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Generalized Bose-Einstein and Fermi-Dirac distributions in nonextensive quantum statistics have been dis-
cussed by the maximum-entropy method (MEM) with the optimum Lagrange multiplier based on the exact
integral representation [A. K. Rajagopal, R. S. Mendes, and E. K. Lenzi, Phys. Rev. Lett. 80, 3907 (1998)]. It
has been shown that the (¢g—1) expansion in the exact approach agrees with the result obtained by the
asymptotic approach valid for O(g—1). Model calculations have been made with a uniform density of states for
electrons and with the Debye model for phonons. Based on the result of the exact approach, we have proposed
the interpolation approximation to the generalized distributions, which yields results in agreement with the
exact approach within O(g—1) and in high- and low-temperature limits. By using the four methods of the
exact, interpolation, factorization, and superstatistical approaches, we have calculated coefficients in the gen-
eralized Sommerfeld expansion and electronic and phonon specific heats at low temperatures. A comparison
among the four methods has shown that the interpolation approximation is potentially useful in the nonexten-
sive quantum statistics. Supplementary discussions have been made on the (¢—1) expansion of the generalized
distributions based on the exact approach with the use of the un-normalized MEM, whose results also agree

with those of the asymptotic approach.
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I. INTRODUCTION

In the last decade, many studies have been made for the
nonextensive statistics [1] in which the generalized entropy
(the Tsallis entropy) is introduced (for a recent review, see
[2]). The Tsallis entropy is a one-parameter generalization of
the Boltzmann-Gibbs entropy with the entropic index ¢: the
Tsallis entropy in the limit of g=1.0 reduces to the
Boltzmann-Gibbs entropy. The optimum probability distribu-
tion or density matrix is obtained with the maximum-entropy
method (MEM) for the Tsallis entropy with some constraints.
At the moment, there are four possible MEMs: original
method [1], un-normalized method [3], normalized method
[4], and optimal Lagrange multiplier (OLM) method [5]. The
four methods are equivalent in the sense that distributions
derived in them are easily transformed to each other [6]. A
comparison among the four MEMs is made in Ref. [2]. The
nonextensive statistics has been successfully applied to a
wide class of subjects in physics, chemistry, information sci-
ence, biology, and economics [7].

One of the alternative approaches to the nonextensive sta-
tistics besides the MEM is the superstatistics [8,9] (for a
recent review, see [10]). In the superstatistics, it is assumed
that locally the equilibrium state is described by the
Boltzmann-Gibbs statistics and that their global properties
may be expressed by a superposition over the intensive pa-
rameter (i.e., the inverse temperature) [8—10]. It is, however,
not clear how to obtain the mixing probability distribution of
fluctuating parameter from first principles. This problem is
currently controversial and some attempts to this direction
have been proposed [11-15]. The concept of the superstatis-
tics has been applied to many kinds of subjects such as hy-
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drodynamic turbulence [16—18], cosmic ray [19], and solar
flares [20].

The nonextensive statistics has been applied to both clas-
sical and quantum systems. In this paper, we pay attention to
quantum nonextensive systems. The generalized Bose-
Einstein and Fermi-Dirac distributions in nonextensive sys-
tems (referred to as g-BED and ¢-FDD hereafter) have been
discussed by the three methods. (i) The asymptotic approxi-
mation (AA) was proposed by Tsallis e al. [21] who derived
the expression for the canonical partition function valid for
|g—1|/kgT— 0. It has been applied to the black-body radia-
tion [21], early universe [21,22], and the Bose-Einstein con-
densation [21,23]. (ii) The factorization approximation (FA)
was proposed by Biiyiikkilic er al. [24] to evaluate the grand-
canonical partition function. The FA was criticized in [25,26]
but supported in [27], related discussion being given in Sec.
IV. The simple expressions for g-BED and ¢-FDD in the FA
have been adopted in many applications such as the black-
body radiation [23,28-30], early universe [31,32], the Bose-
Einstein condensation [33-39], metals [40], superconductiv-
ity [41,42], spin systems [43-48], and metallic ferromagnets
[49]. (iii) The exact approach (EA) was developed by Raja-
gopal and co-workers [50,51] who derived the formally exact
integral representation for the grand-canonical partition func-
tion of nonextensive systems which is expressed in terms of
the Boltzmann-Gibbs counterpart. The integral representa-
tion approach was originated from the Hilhorst formula [52].
Because an actual evaluation of a given integral is generally
difficult, it may be performed in an approximate way [50,51]
or in the limited cases [53]. The validity of the EA is dis-
cussed in [54,55]. The EA has been applied to nonextensive
quantum systems such as black-body radiation [56,57] and
the Bose-Einstein condensation [50,51].

We believe that it is important and valuable to pursue the
EA despite its difficulty. It is the purpose of the present study
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to apply the EA [50,51] to calculations of the generalized
distributions of g-BED and ¢-FDD. The grand-canonical par-
tition function of the nonextensive systems is derived with
the use of the OLM scheme in the MEM [5]. Self-consistent
equations for averages of the number of particles and energy
and the grand-canonical partition function are exactly ex-
pressed by the integral representation [50,51]. The integral
representation for ¢>1.0 in the EA is expressed as an inte-
gral along the real axis, while that for ¢ <1.0 is expressed as
the contour integral in the complex plane [50,51,53]. We
have shown that the (¢—1) expansion by the EA agrees with
the result derived by the AA. For ¢= 1.0, the self-consistent
equations have been numerically solved with the band model
for electrons and the Debye model for phonon.

It is rather difficult and tedious to obtain the generalized
distributions in the EA because they need the self-consistent
calculation of averages of number of particles and energy.
Based on the exact result obtained, we have proposed the
interpolation approximation (IA) to ¢g-BED and ¢-FDD,
which do not need the self-consistently determined quantities
and whose results are in agreement with those of the EA
within O(g—1) and in high- and low-temperature limits. We
may obtain the simple analytic expressions of the g-BED and
g-FDD.

The paper is organized as follows. In Sec. II, the exact
integral representation is derived with the OLM-MEM after
Ref. [50,51,53]. We have discussed the (¢g—1) expansion of
physical quantities using the EA and AA. Numerical calcu-
lations are performed for electron and phonon models for
which we present the ¢-BED and ¢-FDD with the
temperature-dependent energy. In Sec. III, we propose the IA
in which analytical expressions for g-BED and ¢-FDD are
obtained. In Sec. IV, a comparison is made between the gen-
eralized distributions calculated by the four methods of the
EA, TA, FA [24], and superstatistical approximation (SA). A
controversy on the validity of the FA [24] is discussed. With
the use of the four methods, the generalized Sommerfeld
expansion and low-temperature electronic and phonon spe-
cific heats are calculated. Section V is devoted to our con-
clusion. In Appendix A, we present a study of the EA and
AA with the un-normalized MEM [3,21], calculating the (g
—1) expansion of the ¢-BED and ¢-FDD. Supplementary
discussions on the IA are presented in Appendix B.

II. EXACT APPROACH
A. MEM by OLM

We will study nonextensive quantum systems described

by the Hamiltonian H. We have obtained the optimum den-
sity matrix of p, applying the OLM-MEM to the Tsallis en-
tropy given by [5,6]

kg .
Sq=qu[1—TI'pZ s

with the constraints
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Trp,=1,
Tr{pIN} = c,N,»
Tr{ﬁZH} =c,E,,

_ Ty Al
Cy= Tr Py

where Tr stands for the trace, kz is the Boltzmann constant,

and E, and N, denote the expectation values of the Hamil-

tonian H and the number operator N, respectively. The OLM-
MEM yields [5,6]

A 1 ) N -
py= 3 [1+(@= DBH - uN = Eg+ pN)]"0, (1)
q

X,=T{[1 + (g DBH~ uN - E,+ uN)]"9}, (2)

1 A A A
Ny= 4 Tl + (g = DBH = uN = E, + uN,) "=/},
q

3)

1 A N N
Ey= - Trll1+ (g~ DB(H = uN = E, + uN,) 1"V H},
q

(4)

where B and u denote the Lagrange multipliers. In deriving
Egs. (1)—(4), we have employed the relation

cy= X;_q.
Lagrange multipliers of 8 and u are identified as the inverse
physical temperature (8=1/kzT) and the chemical potential
(Fermi level), respectively [5,6].

B. Exact integral representation

1. Case of ¢>1

In the case of ¢g>1.0, we adopt the formula for the
gamma function I'(s),
—s 1 N s—1 —xu g
XP=——| u e du
I'(s)Jo

With s=1/(g—1) [or s=q/(g—1)] and x=1+(g—1)B(H
—uN) in Eq. (5), we may express Egs. (1)—(4) by [50,51]

for Re s > 0. (5)

Nq=i f G(,,; 9 ’1>e<q—1>ﬁu<Eq—MNq>
X,Jo qg-1
XEil(g - DBulN[(g - 1) Buldu, (6)
E =if G(u; . ,l)e("")ﬁ“(Eq“‘Nq)El[(q—l)Bu]
a Xq 0 q—l

XE\[(g—1)Buldu, (7)
with
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X, =J0 G(u;qi 1,1>e(q“)ﬁ“(Eq‘“Nq)El[(q - 1)Buldu,
(®)
where
By (u) = e = Tr{e (-1
=101 e e, 9)
k
Q== 12 In[1 ¥ e7“lam], (10)
U i

Ni(w) = 2 fi(u), (11)

[
EI(M)ZEEkf](Ekau)s (12)

k

1

flew =—m=5—7 (13)
G(u;a,b) = (”) a-lg=bu, (14)

The upper (lower) sign in Egs. (9), (10), and (13) denotes
boson (fermion) case, and =Z,(u), Q,(u), N,(u), E,(«), and
f1(e,u) express the physical quantities for g=1.0. Equations
(6)—(8) show that physical quantities in nonextensive sys-
tems are expressed as a superposition of those for g=1.0.

Although Egs. (6)—(8) are formally exact expressions,
they have a problem when we perform numerical calcula-
tions. The gamma distribution of Glu;1/(g—1)+¢,1]
(€=0,1) in Egs. (6)—(8) has the maximum at u,,,, and it has
average and variance given by

1

iy
(g—1)

(15)

Upax =

1
(g=1)

(), = +€, (16)

1

G(u; il +€,( _11)
q g-1)B S B)

Although expressions given by Egs. (6)—(8) are mathemati-
cally equivalent to those given by Egs. (18)—(20), the latter
expressions are more suitable than the former ones for nu-
merical calculations.

S —( VIV ST ORY O
) =\ \27(g -1’
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1
2 2_
()= wi= 5+t
Equation (15) shows that the gamma distribution in Egs.
(6)—(8) has the maximum at u,,, =1/(g—1)—o0, while the
contribution from =,[(¢—1)Bt] is dominant at ~0 because
its argument becomes (g—1)Bt— 0. Then numerical calcula-
tions using Egs. (6)—(8) are very difficult.
In order to overcome this difficulty, we have adopted a
change in variable (g—1)B8u—u in Eq. (6)—(8) to obtain al-
ternative expressions given by

__f ( (q—ll)B>

(17)

Xe”(Eq_”'Nq),:l(u)Nl(u)du, (18)
s, ol )
(q—l)B

X Eq=1N )Hl(u)E (u)du, (19)

with

* 1 1
X =f G(u;—, )e”(Eq"‘Nq>E (w)du. (20)
! q-1(q-1B :

0

The gamma distribution of G(u,(q 5+ s 1)/3) for £=0,1
in Egs. (18)—(20) has the maximum at u,,,, and it has aver-
age, mean square, and variance given by

g =[1+ (g = 1€ - 1)]B, (21)

(W, =[1+(g-1)1B, (22)

W, =[1+(@- D1 +(@-DE+ DI, (23)
(W= (Wi =(g- D1 +(g- 1B (24)

Equation (21) shows that the gamma distribution has the
maximum at u,,,,=p in the limit of g— 1.0, and an integra-
tion over u in Egs. (18)—(20) may be easily performed. In-
deed, in the case of ¢=1.0 discussed above, the gamma
distribution in Egs. (18)—(20) becomes

for (g-1)B*><1, (25)

for (¢g-1)8*>— 0. (26)

2. Case of ¢<1

In the case of ¢<<1.0, we adopt the formula that is given
by
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= —T(s+ 1)] (=)~ le™dt  for Res>0, (27)
2ar C

where a contour integral is performed over the Hankel path
C in the complex plane. With s=1/(1—-¢q) [or s=q/(1-¢q)]
and x=1+(g—1)B(H—-uN) in Eq. (27), we obtain [50,51]

Nq = i J H(l; L, l)e—(l—Q)ﬁf(Eq—MNq)
27X, ) ¢ 1-¢q

XEi[= (1= q)BtIN\[- (1 - g)Brldt, (28)

E,=— f H(,;L’1>e—<1—q>ﬁr<E,,—qu>
27X, J ¢ 1-g¢g

XE[- (1 -q)BE|[- (1 -q)Brldt, (29)

with

j 1
C

(30)

H(t;a,b) =T(a+ )b (- 1) %l (31)

where Z,(u), N,(u), E,(u), and f,(€,u) are given by Egs.
(9)—(12) with complex u.

In the case of ¢<1.0, N, E,, and X, given by Egs.
(28)—(30) are expressed by an integral along the Hankel con-
tour path C in the complex plane. The Hankel path may be
modified to the Bromwich contour which is parallel to the
imaginary axis from ¢—i% to c+i% (¢>0) [56,57]. The Bro-
mwich contour is usually understood as counting the contri-
butions from the residues of all poles located in the left side
of Re z<<c of the complex plane z when the integrand is
expressed by simple analytic functions. If the integrand is
not expressed by simple analytic functions, we have to
evaluate it by numerical methods. Unfortunately, we have
not succeeded in evaluating Eqgs. (28)—(30) with the suffi-
cient accuracy. It is not easy to numerically evaluate the
integral along the Hankel or Bromwich contour, which is
required to be appropriately deformed for actual numerical
calculations [58,59]. This subject has a long history and it is
still active in the field of the numerical methods for the in-
verse Laplace transformation [58] and for the gamma func-
tions [59].

It is worthwhile to remark that for a Bose gas model with
the density of states of p(e)=A€’, we obtain (with u=0)
[52,56,57]

AT(r+ D)+ 2)]

Ei(u) =exp{ e
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A(r+ 1){(r+1)

Ni(u) = s
E\(u) = Al (r +u2,3§(r+ 2) ’

where r=1/2 for an ideal Bose gas, r=2 for a harmonic
oscillator, A denotes a relevant factor, and {(z) stands for the
Riemann zeta function. With a repeated use of Eq. (27), N,
E,, and X, may be expressed as sums of gamma functions
[52,56,57]. Unfortunately, such a sophisticated method can-
not be necessarily applied to any models such as Fermi gas.
With a change in variable of (1-¢)B(-t)—(-t) in Egs.
(28)—(30) after the case of ¢> 1, they are given by

. 1 1
qu ! f H(t; -1, )
20X, Je \T1-q (-9
X e EmN)E (= N, (= D, (32)

. 1 1
E,= : fH<t; -1 )
2mX, )\ 1-q (1-9)B
X e NS (= 1)E, (= f)dt, (33)

with

X =Lf H(t;;, ! )e"(Eq‘“Nq)El(—t)dt.
" 2m)e \1-q(1-9)B

(34)

Average and mean square over H(t,llfq—e,(l_lq)ﬁ) for ¢
=0,1 are given by

(=) =[1-(1-g1]B, (35)

(=07 =[1-(1-9)llg- (1 -8 (36)

Equations (32)—(34) are useful in making the (¢—1) expan-
sion, as will be discussed in the following.

C. (g-1) expansion

1. Exact approach

We will consider the (g—1) expansion of the expectation

value of an operator O in the EA. By using Egs. (18) and
(32), we obtain

(0= 1 - (1~ BRP 00}, (37
q

011126-4



BOSE-EINSTEIN AND FERMI-DIRAC DISTRIBUTIONS...

PHYSICAL REVIEW E 80, 011126 (2009)

1
— Y (u)O,(u)d >
) J ( P - 1),8) ()0, (u)du for ¢>1, (38)
(0),= = ;o
H{t;—, Yi(=1)O(-1t)dt <1,
with
|
Trf e—uf(é} expression for J as Eq. (46), which is then valid both for ¢
o\u)y=——-—"—7, (40) =<1.0and g=1.0.
Yy(u) For W(u)=Y (1) and W(u)=Y,(u)0,(u) in Eq. (46), we
) obtain
Yy(u) = Tr{e™K} = " Ca M= (), (41) | &zyl
X,=Yi+ - DF e (48)
IA(=I:I—,uJ</—Eq+,uN, (42)
— 1 d(Y,0,)
where X, is given by Eq. (20) for ¢>1 and by Eq. (34) for 0,=—|Y,0,+(@q-1)p——=
g<1. It is noted that Y,(u) includes the self-consistently / Xq B
calculated N, and E,,. a2(Y 0 )
We first consider the case of g=1 for which the integral + = ( -Np Fé e (49)

including an arbitrary function W(u) is assumed to be given

by
* 1
J:f G(u; +¢
0 g-1

Since G(u;— ) has the maximum around u=; as
mentioned before [Eq,q (21)], W(u) may be expanded as

1
q- 1)ﬁ)W(u)du for £=0,1.

(43)

W(u) = W(p) + (u- ,3)— —(u B)2—+

B 2
(44)
Substituting Eq. (44) to Eq. (43) and using the relations

given by Egs. (22) and (23), we obtain J in a series of (g
—1) as

_ . A2y L.
J=W(B)+((u- ,8)> &B 2<( ﬁ)) B ,
(45)
J= W(B)+(q—1)[€,8£ %ﬂ &Z;V]+-~ for g = 1.0.

(46)

Next we consider the case of g=<1 for which a similar inte-
gral along the Hankel path C is given by

_ a4, ] _
=5 CH(t’l—q 6’(1—q),8)w( Hdt

for €=0,]1.

(47)

By expanding W(-r) at —t=8 and using the relations for
averages given by Egs. (35) and (36), we obtain the same

Note that the O[(¢g—1)8] term in Eq. (48) vanishes because
€=0 in Eq. (46). Substituting the relations given by

aY

7/; =—(K)Y,, (50)
e
&;‘ = (K1, (51)
‘2—(;; = (R (O), - (RO, (52)
&201 20 o2\ (A A (O AN2( A
o = KON~ (&)1(0),+ 20(R) (KO, ~ (RO} ]

(53)

to Egs. (48) and (49), we finally obtain the O(¢g—1) expan-
sion of O, given by

0,=0,+(1-g)BEOY, + L BL(RY (0), - (R20),))
b (54)

2. Asymptotic approach

On the other hand, we may adopt the AA [21] to obtain

0 glven by Eq. (37) valid for O(g—1). By using the relation

=¢[1-(1-¢)x?/2+---] in Egs. (2) and (37), we may ex-
pand X, and O, up to O(g—1) as

X, = X[1- 101 - ) B, + ). (55)

- q) K190}

(56)

0,- )%qTr{[l ~(1- BRI [1- (1

011126-5



HIDEO HASEGAWA

1 . . 1 | A
ngr{e—ﬁK[l +(1 —q)/sK][l - 5(1 —q),BzKZ]O}
4o (57)

~0,+(1 - g)(BEOY, + LBLRY (0), - (R*0),))
+ o (58)

Equation (58) agrees with Eq. (54) obtained by the EA
within O(g—1). In Appendix A, we have shown that the
same equivalence holds between the AA and EA with the
un-normalized MEM [3,21].

with the density of states p(€) given by
ple=2 dle-e. (63)
K

In order to examine the (¢—1) expansion of the generalized

distributions, we set é:ﬁk in Eq. (54), where 71, denotes the
number operator of the state k. A simple calculation leads to
the O(g—1) expansion of the generalized distribution given
by

J 1 &
fq(E’lB)=fl(E’B)+(q—1)|:B£+532(9—Z;21:| + (64)
J 1 P
=heB+ (=D (=24 Je- ’“‘)ZTQ]
+ .« o . (65)

In deriving Eq. (65), we have employed the relation
(aY\/3B)1Y\(B)=~(H~uN) +(N,~ uN,) = O(g=1). In Ap-
pendix A, we have made a similar analysis with the un-
normalized MEM, showing that Eq. (65) is consistent with
Eq. (A39) which agrees with the result in the AA [21].

2. Properties of the generalized distribution

We will examine some limiting cases of the generalized
distribution given by Egs. (61) and (62).
(1) In the limit of g— 1.0, Eq. (65) leads to

fq(f,,B)=f1(6,,8). (66)

(2) In the zero-temperature limit of 7=0, the ¢g-FDD be-
comes

1[“ ( q 1

- G M;_9

X.Jo g-1 (-1
i

Jorlei i
Ht;_a—
27X, ) ¢ l-g (l-g¢g
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D. Generalized distributions
1. O(q-1) expansion

Equations for N, and E, given by Egs. (18), (19), (32),
and (33) may be expressed as

N,=2 f(€.B) = f f(eB)p(e)de, (59)
k

E,=> f(ePe= f f(eB)ep(e)de, (60)
k

where f,(€,8) [=f,(e)] signifies the generalized distribu-
tions, g-BED and ¢-FDD, given by

)Yl(u)fl(e,u)du for ¢ > 1, (61)
)Yl(— Dfile,—-ndt for g<1, (62)
|

f(&T=0)=0(u-e) =f(eT=0), (67)

where ©(x) stands for the Heaviside function. Equation (67)
implies that the ground-state FD distribution is not modified
by the nonextensivity.

(3) In the high-temperature limit of B8— 0.0, where (),
=—(1/B)Z e P& with In(1 = x) = F x for small x, we ob-
tain (©=0.0)

fleB—0)=[1+(g=DAle=E)IT = [efler]e,
(68)
e’; expressing the g-exponential function defined by

e; = expy(x)

[1+(1-¢)x]"0"9 for 1+(1-¢g)x>0,  (69)
“lo for 1+(1—g)x=0, (70

with the cutoff properties. Equation (68) corresponds to the
escort distribution,

€4
Pe)= BL/Q o [e;ﬁ(e—#)]q, (71)
c
q
with the g-exponential distribution p,(€) given by

pyle) =P (72)

Equations (61) and (62) show that the e dependence of
f4(€,B) arises from that of f,(e, 8). In particular, the g-FDD
preserves the same e symmetry as f(e, B):

(a) f,(e,8)=1/2 for e=p,
(b) f,(€,B) has the antisymmetry

fo (= e+ u,B) —5=5~f,(Se+u,B) for Se>0,

(c) df (e, B)/ Je is symmetric with respect to €= .
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E. Numerical calculations

1. Model for electrons

For model calculations of electron systems, we employ a
uniform density of state given by

p(e)=(12W)O(W - |e

), (73)

where W denotes a half of the total bandwidth. We have
performed numerical calculations of £, and u for g=1.0 as
a function of T for a given number of particles of N and the
density of states p(e). We may obtain analytical expressions
for E,(u), N,(u), and E,(u) which are necessary for our nu-
merical calculations. By using Eq. (73) for Egs. (9)-(12), we
obtain (with W=1.0)

B i) = e,

1
Q(u)=- 2—{ln[1 + e—u(l—,u)] —In[1+ e—u(l+,u)]
u
+In[1 ++#] —1n[ 1 + "-#]}

1
— 5, Lia(= e ) = Lip(= 1),
! —u(1+a) (1-4)
Ny(u)=1+ 2—[ln(1 + e ") —In(1 + "),
u

1
El(u) =— Z[ln(l + e—u(l'HL)) + ln(l + eu(l—#))]

1
+ 5 alLin(= e ) = Lig(= "),

where Li,(z) denotes the nth polylogarithmic function de-
fined by

©

k
Lif)=> —

o K

We adopt N=0.5, for which ©£=0.0 independent of the tem-
perature because of the adopted uniform density of states
given by Eq. (73). The temperature dependence of E, calcu-
lated self-consistently from Eqgs. (18)—(20), is shown in Fig.
1 whose inset shows the enlarged plot for low temperatures
(kgT/W=0.1). We note that E, at low temperatures is larger
for larger g although this trend is reversed at higher tempera-
tures (kzT=0.3).

The calculated ¢-FDDs f,(€) for various g values for
kgT/W=0.1 are shown in Figs. 2(a) and 2(b) whose ordinates
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FIG. 1. (Color online) The temperature dependence of E, of the
electron model for g=1.0 (dashed curves), g=1.1 (chain curves),
g=1.2 (dotted curves), and g=1.3 (solid curves), the inset showing
the enlarged plot for kzT/W=0.1.

are in the linear and logarithmic scales, respectively. It is
shown that with more increasing ¢ from unity, f,(€) at €
> p has a longer tail. The properties of f,(€) are more clearly
seen in its derivative of —df,(€)/ de, which is plotted in Fig. 3
with the logarithmic ordinate. We note that —df,(€)/de is
symmetric with respect of e=u. With increasing g above
unity, —df,(€)/de has a longer tail. Dotted and solid curves
for ¢<<1.0 in Figs. 2 and 3 will be discussed in Sec. III C.

2. Debye model for phonons

We adopt the Debye model whose phonon density of
states is given by

1~” T T T T T T

1 ,.fa) S
- . —038

0.8 N 209
‘~§.'\\ fffff 1.0

“ 0.6 — 12 4
— 15

04- N ——18 A

AR
0.2 RN i

0 70 20
Be-w)

FIG. 2. (Color online) The € dependence of the ¢-FDD of f,(e)
for ¢=0.8 (solid curves), g=0.9 (dotted curves), g=1.0 (dashed
curves), g=1.2 (double-chain curves), g=1.5 (bold solid curves),
and ¢=1.8 (chain curves) with the (a) linear and (b) logarithmic
ordinates; the results for ¢=1.0 and ¢ < 1.0 being calculated by the
EA and IA, respectively (kgT/W=0.1).

011126-7



HIDEO HASEGAWA

log 10 (-dfq/ds)

0 20

S0 10 0
Ble-)

FIG. 3. (Color online) The e dependence of the derivative of
g-FDD, —df,(€)/ de, for g=0.8 (the solid curve), g=0.9 (the dotted
curve), g=1.0 (the dashed curve), g=1.2 (the double-chain curve),
g=1.5 (the bold solid curve), and g=1.8 (the chain curve) with the

logarithmic ordinate; the results for ¢=1.0 and ¢ <1.0 being cal-
culated by the EA and IA, respectively (kzT/W=0.1).

pw)=Aw® for 0 < w= wp, (74)

where A=9N,,/ wf), N, denotes the number of atoms, w is the
phonon frequency, and wp, is the Debye cutoff frequency. By
using Eq. (74) to Egs. (9)—(12), we may obtain (with wp,
=1.0 and u=0),

=) =,
A | 47
Ql(u)=m 7+15u—60 In(1 —e")

+ 60 In(1 — cosh u + sinh u)

A
- E[uzLiz(e“) —2uLis(e") + 2Lig(e")],

N (u)=- %[l/ﬁ - 3u” In(1 - €")
— 6uLiy(e") + 6Lis(e") — 6£(3)],
In(1 —¢e") . 3Liy(e") ~ 6Li5(e")

E =A
1(14) |: u M2 u3

ut 5ut

6Lije") 1 o }

+ -—- .
4 1

We have performed numerical calculations with the Debye
model for ¢g=1.0. The temperature dependence of self-
consistently calculated E, is shown in Fig. 4 where inset
shows the enlarged plots for low temperatures (7/7,<0.5).
We note that £, at low temperatures is larger for larger .

The calculated ¢-BEDs f,(e) for various g values for
T/Tp=0.01 are shown in Fig. 5 whose ordinate is in the

PHYSICAL REVIEW E 80, 011126 (2009)
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L L L B e
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FIG. 4. (Color online) The temperature dependence of E, of the
Debye phonon model for ¢g=1.0 (dashed curves), g=1.1 (chain
curves), g=1.2 (dotted curves), and g=1.3 (solid curves); the inset
showing the enlarged plot for 7/Tp=0.5.

logarithmic scale: they are indistinguishable in the linear
scale. It is shown that with more increasing g, f,(€) at €
> u has a longer tail. Dotted and solid curves for ¢ <1.0 will
be discussed in Sec. III C.

III. INTERPOLATION APPROXIMATION

A. Analytic expressions of the generalized distributions

In Sec. II, we have discussed the generalized distributions
based on the exact representation given by Egs. (61) and
(62). Tt is, however, difficult to calculate them because they
need self-consistent calculations of N, and E,. If we assume

1
<_)E”(E‘”’“N‘1)El(u) =1 (75)
Xq

in Egs. (61) and (62), we obtain the approximate generalized
distributions given by

FIG. 5. (Color online) The € dependence of the g-BED of f,(e)
for ¢=0.8 (the solid curve), g=0.9 (the dotted curve), g=1.0 (the
dashed curve), g=1.1 (the chain curve), g=1.2 (the double-chain
curve), g=1.5 (the bold solid curves), and g=1.8 (the thin solid
curve) with the logarithmic ordinate, the results for ¢=1.0 and ¢
<1.0 being calculated by the EA and IA, respectively (T/Tp
=0.01).
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fNep) =

where G(u;a,b) and H(t;a,b) are given by Egs. (14) and
(31), respectively. Equations (76) and (77) are referred to as
the interpolation approximation (IA) in this paper because
they have the important interpolating character, as will be
shown shortly (Sec. III B). Note that calculations of f;A(e, B)
by Egs. (76) and (77) do not require N, and E,. Equation
(76) may be regarded as a kind of the SA.

One of advantages of the IA is that we can obtain the
simple analytic expressions for the ¢g-BED and ¢-FDD as
follows.

(1) g -BED. We first expand the Bose-Einstein distribution

fi(e,B) as
file,B) =2 ™ for x>0, (78)
n=0

where x=B(e— w). Substituting Eq. (78) to Egs. (76) and (77)
and employing Eq. (5) and (27), we obtain the g-BED in the
IA given by

fNep) =2 [e;("”)"]q for 0 <g<3, (79)
n=0

R [ | Tw-n( P )
fep=1oon Areom !

for 1 <g<3, (80)
where {(z,a) denotes the Hurwitz zeta function:

o tZ—le—at

{za)=2 1 1

== dt for Rez>1.
k=0 (k+a)z F(Z) 0 1—€_z or €z

Its derivative is given by

gfA »
;f;— =—> qln+ 1)[6;("“))‘](2"_1) for 0 <g <3.
n=0

(81)

We may easily realize that f,(e,8) in Eq. (79) reduces to
f1(€, B) in the limit of g— 1.0 where e, —e".

(2) ¢ -FDD. The Fermi-Dirac distribution f/ (e, 8) may be
expanded as

( . q
u,—/ -,
g-1(q-

PHYSICAL REVIEW E 80, 011126 (2009)

I)B)fl(e’u)du for ¢ > 1.0, (76)
1
1 _q)ﬁ>f1(e,—t)dt for ¢ < 1.0, (77)
|
r [e¢]
> (= 1) for x>0, (82)
n=0
fileB) =95 for x=0, (83)
> (=1 for x<0, (84)
n=0

\
where x=(e—u). Substituting Eqgs. (82)—(84) to Egs. (76)
and (77) and employing Eq. (5) and (27), we obtain the
g-FDD in the IA given by

F,(x) for x>0, (85)
fNep =13 for x=0, (86)
1-F,(|x]) for x<0, (87)

with
F(x)=2 (= 1)[e,"" )¢ for 0<gq<3, (88

n=0

1 q/(g-1) q 1 1)
Fylx) = [Z(q— 1)x} {§<qj’2(q— Dx 2

—§<L +1> for 1<q<3.

g-1"2(g-1x
(89)
Its derivative is given by
oA *
7fo == 3 (- 1)gln+ D™D for 0< g <3,
n=0

(90)

which is symmetric with respect to x=0. The g-FDD given
by Egs. (85)—(88) reduces to f;(e,B) in the limit of g— 1.0.

We may obtain a useful expression of the g-FDD for |x|
<1 given by (see Appendix B 1)

1 g q2q-1)3q-2)
f;A25—2x+TX3+'”, 1)
ifss g q2q-1)(3g-2)
T TTat e Nt fr0sgs<a
X
(92)

In the case of ¢<<1.0, summations over n in the g-BED and
g-FDD [Egs. (79) and (88)] are terminated when the condi-
tion n+1>1/(1—¢)x is satisfied because of the cutoff prop-
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0
Be-w)

FIG. 6. (Color online) The € dependence of the g-FDD of f,(€)
calculated by the EA for ¢g=1.0 (dashed curves), g=1.2 (chain
curves), g=1.5 (dotted curves), and ¢g=1.8 (solid curves) with the
logarithmic  ordinate; the inset showing the ratio of
A=) fiNe) (kpTIW=1.0).

erties of the g-exponential function given by Eq. (70). Then
the ¢g-FDD for ¢ <1.0 has the cutoff properties given by

(g 0.0 for e—u>1/(1-¢q)B, (93)
Y7110 for e-u<-1/(1-9)B, (94)
while the ¢-BED has the cutoff properties given by Eq. (93).
These are the same as the g-exponential distribution p,(€)
given by Eq. (72).
B. Comparison with the exact approach

From Egs. (48) and (49) with Y;(«)=1.0, the ¢g-BED and
q-FDD for g=1.0 in the IA become

1 , &
e =eB + =D (=4 S urZh

(95)

which is in agreement with those in the EA given by Eq. (65)
within O(g—1). In the zero-temperature limit, the ¢-FDD
reduces to

+...’

[ (eT=0)=0(u-¢). (96)

In the opposite high-temperature limit, the g-BED and

g-FDD become

fiNep—0) = [e; 1. (97)

PHYSICAL REVIEW E 80, 011126 (2009)

N
Ble-w)
FIG. 7. (Color online) The € dependence of the g-BED of f,(e)
calculated by the EA for ¢=1.0 (dashed curves), g=1.1 (double-
chain curves) ¢g=1.2 (chain curves), g=1.5 (dotted curves), and ¢

=1.8 (solid curves) with the logarithmic ordinate; the inset showing
the ratio of )\:f{qA(e) /ng(e) (kgT/W=0.1).

Equations (96) and (97) agree with Eqgs. (67) and (68), re-
spectively, for the EA. Thus the generalized distributions in
the TA have the interpolation properties, yielding results in
agreement with those in the EA within O(g—1) and in high-
and low-temperature limits.

C. Numerical calculations

Numerical calculations of f{A(e B[ f{A(e)] have been
performed. Results of the FDD of fE (s) in the EA for
q>1.0 and kzT/W=1.0 are shown in Flg 6. With more in-
creasing ¢, the distributions have longer tails, as shown in
Fig. 2 for kzT/W=0.1. The result in the IA is in good agree-
ment with the EA because the ratio defined by
N=FNe)/fi(e) is 0.97=A=<1.01 for —-10<e<10 as
shown in the inset. The e dependence of the BED of fEA(e)
in the EA for ¢>1.0 and 7/T,=0.1 is plotted in Fig. 7 Wthh
shows similar behavior to those for 7/7,=0.01 shown in
Fig. 6. Its inset shows that the ratio of N is 0.7=\=<1.0 for
1.0<g=1.2. These calculations justify, to some extent, the
distribution in the TA given by Egs. (80), (85)—(87), and (89).

We have calculated the g-BED and ¢-FDD also for ¢
< 1.0 by using Egs. (79) and (85)—(88). Dotted and solid
curves in Fig. 2 show the g-FDD of fIA(e) for g=0.9 and ¢
=0.8, respectively. Their derivatives of af{A(E)/ de for g
=0.9 and ¢=0.8 are plotted by the dotted and solid curves,
respectively, in Fig. 3. Dotted and solid curves in Fig. 5 show

TABLE 1. Generalized distributions in the limits of g—1, T—0, and B—0. f;=1/(ePle® T 1):

®(x)—the Heaviside function; e

, g-exponential function.

Method q—1 T—0 (FDD) B—0

EA* fi+(g=Dl(e- m”f' 1<e—m2‘§f‘] O(u-e) [e 1
1A" fi+(g=Dl(e- ,u) +3(e- ,u)zﬁez] O(u—e [e; A He
FA® Jfi— (q 1)B(e- M)z f] O(u—e) E;B(E—M)
sA’ fi+3(g=1)(e= ,u)z{;e, O(u-e) e e

“The exact approach (the present study).

®The interpolation approximation (the present study).

“The factorization approximation [24].
The superstatiscal approximation [49].
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FIG. 8. (Color online) The € dependence of the g-BED of f,(€)
for g=1.1 and 1.2 calculated by the EA (solid curves), FA (chain
curves), and SA (dotted curves) with the logarithmic ordinate, f;(e),
for g=1.0 being plotted by the dashed curve for a comparison
(T/Tp=0.01).

the g-BED of ff]A(e) for g=0.9 and ¢=0.8, respectively. With
more decreasing ¢ from unity, the curvatures of f,(€) in both
q-BED and ¢-FDD become more significant. The cutoff
properties in the ¢g-FDD and ¢-BED given by Egs. (93) and
(94) are realized in Figs. 2 and 5. We expect that sz( €) in the
case of ¢<<1.0 is a good approximation of the g-BED and
q-FDD as in the case of ¢>1.0.

IV. DISCUSSION
A. Comparison with previous studies

It is interesting to compare our results to those previously
obtained with some approximations.

(A) Factorization approximation. Biyiikkilic er al. [24]
derived the ¢g-BED and ¢-FDD given by

1
Ky e EETR
adopting the FA given by
N 1/(1=q)

Q=[1—(1—q)21xn] (99)

N
=[I[1-(1-gux]"2 (100)

n=1

to evaluate the grand-canonical partition function, the upper
(lower) sign in Eq. (98) being applied to boson (fermion).

It is noted that if we assume the factorization approxima-
tion, [e;("“)x]q =(e;)(e;")]" in ;A(e) [Egs. (79) and
(88)], we obtain

1
{e[- Ble= w7+ 17
which is similar to Eq. (98) [41,55].
(B) The superstatistical approximation. In the SA, the

generalized distribution is expressed as a superposition of

fi(e) [8,9],

foleB) = (101)

PHYSICAL REVIEW E 80, 011126 (2009)
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FIG. 9. (Color online) The € dependence of the g-FDD of f,(e)
for g=1.1 and 1.2 calculated by the EA (the solid curve), FA (the
chain curve), and SA (the dotted curve) with the logarithmic ordi-
nate, f(e) for ¢g=1.0 being plotted by the dashed curve for a com-
parison (kgT/W=0.1).

1

; qu’ m)fl(e,u)du, (102)

fen=[ ol
0

which is similar to but different from ff]A(e, B) given by Eq.

(76). Recently the g-FDD equivalent to Eq. (98) is obtained
by employing the SA in a different way [49].

The properties of the generalized distributions of the EA,
IA, FA, and SA in the limits of ¢— 1.0, T=0, and 8— 0.0
are compared in Table I. The result of the IA agrees with that
of the EA within O(g—1) as mentioned before. However, the
O(g—1) contributions in the FA and SA are different from

1.2 x : :
@
| i
TN FA 1A q
0.8- e — 11 A
“70.6- o
fffff — 09
0.4 1

0.2+ .

- df/de

L 1

0
B(e-w)

FIG. 10. (Color online) The € dependences of (a) the g-FDDs of
f4(€) and (b) its derivative of —df,(€)/Je calculated by the IA for
q=0.9 (solid curves) and 1.1 (bold solid curves) and those calcu-
lated by the FA for ¢=0.9 (dashed curves) and 1.1 (bold dashed
curves); results for g=1.0 being plotted by chain curves for a
comparison.
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that in the EA. In the zero-temperature limit, all the g-FDDs
reduce to O(u—e€). In the opposite high-temperature limit,
the generalized distributions in the FA and SA reduce to e"BE,
while those in the EA and IA become [¢ ”€]%, where the
power index ¢ arises from the escort probabﬁity in the OLM-
MEM ¢given by Eq. (71) [5,6].

Figure 8 shows ¢-BED for g=1.1 and g=1.2 calculated
by the FA, SA, and EA with the logarithmic ordinate. For a
comparison, we show f,(€) for g=1.0 by dashed curves. The
difference among f,(€)’s of the three methods is clearly re-
alized: tails in the ¢-BED of the FA and SA are overesti-
mated.

Figure 9 shows ¢-FDD for g=1.1 and g=1.2 calculated
by the EA, FA, and SA with the logarithmic ordinate (for
more detailed fSA(e), see Fig. 1 of Ref. [49]). Tails in the FA
and SA are larger than that in the EA, as in the case of the
g-BED shown in Fig. 8.

Figures 10(a) and 10(b) show the ¢-FDD and its deriva-
tive, respectively, calculated in the IA and FA. For ¢=0.9,
.)‘*[;A(e) at €<y is much reduced than f;A(e). For ¢=1.1, on
the contrary, f’;A(e) at €> u is much increased than fIqA(e).

r ( 1 1
Gl u; T
0 g-1¢g-1

j 1 1
LJ H(t;—,—) e™ndt for ¢ < 1.0,
27 ¢ l-q 1-q/,5

Q:

where ®, denotes the g product defined by [62]

xX®,y = [x!77 4 yl-a — 1]V0-4), (106)

Equations (104) and (105) are the integral representations of
the g product given by Eq. (103). The result of the FA in Eq.
(100) is derived if we may exchange the order of integral and
product in Egs. (104) and (105), which is of course forbid-
den.

B. Generalized Sommerfeld expansion

We will investigate the generalized Sommerfeld expan-
sion for an arbitrary function ¢(e) with the g-FDD of f,(e)
given by [49]

nn-1)

PHYSICAL REVIEW E 80, 011126 (2009)

These lead to an overestimate of electron excitations across
the Fermi level w in the FA. Furthermore —&ng(e)/ de in the
FA is not symmetric with respect to e=u in contrast to that
in the TA.

The FA was criticized in Refs. [25,26] but justified in Ref.
[27]. The dismissive study [25] was based on a simulation
with N=2. In contrast, the affirmative study [27] performed
simulations with N=10° and 10'°. Lenzi et al. [26] criticized
the FA, applying the EA [50,51] to independent harmonic
oscillators with N=100. Our results are consistent with Refs.
[25,26]. The FA given by Eq. (100) has been explicitly or
implicitly employed in many studies not only for quantum
but also for classical nonextensive systems. It would be nec-
essary to examine the validity of these studies using the FA
from the viewpoint of the exact representation [50,51,60,61].

By using Egs. (5) and (27), we may rewrite Q in Eq. (99)
as

0=[1-(1-gx]" 100, @ [1 - (1 - g)xy] 177,

(103)
N
) e "ndy  for ¢ > 1.0, (104)
n=1
N
(105)
|
1= f K (e)de (107)
w ©
=| dlede+ X c, kgT)"¢"(w), (108)
n=1
with
Cng=— 'f—:lf (e— ,u.)"a'—};q?de. (109)

Substituting f,(e) in the EA given by Eq. (65) to Eq. (109)
and using integrals by part, we obtain ¢, , for even n,

JEA 1+ > (g—1)+--- for even n, (110)

Cng _

Cal I+(g=1)+-- for n=2, (111)
1+6(g=1)+--- for n=4, (112)

while ¢, ,=0 for odd n, where c,; denotes the relevant expansion coefficient for g=1.0: c2,1=772/6(=1.645) and ¢y,
=77*/360(=1.894). Equation (110) shows that c, , is increased with increasing g.
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TABLE II. O(g-1) contributions to c¢,, (n=1-4) of the generalized Sommerfeld expansion

coefficients.
Method Cl,q CZ,q C3,q C4’q

P wt
EA® 0 1+(g-1)] 0 ;60[1+6(q 1]

Tl'2
IA® 0 T[1+(g-1)] 0 360[1+6(q D]

2 2 o

FA® &= Fl1+0l(g-1] o1 360{1+0[(q 2
sA? 0 Z[1+3(g-1)] 0 I 1+10(g-1)]

*The exact approach (the present study).

®The interpolation approximation (the present study).
“The factorization approximation [24].

The superstatiscal approximation [49].

By using ffIA(e) in the TA, we may obtain c, , given by (for details, see Appendix B 2)

[ [
F(—+l—n>
qg-1
for even n,qg>1 (113)
(q—l)’T(—+1)
g-1
q
A F(—l_q+1)
M=< for even n,g <1, (114)
Enl (l—q)’T(—q +1+n>
1
— for n=2, (115)
2-¢q
! f 4 (116)
or n=4.
\ 2- 9B -29)(4-3q)

It is easy to see that Egs. (115) and (116) are in agreement
with Eq. (111) and (112), respectively, of the EA within

O(g-1).
A simple calculation using f‘ZA(e) leads to

SA
Cn,i

Cn,l

—1 for even n,q>1
(q- 1)”F< )
-1
_r
(2-¢)(3-29)
1
L (2-9)(3-29)(4-39)(5-4q)

for n=2

for n=4,

(117)

which are similar to but different from those given by Eqgs.
(115) and (116).

The Sommerfeld expans10n coefficients in the FA may be
calculated with the use of fF (€) [49]. A comparison among
the O(g—1) contributions t0 Cpq (n=1-4) in the four meth-
ods of EA, IA, FA, and SA is made in Table II. The results of
the IA coincide with those of the EA. The O(g—1) contribu-
tions to ¢, , and ¢y , in the SA are three and 5/3 times larger,
respectively, than those in the EA. The O(g—1) contr1but10ns
o ¢y and c4 ¢ in the FA are vanishing. It is noted that cl 4
# 0 and c3 q A %0 in contrast with the results of ¢, 4=€3,4=01n
the EA, TA, and SA. This is due to a lack of the symmetry in
—af’;A(e)/o"e with respect to €= as shown in Fig. 10(b).

Figure 11(a) shows the g dependence of coefficients of

ng!Ca for n=2 and 4 calculated by the four methods.
C1rcles and squares express c A for n=2 and 4, respectively,
calculated by the EA for kBT/ W=0.1 (Fig. 1). Solid curves
express c ng in the IA. The coefficient for n=2 (n=4) in
the IA is in good agreement with the result in the EA
for 1.0=¢g=<15 (1.0=¢=<1.2). cSA shown by chain curves
are overestlmated cornpared to cEA and cIA. Dashed
curves denoting ¢ 5 [49] are plotted only for 0. 8=g=12
because the FA is cons1dered to be valid for a small |g—1]
[23]. The g dependence of c 1s qualitatively different from
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FIG. 11. (Color online) (a) The g dependence of ¢, ,/c, for
n=2 and 4 of the generalized Sommerfeld expansion coefficients
[Eq. (108)] with the ¢-FDD and (b) the ¢ dependence of a,/a, of
the coefficients in the low-temperature phonon specific heat with
the ¢-BED, calculated by the EA (circles and squares), TA (solid
curves), FA (dashed curves) [49], and SA (chain curves): the result
of the SA is indistinguishable from that of the FA in (b) (see text).

those of the EA, TA, and SA: chA‘ is symmetric with respect
to ¢g=1.0 whereas those in other three methods are monoto-
nously increased with increasing q.

The energy of electron systems at low temperatures may
be calculated with the use of the generalized Sommerfeld
expansion. By using Egs. (108) and (110) for Eq. (73) with
¢(e)=€p(€), we obtain the energy given by

E(T) = E0) +c3 ,(kgT)’p(p) + ==+, (118)

from which the low-temperature electronic specific heat is
given by

CT) = y,T+ -, (119)
with
Yo _ 2 (120)
Y1 Cai
’772
Y= —kpp(p), (121)

3

where 1, is the linear-T expansion coefficient for g=1.0.

The inset of Fig. 1 shows that the calculated energy E, at
low temperatures in the electron model is larger for a larger
g, which is consistent with larger vy, and ¢, , for a larger g as
shown in Fig. 11(a).
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C. Low-temperature phonon specific heat

We consider the phonon specific heat at low temperatures.
By using Egs. (60) and (65), we obtain

C,=a,+ -, (122)
with
aEA
—=146(g-1)+ -+, (123)
aq
1274
al— 5 NakB’ (124)

where « is the relevant coefficient for g=1.0.

The coefficients of low-temperature phonon specific heat
a, in the IA, SA, and FA are given by (for details, see Ap-
pendix B 3)

aIA 1
;"l—= (2-9)3-29)(4-3q)’ (125)
aSA 1
_“ql_ T 2-q)(3-29)4-3¢)(5-4q) (126)
A
o =1 ollg- 17, (127)

1

where the O(g—1) contribution to aSA is vanishing [49].
Equation (125) shows that afIA agrees with afsA within
O(g—1) and that the afIA is related with cffq as afIA/ a
:ci‘}q/c4,l.

Coefficients of a,/a; calculated by the four methods are
plotted as a function of ¢ in Fig. 11(b). Squares denote the
result of numerical calculation by the EA for 7/7,=0.01
(Fig. 4). The solid curve expresses o, which is in good
agreement with the result of the EA for 1.0=¢g=<1.2 but
deviates from it at ¢ = 1.2. Dashed and chain curves show a,
calculated by the FA and SA, respectively. It is interesting
that the result of the SA nearly coincides with that of the FA
for 1.0=¢g=1.2, where both the results of the SA and FA are
overestimated compared to the EA. The inset of Fig. 4 shows
that the energy E, at low temperatures in the Debye model is
larger for larger ¢, which is consistent with the ¢ dependence

of a, shown in Fig. 11(b).

V. CONCLUDING REMARKS

It is well known that in nonextensive classical statistics,
the nonextensivity arises from the long-range interaction, the
long-time memory, and a multifractal-like space time [2].
The metastable state or quasistationary state is characterized
by long-range interaction and/or fluctuations of intensive
quantities (e.g., the inverse temperature) [10]. For example,
in the long-range-interacting gravitating systems, the physi-
cal quantities are not extensive: the velocity distribution
obeys the power law and the stable equilibrium state is lack-
ing, which lead to negative specific heat [63]. The situation is
the same also in nonextensive quantum statistics. It has been
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reported that the observed black-body radiation may be ex-
plained by the nonextensivity of the order of |g—1]
~107*~1073, which is attributed to the long-range Coulomb
interaction [21]. Memory effect and long-range interaction
cannot be neglected in weakly nonideal plasma of stellar
core [64]. In addition to the large systems where the interac-
tions may be truly long range, one should consider small
systems where the range of the interactions is of the order of
the system size. Small-size systems would not be extensive,
and many similarities with the long-range case will be real-
ized. Indeed, the negative specific heat is observed in 147
sodium clusters [65]. Magnetic properties in nanomagnets
may be different from those in large-size ones [66]. Small
drops of quantum fluids may undergo a Bose-Einstein con-
densation. Thanks to recent development in the evaporation
cooling technique, it becomes possible to study Bose-
Einstein condensation in an extremely diluted fluid where the
long-range interactions play essential roles in the condensate
stability. Artificial sonic or optical black hole [67,68] repre-
sents an intrigue quantum catastrophic phenomenon. Only
little is known about the thermodynamics of these quantum
systems. Experimental and theoretical studies on these sub-
jects deepen our understanding of basic quantum phenom-
ena.

To summarize, we have discussed the generalized distri-
butions of g-BED and ¢-FDD in nonextensive quantum sta-
tistics based on the EA [50,51] and IA. Results obtained are
summarized as follows:

(i) with increasing g above g=1.0, the ¢-BED and ¢-FDD
have long tails, while they have compact distributions with
decreasing ¢ from unity,

(ii) the coefficients in the generalized Sommerfeld expan-
sion, the linear-T coefficient of electronic specific heat, and
the T° coefficient of phonon specific heat are increased with
increasing g above unity, whereas they are decreased with
decreasing ¢ below unity,

(iii) the O(g—1) contributions in the EA agree with those
in the AA based on the OLM-MEM [5] as well as the un-
normalized MEM [3], and

(iv) the generalized distributions given by simple expres-
sions in the A proposed in this study yield results in agree-
ment with those obtained by the EA within O(¢g—1) and
high- and low-temperature limits.

rG( 1 1
u,— .~
0 g-1(g-1p

q .
i 1 1
— H(t;—,—)Z (=0dt for g<1,
27Jc 1-¢’ (1-g)B)"" 1

* 1
— G(u; +1,
ZZ 0 q—l

1
(¢-1)B
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As for item (iv), the ¢g-BED and ¢-FDD in the IA are
expected to be useful and to play important roles in the non-
extensive quantum statistics [61].
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APPENDIX A: THE (¢—-1) EXPANSION
IN THE UN-NORMALIZED MEM

Tsallis et al. [21] developed the AA to investigate the
nonextensivity in the observed black-body radiation by using
the un-normalized MEM [3]. We will show that the EA with
the un-normalized MEM yields the result in agreement with
the AA within O(¢—1). Calculations of the ¢-BED and
q-FDD for g=1.0 are presented.

1. Un-normalized MEM

An application of the un-normalized MEM to the Hamil-
tonian H yields the optimized density matrix given by [3]

1 A

py=—[1-(1-q)BH]""?, (A1)

Z
Z,(B)=Tr{[1 - (1 -q)BH]"" 7}, (A2)

The expectation value of the operator 0 is given by
0,(B) = (0),=Tr{p0} (A3)
1 N R

= Tl - (1= pHI"1 0} (A4)

q

2. Exact approach

With the use of the exact representations given by Egs. (5)
and (27), Egs. (A2) and (A4) are expressed by

g i 1 1
H\t; -1,
2wzt )¢ 1-¢g (1-9)B

)Zl(u)du for ¢ > 1, (AS)

(A6)
)Zl(u)Ol(u)du for g>1, (A7)
)Zl(— HO(-t)dt for g<1, (A8)
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with
Tr{e 0}
0,(u) = , A9
(1) 0 (A9)
Z,(u) = Tr{e™Hy, (A10)

where C denotes the Hankel contour and G(u;a,b) and
H(t;a,b) are given by Egs. (14) and (31), respectively. In
order to evaluate Egs. (A5)—(A8), we expand their integrands
around u= and —t=f3 as is made in Sec. II C. By using Eqgs.
(22), (23), (35), and (36), we obtain

,PZ,
Z,=Z,+ (q—l)B a,ez (A11)
1 J
Oq=ZZ 01+(q—1)ﬁ£(2101)
1 &
+5(q 1)3 2(Zo)+ (A12)

By using the relations given by

‘;—ZB‘=—<ﬁ>1zl,
#
&g‘ = (H*),Z,,
‘;—‘;‘:<H>1<0>1—<F16>1,
&20 2 72 A N2/ A T A s
&,3 —<H 0>1 (H >1<0>1+2[<H>1<0>1—<H0>1<H>1],

we finally obtain the O(q—1) expansion of O, given by
Oq = 01 + (1 - q)(Ol ln Zl + B<1:Ié>l + % 2[<é2>101
~(i20)))) +

which agrees with Eq. (7) in Ref. [21] derived by the AA.
(1) g -BED. In order to calculate the g-BED, we consider

é:ﬁk with the Hamiltonian for bosons given by

(A13)

H=2 (- iy, (A14)
k

where 7i; and €, stand for the number operator and the energy
of the state k. We obtain

(A = JE =file) =f1 [x=pB(&—-w)], (Al5)
(il = (6~ we'f] + fLE, (A16)
<1A12>1=E%+E2+E3, (A17)
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(i), = 2(6 — w?f; - 2(e,— WIE, + fi(ET + Ey + Es),
(A18)
with

E1=2(fk—,uv)f1,

k

E2=2(fk—ﬂ)2f1,
k

Es=2, (-
k

Substituting Egs. (A15)—(A18) to Eq. (A13), we obtain
fo=hi+(=-g){fiInZ + Bl(g~ wefi+fiE ]}

(=98
2

+ o (A19)

[(€— m)’e" (" + 1)f} +2( — w)e*fiE}]

Tsallis et al. [21] employed a one-component boson Hamil-
tonian given by

H=hoh = €, (A20)
which yields

(== =fi =B, (A2)
(AH), = e(e* + 1)f), (A22)
(H) =€ + 1)f}, (A23)

(AH?), = E(e™ +4e* + 1)f. (A24)

A substitution of Egs. (A21)—(A24) to Eq. (A13) leads to

fo=Fi+ (L= @[fi In Z; +x(e"+ Dfi = 5% (" + 3)f]]
(A25)
which is different from Eq. (A19) with u=0 because of the

difference in the adopted Hamiltonians given by Egs. (A14)
and (A20).

(2) ¢ -FDD. We consider é=ﬁk with the Hamiltonian for
fermions given by

+...’

H=2, (- iy, (A26)
k
which leads to
(A = &+ =file) =fi [x=Blg-u)], (A27)
<”kH>1 (e, = wfi(l=f1) +fLE,, (A28)
(H),=E3+E, - Es, (A29)
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(A H?), = (6= )1 (1 = f)(1 =2f)) +2(e— w)fy(1 = f)E,
+fI(E} + E;— E3). (A30)

Substituting Eqgs. (A27)—(A30) to Eq. (A13), we obtain

fo=f+0=ifi nZ + Bl(e,— wfi(1-f1)+fLE, ]}

_ 2
O e w0026

+2(g = wfi(1=fE ]+ -

When assuming a one-component fermion Hamiltonian
given by

(A31)

H= (e~ Wiy, (A32)
we obtain
1

(i =——=f [x=B&-w], (A33)

e+ 1
(i) = (- Wy, (A34)
<I:12>1 = (fk - M)2f1 s (A35)
(W), = (€~ w?f. (A36)

Substituting Egs. (A33)—(A36) to Eq. (A13), we obtain

fo=Fi+(L=@)[fi In Z, + Ble- wfy

_ %32(6_ ,u,)ze'B(f_“)f%] boeee
The difference between Eqgs. (A31) and (A37) is due to the
difference in the adopted Hamiltonians given by Egs. (A26)

and (A32). It is noted that the (¢—1) expansion of ¢-FDD in
the FA is given by

1t =i L e et o,

(A37)

(A38)

whose O(g—1) term corresponds to the last term of Eq.
(A37) derived by the un-normalized MEM. This is due to the
fact that to adopt the one-component Hamiltonian given by
Eq. (A32) means to use the factorization approximation from
the beginning.

Equation (A19) for ¢-BED and Eq. (A31) for ¢-FDD are
expressed in a unified way as

Jd
fa=hHi+( —q)[f1 In Z, +,8E1{f1 +(6—M)£}

afy 1 &
—{(e—u>£+5<e—mza—§}]+---, (A39)

where f;=1/(e*F 1). We note that the O(g—1) term of the
generalized distribution in Eq. (65) derived by the OLM-
MEM corresponds to the last term in the bracket of Eq.
(A39).
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APPENDIX B: SUPPLEMENT TO THE INTERPOLATION
APPROXIMATION

1. Analytic expressions of g-FDD for |B(e—u)| <1

We may obtain an expression of the g-FDD for small
x[=B(e—pu)] with the use of an expansion for f,(eB) given
by

1 ool
fl(e,ﬁ)=5+2dm1x” for |x| < 1. (B1)

n=1

Substituting Eq. (B1) to Egs. (76) and (77) and employing
Egs. (5) and (27), we obtain

1 o0
feB) =+ 2 d, " for [x] <1, (B2)
n=1
with
1
(g- 1)”F<—1+ 1 +n>
dyg=d,, i] for 1 <g<3,
F<—+ 1)
qg-1
(B3)

(1—q)"r<i+1)
1-¢

F(L+l—n)
l-g¢

dy,=d,, for 0<g<1, (B4)

qd, for n=1, (B5)
dyg=\dnqg=92q~-1)d,, for n=2, (B6)
dy,=q(2q-1)(3qg-2)d,, for n=3,  (B7)

ngq

where d, | =(1/n!)d"f (e, B)/ ox" at x=0: d| ;=—1/4, d, 1=0,
d3,=1/48, etc. Equations (B2)—(B7) lead to

ffIA(E,,B) - l _ gx q(2g-1)3q - 2))63 4o

+ for |x| < 1.
2 4 48

(B8)

2. Generalized Sommerfeld expansion in the IA

In the case of g> 1.0, Eq. (61) yields

%(6)__]“ ( q 1 )(G—M)e“(e“‘)
ge —J, ¢ Ca-1g-1B [e"“ﬂ“ﬂ]zd”'

(B9)

Substituting Eq. (B9) to Eq. (109) and changing the order of
integrations for € and u, we obtain

71 «© 1 n_x
—'8— G(u;i, )u‘"duf %dx.
-1 (@-1B (e*+1)

! 0
(B10)

Cng

At low temperatures, Eq. (B10) reduces to
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_20=2¢0m) [~ ( 4 >-n
Cng= -1 . G u,q 1,1 u"du, (B11)

1
T
qg-1

(g- 1)"F<L+ 1)
qg-1

Crg=Cni for even n, (B12)

Cng=0 for odd n. (B13)
The ratio of ¢, ,/c,, is given by
( 1
YR
q-1
1 for even n, (B14)
(qg- 1)"I‘<— + 1)
Cng _ { q-1
] 1
ol | — for n=2, (B15)
2-¢q
] f 4 (B16)
or n=4.
L (2-9)(3-29)(4-3q)

In the case of ¢<<1.0, Egs. (62) and (109) yield

_nl-n .
_201=2"")¢m) i f H(,.L,l)(_,)—ndh
C

Erg (1-¢9" 27 1-¢g
(B17)
F(—q + 1)
l1-q
Cpg=Cni for even n,
(1- q)"F(L +1 +n)
I-¢q
(B13)
Crg=0 for odd n, (B19)
leading to
p
I‘(—q +1)
l-¢
for even n, (B20)
(1—q)"F<L+l+n>
Cng _ { I-q
Cui 1
' S for n=2, (B21)
2-q
! f 4 (B22)
or n=4.
L (2-9)(3-29)(4-39)

Equation (B20) for ¢<<1.0 is the same as Eq. (B14) for ¢
>1.0 if we employ the reflection formula of the gamma
function,

(1 -z) = ﬁ

PHYSICAL REVIEW E 80, 011126 (2009)

3. Low-temperature phonon specific heat in the IA

In the case of ¢> 1.0, Egs. (60) and (76) yield

cqszﬁzf G(u; 1 ,1)
0 g-1

Z p()(q - 1)(hw) ueldPro
. [g(q_l)ﬂﬁwu _ 1]2

o 4 x
x"e
q ,1)u‘4duf dx
qg-1 o (e"=1)

(B23)

dwdu
0

2 o
“q-n\e,) J, T\

(B24)

1
(5
qg-1
——— for 1<¢g<3, (B25)
4)

ap| 4
(g-1) F(q_l

(Xq: 23]

where Tj, (=hwp/kg) stands for the Debye temperature and
a, is the T° coefficient of the low-temperature specific heat
for g=1.0.

In the case of ¢<<1.0, a similar analysis with the use of
Egs. (60) and (77) leads to

_ o2 b 49
Cq= ket (%)LH(t’ 1 —q’1>

© _ 2(_ o\ ,—(1-q)Bhot
Xj plw)(1 = q)(hw)*(=1)e Jod
0 [e—(l—q)ﬁfm)t_ 1]2
(B26)
INkg ( T\ i
) o) [l )
(1-¢)*\Tp 2w} )¢ I-¢g
X (= 1)*di f T (B27)
0 (ex_1)2 X,
from which we obtain
F(—q +1>
l-¢g
@, = for 0 <g<1.
(1 —q)4F<1—+5>
(B28)

Equations (B16), (B22), (B25), and (B28) yield

ey _ 1 _ Cag
a; (2-9)(3-2¢9)(4-3q) c4;

for 0 < g <4/3.

(B29)
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