PHYSICAL REVIEW E 80, 011122 (2009)

Model of dispersive transport across sharp interfaces between porous materials
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Recent laboratory experiments on solute migration in composite porous columns have shown an asymmetry
in the solute arrival time upon reversal of the flow direction, which is not explained by current paradigms of
transport. In this work, we propose a definition for the solute flux across sharp interfaces and explore the
underlying microscopic particle dynamics by applying Monte Carlo simulation. Our results are consistent with
previous experimental findings and explain the observed transport asymmetry. An interpretation of the pro-
posed physical mechanism in terms of a flux rectification is also provided. The approach is quite general and
can be extended to other situations involving transport across sharp interfaces.
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Berkowitz et al. [1] recently reported experimental results
for solute transport across the sharp interface between two
porous materials, which show that, contrary to current model
predictions, solute arrival times depend on the direction of
the flow crossing the sharp interface. Understanding the pre-
cise physics of particle transport across sharp interfaces is of
critical importance also for such diverse applications as heat
flow [2] in composite media or the pattern evolution of the
substances that govern living tissue development (morpho-
gens) [3]. The aim of this work is to provide a consistent
physical model for the flux of a solute across two porous
materials with different dispersive properties that explains
the experimental results presented in [1].

Transport processes can be conveniently described in
terms of particles stochastically traveling within a porous
medium. Depending on the intensity of the underlying veloc-
ity field, transport in porous materials may assume a disper-
sive or a diffusion-dominated character, in both cases leading
to significant spread of an initially close ensemble of par-
ticles. The time evolution of this spreading is governed by a
simple mass-balance equation that relates the time derivative
of the particles concentration c¢(x,7) to the divergence of the
particles flux j(x,7), dc(x,t)==V-j(x,t). The interaction of
the tracer particles with the fluid flow manifests itself at the
macroscopic scale as a complex combination of diffusion,
dispersion, and time-memory effects, which are ultimately
determined by the details of the pore geometry [4].

Transport across an interface is a deceptively simple prob-
lem that has long been studied [5-8] and for which several
alternative models have been proposed. Some of these mod-
els assume equality of fluxes and concentrations at the inter-
face [9,10]. Other studies relax the assumption on equality of
concentrations [3,11,12] but either neglect advection [3] or
consider only concentration profiles [11,12]. None of these
models has been corroborated so far by experimental evi-
dence of a concentration jump at the interface.

To fix the ideas, let a composite porous column of length
L=1 consist of two half columns of radius R, filled with
“fine” (F) and “coarse” (C) random arrangements of spheres
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of diameters dp and d, respectively, with dp<d.. A fluid
flux, Q, can be injected from either end, fine or coarse, of the
column. We assume that the aspect ratio of the column, L/R,
is sufficiently large to justify a one-dimensional treatment.
NMR experiments show that, for random packings of
spheres, porosity n, electrical tortuosity, and diffusivity do
not depend on the spheres’ diameter, d [13]. From the fluid
incompressibility condition, it follows that the mean trans-
port velocity, v=Q/(nmR?), also does not depend on d.
Moreover, for the range of Péclet numbers considered in [1],
Pe=[0.3-10], diffusion is negligible with respect to disper-
sion. The relevant material properties that depend on the
sphere diameter, d, are the permeability k~ d?, which char-
acterizes the fluid flow in the pore geometry, and the disper-
sivity length, «, the ratio of the effective dispersion coeffi-
cient D in the Taylor-Aris regime to the pore velocity v,
which characterizes the macroscopic spreading of the tracer
plume through the microscopic pore geometry, a=D/v~d
[4,14].

While each layer can separately be regarded as being ho-
mogeneous, we have now a sharp interface (i.e., a macro-
scopic heterogeneity) located at x=1/2, the junction between
the two layers. With reference to the fine-to-coarse (F— C)
direction, we assume that a(x) can be represented by a
Heaviside step function, i.e., a(x) takes the values ay and
ac, and @=3(ap+ag), for x<1/2, x>1/2, and x=1/2, re-
spectively. An analogous variation will be assumed for the
permeability kp<k(x) <kc. Obvious modifications hold for
the coarse-to-fine (C— F) flow direction.

Concerning the particles flux, it is customary to adopt a
Fickian advection-dispersion (AD) constitutive relationship
jAP(x,t)=v[c(x,t)—a(x)d,c(x,1)] [9]. The AD model pre-
dicts no difference in the arrival times at the column outlet,
as readily shown by numerical integration. This is however
inconsistent with the experimental evidence [1], where the
solute transported in the ' — C direction is observed to arrive
faster with respect to the one transported in the C— F' direc-
tion. Similarly, the adoption of a Fokker-Planck (FP)
constitutive  relationship ~ j™(x,1) =v{[1-d,a(x)]c(x,1)
—a(x)d.c(x,t)} as in [15] predicts faster solute arrival times
are for the C— F flow direction and thus does not explain the
results in [1].
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Bearing in mind these results, in the following we propose
a model for the microscopic dynamics of a passive tracer
across the sharp interface between two otherwise homoge-
neous porous materials. To this end, we begin by resorting to
the continuous time random-walk (CTRW) formalism, repre-
senting the stochastic path of each particle as a series of
random jumps between spatial sites, separated by random
waiting times. We denote the jump-length probability density
function (pdf) by p(s) and the waiting time pdf by (), and
we assume for the sake of simplicity that the two pdfs are
uncoupled. The pdf () plays a central role in CTRW since
it defines the variability of the velocity spectrum and thus
condenses the degree of heterogeneity of the traversed me-
dium [4]. As a first approximation, the two columns can be
separately considered as being homogeneous and can thus be
described by a narrow ) distribution (e.g., an exponential
pdf) so that a single time scale 7 (e.g., the mean of the dis-
tribution) dominates, and particle sojourns at each spatial site
have on average the same duration. Since the two layers have
the same porosity, n, we also assume that the time scale 7is
the same in the two layers.

The flux expression jAP is based on the assumption that
the jump lengths are distributed according to a Gaussian pdf,

gls)= ﬁe‘(““)z/z‘# [4]. The mean value of g(s), u, char-
acterizes the advective contribution to the flow, whereas o,
the square root of the variance characterizes the dispersion,
o=\2au. The presence of the macroscopic interface im-
poses a spatial variability on the value of o but not on the
value of w because the porosity in the two sections is the
same so that we can make the identification, p(s|x)
= g[s| ., 0(x)]. This pdf reproduces the Fickian flux jAP and
consistently yields identical solute arrival times at the outlet
upon reversal of the flow direction.

This classical picture of transport needs now to be modi-
fied to account for the local effects of the interface reported
in [1]. Consider a Lagrangian coordinate frame moving with
velocity v=u/ 7. A particle located in the fine (coarse) homo-
geneous material at a sufficiently large distance from the
interface must have an identical probability of jumping in
either direction: in this region, p(s|x) is symmetrical and
entirely characterized in terms of v and (either) ay (fine
layer) or a( (coarse layer). In the transition region Z, how-
ever, a particle has a finite probability of starting and ending
the jump in two distinct layers and will thus be subject to an
asymmetric microscopic random force field. For the case of
F — C flow direction, the probability of jumping forward will
be larger than the probability of jumping backward. Such a
particle will thus experience a forward drift, which can be
characterized in terms of a positively skewed jump-length
distribution. The same reasoning holds but with opposite
signs for a particle crossing the interface in the C— F direc-
tion; such a particle will experience a backward drift charac-
terized by a negatively skewed jump-length distribution.
Skewed Brownian motion schemes have been proposed
when the forward or backward direction of the jumps can be
characterized by a biased Poisson process (see, e.g., [16])
and for flow parallel to a sharp interface (see, e.g., [17]).

The microscopic nature of the jump-length pdf asymme-
try can be appreciated by observing the behavior of the pore-
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FIG. 1. (Color online) Deviations from the average Stokes ve-
locity, u’=u—(u), at the interface between two-dimensional disks
(arbitrary units). The histogram of u’ for the F— C flow direction
exhibits a distinct positive skewness. Negative skewness is ob-
served for the C— F direction (not shown).

scale Stokes flow velocity field, u, across the sharp interface.
It is well known from homogenization theory [18] that, in
homogeneous porous media, deviations of the Stokes veloc-
ity from its mean, u’ =u—(u), are proportional to the perme-
ability k. Across the interface of a composite porous medium
we have therefore that |ug|>|uz|, from which it follows that
the u’ pdf must be skewed. Figure 1 shows a simple two-
dimensional (2D) Stokes flow velocity field finite elements
simulation [19] at the transition region between an arrange-
ment of fine and coarse disks: the histogram of the u’ com-
ponent along the flow direction is positively (negatively)
skewed in the F— C (C—F) flow direction. A simple, yet
realistic way to incorporate this behavior into the functional
form of p(s|xeZ) is to assume that the shape of p(s|x)
gradually changes its skewness within the region Z, in such a
way that the skewness vanishes when particles are located
sufficiently far from the interface. One useful pdf that accu-
rately reproduces these features is the skew-normal distribu-
tion [20], f(s) = ﬁe‘(s‘”)z/ 207 ) fg—ﬂ)/%—yzﬂdy, where 6 deter-
mines the skewness of the pdf [20]. Positive (negative)
values of 6 correspond to right (left) skewed pdfs, whereas
for 6=0, it reduces to a normal (symmetrical) distribution,
f(s|6=0)=g(s). The mean of f(s) equals {s)=u+& where
é=00 —2— Without loss of generality, we can character-

(1+63)
ize the excursion of = 6(x) in the transition region by its

maximum value 6, positive in the F— C direction and nega-
tive in the C—F direction, so that p(s|x)
=f[s|wu,o(x), A(x)]. For a visual representation of the evo-
lution of the jump-length skew-normal pdfs across the tran-
sition region see Fig. 2.

The skewness of p(s|x) enters the expression for the mean
and thus directly induces a drift velocity correction localized
at the interface, v’ =§/ 7, which can be expressed as

_ va 1
el
° a(1+ &) * 2 :

where * signs correspond to the F— C and C— F direc-
tions, respectively, and A=1 has dimensions of length over
the square root of time.
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FIG. 2. (Color online) Skew-normal jump-length pdfs p(s|x) for
the case of F'— C flow direction. The transition region is delimited
by two vertical dashed lines.

We can interpret this rectification flux as arising from
subtle ratchetlike mechanisms at work in the interface be-
tween the two layers, Z. In other words, small perturbations
in the potential energy of the particles in Z do not simply
average out but rather induce a succession of asymmetric
potential wells where the particles can jump with a preferen-
tial direction. Note that at high velocities the particles have
enough energy to overcome the potential barriers, i.e., the
advective part of the solute flux dominates over the disper-
sive part, and the differences between the breakthrough
curves (BTCs) in the two directions disappear. A variety of
rectification fluxes have been experimentally observed in
other systems where nonequilibrium fluctuations (endog-
enous and/or exogenous) in anisotropic media induce a uni-
directional bias in the Brownian motion of a particle (see,
e.g., [21,22], and the references therein).

In Fig. 3, we display one-dimensional Monte Carlo
random-walk simulations with skew-normal pdfs p(s)=f(s)
for the BTCs measured at the exit of the column. Three sets
of F— C (squares) and C— F curves (crosses) are shown for
increasing values of the velocity v. Our simulations qualita-
tively reproduce the salient features experimentally observed
in [1]: in particular, (i) the C— F BTC is delayed with re-
spect to the F— C BTC; (ii) as v increases, the BTC curves
become progressively closer to each other (i.e., the delay
vanishes), and the standard AD behavior is recovered.

Monte Carlo estimates of the velocity correction at the
interface, v’, are in good agreement with the predictions in
Eq. (1). Our model is robust to changes in the functional
form of the p(s|x), as long as the second moment is finite
and a spatial variation in the skewness is preserved.

Concentration profiles along the column’s longitudinal di-
rection provide interesting clues about the nature of this
transport process. The concentration profiles in Fig. 4 display
significant mass accumulation and sharp gradients at the in-
terface, two characteristic signatures of our model. A nonin-
vasive concentration profile laboratory measurement may be
thus designed to validate the physical mechanism proposed
in this work.

The expression for the solute flux can be written as
j'(x,0)=jAP(x,1)+v'(x)c(x,1), which, owing to an integra-

PHYSICAL REVIEW E 80, 011122 (2009)

10

FIG. 3. (Color online) BTCs corresponding to three values of
velocity v=0.25, 0.5, and 1. Dispersivities are ay=0.1 and a¢
=0.8, and #=0.35. Monte Carlo simulation results are displayed as
symbols: squares correspond to F— C flow conditions, crosses to
C—F. Comparisons with the rectified flux model are shown as
solid lines. For the sake of clarity, the range of Péclet numbers used
in these simulations is roughly ten times larger than for the experi-
ments in [1].

tion by parts argument and neglecting the term &yﬁ(y—%),
can also be recast as j'(x,r) EjAD(x,t)+f’(§v’(y)z9yc(y,t)dy.
The equivalence between these two flux expressions shows
how the interface correction is neither purely advective nor
purely dispersive as it is also evident from our random-walk
BTC profiles. We can now numerically solve the partial dif-
ferential equation (pde) resulting by inserting the expression
for j'(x,t) into the continuity equation and compare the re-
sults with the Monte Carlo simulations. This is done in Fig. 3
for the BTCs and in Fig. 4 for the concentration profiles. The
overall agreement between the Monte Carlo and pde ap-
proaches is excellent. From Eq. (1), we note that the rectified
flux depends on the direction of the flow being positive in the
F— C direction and negative in the opposite C— F' direc-

FIG. 4. (Color online) Resident concentration profiles corre-
sponding to times #=0.5, 0.75, and 1 at v=0.5. Dispersivities are

ap=0.01 and a=0.08, and 6=0.35. Monte Carlo simulation results
are displayed as symbols: squares correspond to F— C flow condi-
tions, crosses to C— F. Comparisons with the rectified flux model
are shown as solid lines.
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tion. The magnitude of the correction flux is small when
dispersivity contrast is small and/or the velocity v is high.
Also, the correction is smaller where the concentration gra-
dient is smaller, i.e., at saturation. Since the thickness of the
physical interface between the two layers strongly depends

on the fine details of the Stokes velocity field, we expect 6 to
increase with the inverse of the velocity v and in direct pro-
portion to the dispersivity and permeability contrast.

When the velocity v decreases below some given thresh-
old, diffusion dominates over dispersion: the asymmetric
transport mechanism can readily be adapted to describe this
situation. Depending on the specific values of the diffusion
coefficients for the two homogeneous sections, our model
predicts that the separation between BTCs could even un-
dergo an inversion, i.e., the F— C curve could be delayed
with respect to the C— F. This is a pertinent issue, e.g., for
nuclear waste storage in multilayered geological formations,

PHYSICAL REVIEW E 80, 011122 (2009)

where diffusion is (almost everywhere) the dominant trans-
port mechanism. Differently from [3], our model preserves
the continuity of the resident concentration at the interface.
Finally, we can extend our model to the case in which the
two sections are characterized by a i(¢) pdf with slower than
exponential decay (small degree of disorder) [14]. Owing to
the uncoupling between p(s) and ¢(r), the asymmetric trans-
port mechanism at the interface remains unchanged, and the
resulting pde will be defined through the time convolution of
J'(x,7) with a memory function kernel depending only on

Y1) [4].
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