regime in
which the steady-state FT holds exceeds any reasonable
physical time scale, even for systems of modest size. The
presence of heterogeneous superdiffusion in the negative-
resistance transport regime possibly suggests that the large-
deviation function might not even exist in the usual sense, if
the large-size limit is taken before the long-time one [24]. In
spite of the above limitations, we find that deviations from
Eq. (1) have several interesting features. First, they encode
important physical properties, such as heterogeneous dynam-
ics and anomalous diffusion. The strong “finite-time” devia-
tions from Eq. (1) are a signature of growing long-range
dynamical correlations both in time and space and are argu-
ably a universal feature inherent to driven systems with
glassy dynamics, such as shear-thickening/jamming fluids.
Second, their linear form is the simplest one respecting the
time-reversal invariance of Eq. (1), though the asymptotic
limit understood in FT is not representative of the physical
situation. Finally, they are highly suggestive of the notion of
correlation-scale-dependent  effective temperature  [25].
While the occurrence of longitudinal superdiffusion seems to
prevent the applicability of such an appealing concept, we
find that transverse fluctuation dynamics is well described by
a generalized Einstein relation (in some analogy to systems
of driven vortices with random pinning [26]). Whether a
modified form of Einstein relation [27,28] does hold for lon-
gitudinal fluctuations remains to be seen.
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