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We investigate the relation between an applied potential and the corresponding stationary-state occupation
for nonequilibrium and overdamped diffusion processes. This relation typically becomes long ranged resulting
in global changes for the relative density when the potential is locally perturbed, and inversely, we find that the
potential needs to be wholly rearranged for the purpose of creating a locally changed density. The direct
question, determining the density as a function of the potential, comes under the response theory out of
equilibrium. The inverse problem of determining the potential that produces a given stationary distribution
naturally arises in the study of dynamical fluctuations. This link to the fluctuation theory results in a variational
characterization of the stationary density upon a given potential and vice versa.
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I. INTRODUCTION

Imagine independent colloidal particles in a potential field
and subject to friction and noise as imposed by a thermal
reservoir or background fluid. In thermal equilibrium at in-
verse temperature �, Prob�x�� exp�−�V�x��, where V is the
potential on the states x. Typical examples include the
Laplace barometric formula but also the distribution of par-
ticles in a fluid undergoing rigid rotation. We now add an
external forcing and we wait until a steady regime gets in-
stalled. The stationary statistics depends on the potential, but
most certainly and because of the forcing the resulting time-
invariant distribution of velocities and positions of the par-
ticles gets modified with respect to the Maxwell-Boltzmann
statistics. The relation between potential and stationary dis-
tribution is far from understood for generic nonequilibrium
systems, beyond its general specification as being for ex-
ample a solution to the time-independent Fokker-Planck-
Smoluchowski equation.

We show here that small local variations in the potential
can globally affect the relative density, provided a nongradi-
ent driving is present. That effect already arises in linear
order around equilibrium. For the inverse relation, we are
asking to reconstruct the potential which, under a known
driving, realizes a stationary distribution. In equilibrium, the
change in the potential needed to change the density �
→� exp�−A� is simply equal to A—not so in nonequilibrium.
It is then a genuine problem what potential field can produce
a given particle density at a fixed driving. Beyond obvious
applications in interpreting observational data, this question
also naturally emerges in dynamical fluctuation theory, cf.
�1�. In particular, the large fluctuations of certain time aver-
ages around their stationary values are governed by a func-
tional �sometimes called an effective potential� that is given
in terms of the potential of the inverse problem. We will give
two possible approaches to finding the potential, one of
which is analytical and the other one is based on a variational
formula.

The specific examples we treat in this paper and for which
the analysis can be applied are those of diffusing particles in
a background rotational velocity field. Diffusion in rotating
media is one of the central objects in geophysical and astro-
physical applications. The question of nonlocal and irrevers-
ible effects is of particular interest for galactic dynamics,
where according to Chandrasekhar’s theory the huge number
of relatively small-size gravitational encounters gives rise to
an effective Brownian motion for test stars, cf. �2�; see also
�3� for an account in the context of galaxy formation. Argu-
ably, also experimentally a most realistic scenario for main-
taining a constant nonconservative force is via differential
rotation. One can think of concentric cylinders rotating at
different angular frequencies which are imposed on the fluid
by stick boundary conditions. Far from equilibrium and un-
der a general angular �possibly angle-dependent� driving one
can expect not only that currents are being maintained but
also that the time-symmetric aspects of diffusion can be es-
sentially changed. It is known that the diffusion phenomenon
itself may be influenced by rotation, even by rigid rotation
�4�. Related considerations on nonequilibrium diffusion also
apply to other scenarios, including, e.g., shear flow �5–8� and
oscillatory flows �9�, and stochastic models of particle trans-
port in turbulent media necessarily include discussions of
driven diffusion phenomena �10�. Colloidal particles in har-
monic wells and driven by shear flow have been explicitly
treated for the violation of the fluctuation-dissipation relation
in �11�.

The relation between stationary density and potential is
generically nonlocal or long range but as our particles are
mutually independent, that obviously says nothing about the
generic long-range correlations in nonequilibrium systems.
As we will see however, the mathematical mechanisms are
not unrelated. Several of these nonlocal effects and generic
long-range correlations under nonequilibrium conditions
have been discussed in similar contexts of interacting par-
ticle systems, most recently from the point of fluctuation
theory �12–14�, in perturbation theory for the stationary den-
sity �15�, and as a result of the breaking of the fluctuation-
dissipation relation �16–18�. It was originally the mode-
coupling theory in hydrodynamic studies for a fluid not in
thermal equilibrium that revealed the �macroscopic� long-
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range correlations between fluctuations. Light scattering ex-
periments can reveal these correlations �19–22�. In contrast,
the present work analyzes the nonlocality on a mesoscopic
length scale and that does not result from particle interac-
tions but as is already present in a single-particle distribution
�or, equivalently, in a density or an ensemble of independent
particles�, due to the imposed nonequilibrium driving.

In Sec. II, we specify our dynamical model: independent
particles undergoing an overdamped diffusive motion in a
confining potential and under driving. The nonlocality in the
relation between potential and distribution is discussed
throughout Sec. III. The latter already speaks about the in-
verse problem of determining the potential for a given den-
sity, which is then elaborated in Sec. IV, in the context of
variational principles and for the purpose of the dynamical
fluctuation theory. In Appendixes A–C we add further details
about the McLennan’s interpretation of nonequilibrium dis-
tributions, about the Green’s functions encountered in the
response problem, and about the dynamical fluctuation origin
of the variational principles under consideration.

II. DIFFUSION IN A TWO-DIMENSIONAL ROTATIONAL
FLUID

Restricting ourselves for the moment to the two-
dimensional plane with points labeled by the polar coordi-
nates x= �r ,��, we consider an ensemble of independent test
particles subject to a rotation-symmetric force with potential
U�r�, sufficiently confining so that

Z = 2��
0

+�

e−Urdr � + � .

The particles are suspended in a nonequilibrium fluid exert-
ing an additional force that can have some conservative com-
ponent with potential 	�r ,�� and a nonconservative force
v= �vr ,v�� for which we assume that the radial component
vr=0 vanishes. The angular driving force v� can be associ-
ated with the local velocity of the background fluid which is
maintained in a differential rotation state. We assume a ther-
mally homogeneous background �setting the temperature to
one�, modeled by a Gaussian and temporally white noise.
Given that the motion is noninertial, it satisfies the Langevin
equation

dxt = vdt − ��U + 	�dt + �2dBt �2.1�

with Bt standard two-dimensional Brownian motion.
An implicit assumption in the above construction is the

smoothness of the functions U, 	, and v� on the domain
taken here as the entire two-dimensional plane. Yet, interest-
ing modifications arise when the origin r=0 is not accessible
and the particles can only move in the nonsimply connected
domain obtained by removing the latter. This allows for pos-
sible singularities when approaching the origin and the exis-
tence of a potential for the driving force v is no longer
equivalent to the condition �
v=0; the rotational field of
the form v= �0,v��, v��1 /r serving as example. The exclu-
sion of the origin can be ensured, e.g., by an infinitely repel-
lent potential therein or via suitable boundary conditions at
the origin.

Note that in the absence of a potential, U=	=0, dynam-
ics �2.1� does continue to make sense, although a normaliz-
able stationary distribution no longer exists. The transient
regime is still relevant and has been studied in detail �23�.

The stationary distribution for dynamics �2.1� has density
� verifying the Fokker-Planck-Smoluchowski equation

� · J = 0, J = �v − � � �U + 	� − �� . �2.2�

We refer also to �8,24� for more thermodynamic and kinetic
gas considerations in the derivation of that nonequilibrium
dynamical equation. In polar coordinates the probability cur-
rent J= �Jr ,J�� takes the form

Jr = − �
��U + 	�

�r
−

��

�r
, J� = �v� −

�

r

�	

��
−

1

r

��

��
.

�2.3�

By turning on the driving v�, typically not only an angular
current J� is generated but also a nonzero radial component
Jr does get maintained. This is a priori not in contradiction
with the existence of a stationary distribution; its normaliz-
ability essentially depends on the imposed potential U+	
and on the boundary conditions.

Our general aim is to analyze the relation between test
potentials 	 and stationary densities �, under a given con-
fining rotation-symmetric potential U and as mediated by the
rotational field v�. First, we examine the issue of spatial non-
locality.

III. LONG-RANGE RESPONSE TO CHANGING THE
POTENTIAL

Nonlocal features have been widely discussed in the non-
equilibrium literature. Mostly however deals with the pres-
ence of long-range correlations, cf. �13,16,19,25–27� for
time-separated viewpoints, or with models of self-organized
criticality, cf. �28�. In our case, we have independent par-
ticles; hence there are no correlations between the particles
and correlations between spatial points only appear because
of fixing the number of particles or by fixing the mass. We
think of the spatial dependence in the density as it is affected
by local changes in the external potential, and vice versa.

In the absence of driving, v=0, stationarity equation �2.1�
has the usual equilibrium solution ��e−U−	, J=0, which is
manifestly a local functional of the test potentials 	 in the
sense that the response

�

�	�z��log
��x�
��y�� = ��z − y� − ��z − x�

is insensitive to perturbing 	 away from both points x and y.
One can ask to what extent this is an equilibrium property

but, in fact, it is easy to devise special nonequilibrium con-
ditions where such a locality still holds. As a simple ex-
ample, take 	=0 and let the angular driving velocity be
rotationally symmetric, v�=u�r�. Then, the stationary density
and current become
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� =
1

Z
e−U, J = 	0,

u

Z
e−U
 . �3.1�

Although the stationary density coincides with the equilib-
rium solution and is perfectly local in the potential U, it now
corresponds to a current-carrying steady state. Thus one can-
not unambiguously decide just from the stationary distribu-
tion itself whether the system rests in equilibrium or whether
irreversible flows are present.

Yet, generic nonequilibrium distributions do get modified
due to driving and, as a result, they typically pick up some
nonlocality. Next comes a simple demonstration.

A. Exactly solvable model

In the example above the radial currents are absent and
the steady state is rotation symmetric. A simple exactly solv-
able case where the rotation symmetry is broken can be ob-
tained for an angular driving of the form v�= f��� /r and for
test potentials that are constant along radials, 	�r ,��=����.
The origin is excluded by the boundary condition Jr�0�=0. In
this case, the stationary density is found to be of the form

��r,�� = p�r�q���, p�r� =
1

Z
e−U�r�, �3.2�

which is under the given assumptions the general form for a
density with everywhere vanishing radial current, Jr=0. The
steady state decomposes into separated concentric motions
and the angular distribution q��� in Eq. �3.2� is determined
from stationarity condition �2.2�, which reads J��r ,��= j�r�
for some rotation-symmetric function j�r� that can be deter-
mined. Explicitly, from Eq. �2.3�,

�f��� − ������q��� − q���� =
rj�r�
p�r�

, �3.3�

which decouples the polar coordinates and confirms ansatz
�3.2�. The angular current j�r� is obtained by dividing Eq.
�3.3� by q and integrating over the angle variable, which
yields, always for v��r ,��= f��� /r,

j�r� =
p�r�

r

�
0

2�

f���d�

�
0

2�

q−1���d�

. �3.4�

As expected, a nonzero steady current is maintained when-
ever the angular driving does not allow for a potential, i.e., if
the work performed over concentric circles is nonzero, w
=
0

2�fd��0. Using the normalization condition 
0
2�q���d�

=1, the solution of Eq. �3.3� is obtained in the form

q��� =
1



�

0

2�

eW���,��d��,

�3.5�


 = �
0

2� �
0

2�

eW���,��d��d�

with the work function

W���,�� = ����� − ���� + �
��

�

f d� .

Here we have used the notation ���
� for the integral per-

formed along the positively oriented path ��→� on the
circle, i.e., it coincides with 
��

� for ���� whereas it equals
to 
��

2�+
0
� otherwise. In the sequel we also employ the short-

hand � for the integral 
0
2�.

Equivalently, the same solution to Eq. �3.3� can also be
obtained in terms of the current j�r�; this leads to the next
explicit expression for the latter,

j�r� =
p�r�

r

�ew − 1� . �3.6�

The equilibrium angular distribution is recovered for w=0
�or j=0�, in which case the work function W��� ,�� derives
from a potential and formulas �3.5� boils down to the
Boltzmann-Gibbs form.

For w�0 the character of the stationary density becomes
modified, as can be read from the response to changes in the
test potential 	=���� that we take to depend on the angle �
only. We take the functional derivative for changes in the
value of � at fixed angle �,

�

������log
��r,��
��r,���

� = Y��,��� − Y��,�� , �3.7�

where

Y��,�� = ��� − �� −
eW��,��

� eW���,��d��

.

It is the second term that generates the nonlocality as its
reciprocal

� eW���,��−W��,��d�� =� e����−�����+��
���f−w���−���d�d��

�3.8�

still depends on �. Note also that since the work function
W�� ,�� is discontinuous at �=�, so is the nonlocal contri-
bution in the response �Eq. �3.7�� at �=� and �=��.

That nonlocal term is manifestly a correction of order
O�w�; hence, some more explicit information can be ob-
tained within the weak driving approximation, considering
the driving force f��� �or total work per cycle w� small. This
yields, up to O�w�,

�

������log
��r,��
��r,���

� = ��� − ��� − ��� − �� + wq����


����

�

q�d� , if � � �� → ���

�
�

��
− q�d� , if � � ��� → �� ,�

where q���� stands for the auxiliary density
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q���� =
e����

� e�d�

and �� ��→��� indicates that � belongs to the positively
oriented path from � to ��. This explicitly confirms the non-
local and discontinuous structure of the response: The rela-
tive density ��r ,�� /��r ,��� of our weakly driven system re-
mains (strongly) sensitive to locally modifying the potential,
����→����+����−��, at an arbitrary angle �. The effect
disappears at equilibrium, w=0.

Note that this special example is essentially one dimen-
sional and we have so far only considered the response to an
r-constant change in the potential. The response to a strictly
local perturbation will be discussed in the next section by a
more general method.

The nonlocality of the inverse problem for this specific
example, potential as function of the density, is continued
around Eqs. �3.13�–�3.15�.

B. General linear theory

Having observed that the nonlocal features of nonequilib-
rium states already emerge in the lowest order of the driving
strength, we can now follow the linear analysis more system-
atically. The method is by now well known; we refer to
earlier work of McLennan and others �29,30�. The analysis
starts from the overdamped form �Eq. �2.1��, and again for
simplicity we keep in mind diffusion in the entire plane un-
der natural boundary conditions �decay at infinity�.

One takes the reference equilibrium distribution �for v
=0� as

�o�x� =
1

Z
e−V�x�, �3.9�

where we combine V=U+	 and Z is the normalization.
Assume now that the driving velocity field v is uniformly
small, �v�=O���.

The solution of the stationarity equation �2.2� to linear
order in � reads

log
�

�o
=

1

LV
�� · v − v · �V� , �3.10�

where LV=−�V ·�+�, which is recognized as the generator
of a reversible diffusion in potential V; see Appendix A for
more details and for a physical interpretation in terms of the
McLennan’s theory �29�. Writing Eq. �3.10� in the form

�� − �V · �� = � · v − v · �V �3.11�

with �=log�� /�o�, its variation along V→V+�V is

��� − �V · ��� − ��V · �� = − v · ��V .

In terms of the equilibrium generator LV and the stationary
current J=��v−�V�−��, this reads

LV�� = −
J

�
· ��V �3.12�

always up to terms O��2�; in the same order the density � on
the right-hand side can be replaced by �o. This is a Poisson

equation for �� in which the Laplacian �free diffusion� is
modified with a drift term in potential V. Note that since
LV= 1

�0
� · ��0�� and � ·J=0, this problem is equivalent to

studying the electrostatic potential in an inhomogeneous di-
electric environment as generated by a source with zero total
charge. Whereas the local component of the response to �V
is already hidden in the V dependence of the equilibrium
density �o, the nonlocal character of solutions to Eq. �3.12�
follows from general features of elliptic operators. The solu-
tion of the free Poisson equation �with only the Laplacian
and natural boundary conditions at infinity� is explicit and
manifestly long range. The potential V or the finiteness of the
system introduces an extra confinement and the claim needs
to be refined. One expects that within the confinement region
where the density �o is approximately constant and near its
maximal value, the response ���x� at x to a local perturbation
�V �both localized within that region� can be well estimated
by replacing LV with the free Laplacian L0=�. This intuition
is indeed correct as we shortly explain in Appendix B. In that
region, the response ���x� to a local perturbation �V derives
from the Green’s function for d-dimensional Brownian mo-
tion, weighted by the local mean velocity J /�. In this sense
the nonlocal response is intrinsically a nonequilibrium fea-
ture.

Although the above linear analysis can formally be ex-
tended far from equilibrium and one obtains a generalization
of response formula �3.12�, the linear operator replacing LV
is no longer symmetric, in agreement with the breakdown of
Onsager reciprocity relations. We will see in the next section
that an inverse formulation of our linear-response question
does not suffer from the above complication and it also be-
comes remarkably easier to study outside the weak driving
regime.

C. Local response to nonlocal perturbation

In this section we discuss long-range aspects in the in-
verse problem, namely, how the test potential 	 that makes a
given density � stationary is affected by a local change in �.
The relevance of this question and some other approaches
are considered in Sec. IV.

We start by revisiting the exactly solvable model of Sec.
III A. The confining potential U�r� and the driving v�r ,��
= �0, f��� /r� are always considered fixed. For the class of
radial-angular uncorrelated densities, ��r ,��= p�r�q���, the
stationary equation �2.2� is satisfied for the test potential of
the form 	�r ,��=	0�r�+����, with the radial part

	0 = − log p − U �3.13�

and with the angular part equal to

� = − log q + �
�0

� 	 f −
C

q

d� . �3.14�

Here �0 is an arbitrary fixed angle and the constant C is
determined from
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C =
� f d�

� q−1d�

. �3.15�

The latter specifies the corresponding stationary current field
as J= �0,C /r�. Away from equilibrium, i.e., for w=�fd�
�0, the angular component ���� apparently becomes a non-
local functional of the angular density q���, similar to what
we have observed for the functional dependence ����.

In the general case, we are asked to find the potential 	
that solves the stationarity equation �2.2� as a function of
density � for given velocity field v and confining potential U,
say on d-dimensional space. By changing �→�+�� with

���x�dx=0, we get the linear-response equation for G=U
+	+log �,

1

�
� · �� � �G� =

J

�
· ��� �3.16�

with �=log � and J=��v−�G� the stationary current. We
recognize in the left-hand side of Eq. �3.16� the action of the
generator

L�f�x� = �f�x� + � log � · �f

for the function f =�G. The linear operator L� generates a
reversible diffusion in potential −log �, i.e., an equilibrium
process. The analysis is now exactly similar as from Eq.
�3.12�, but with � replacing −V, and now restricting to a
confinement region where ��x� is approximately constant and
maximal. The source is nonzero by the presence of J�0 in
the right-hand side of Eq. �3.16�. We refer again to Appendix
B for the analysis, but the conclusion remains that a generic
local change in density �� in the confinement region requires
a nonlocal adjustment of the potential and the corresponding
response function derives from the Green’s function for the
d-dimensional Laplacian.

Remark that no weak driving or small current assumption
was employed in the above argument. In fact, the presence of
the �auxiliary� reversible diffusion generated by L� suggests
that, even far from equilibrium, there are symmetries in the
response functions. This is indeed true; see Sec. B 3 of Ap-
pendix B for such a reciprocity relation.

IV. MORE ABOUT THE INVERSE PROBLEM

One can ask how to actually construct the test potential 	
that makes a given density � stationary, i.e., solving Eq.
�2.2�. An immediate application is found in dynamical fluc-
tuation theory; a brief review is left in Appendix C. In the
following we present a general procedure to solve the inverse
stationary problem for a class of densities. Next, a variational
formulation suitable for numerical implementation will be
given.

A. General solution

We are back to the setup of Sec. II for two-dimensional
rotational diffusion. We restrict to those densities � that are

everywhere bounded from zero and for which all �nonempty�
equilevel lines, ��r ,��=const, are closed curves. We also
stick to trivial boundary conditions at infinity, as guaranteed
by a sufficient decay of all the fields �, U, and v. The aux-
iliary velocity

c = v − ��U + 	 + ��, � = log � �4.1�

shares with the driving field v�r ,�� an equal vorticity,

� 
 c = � 
 v . �4.2�

The probability current is J=�c, and stationarity condition
�2.2� reads

� · c + c · �� = 0. �4.3�

We only need to find the vector field c�r ,��; then the poten-
tial 	�r ,�� can be calculated as

	�x� = − ��x� − U�x� + �
�:x0�x

�v − c� · d� �4.4�

modulo a constant, where the integral is taken along an ar-
bitrary curve connecting a fixed initial point x0 with x.

To determine c�r ,�� solving Eqs. �4.2� and �4.3�, we first
observe that it is unique by the Helmholtz decomposition
theorem when supplying the boundary condition that the dif-
ference c−v goes to zero at infinity. Still another boundary
condition has to be added in the case the origin is not acces-
sible and excluded from the domain.

In the following we restrict ourselves again to the two-
dimensional plane. Equation �4.3� is solved by any vector
field of the form

c�r,�� = g���r,���	−
1

r

��

��
,
��

�r

 , �4.5�

with g an arbitrary function. The latter is fixed by condition
�4.2�,

� 
 �g���r,���	−
1

r

��

��
,
��

�r

� = � 
 v , �4.6�

which after integration over the surface enclosed by any
equilateral curve of the density, ��r ,��=a, and using Stokes’
theorem yields

�
�=a

v · d� = g�a��
�=a

	−
1

r

��

��
,
��

�r

 · d� . �4.7�

Parametrizing the curve ��r ,��=a by its proper length so
that

d� = � 1

r2	 ��

��

2

+ 	 ��

�r

2�−1/2	−

1

r

��

��
,
��

�r

ds ,
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we finally get

g�a� =

�
�=a

v · d�

�
�=a

� 1

r2	 ��

��

2

+ 	 ��

�r

2�1/2

ds

. �4.8�

Formulas �4.4�, �4.5�, and �4.8� together provide an explicit
solution for the test potential 	.

As a check we take the example Eq. �3.1�; there

c = �0,u�r�� = v

and the curves �=a are concentric, corresponding to the
equipotential lines for U�r�, assuming that it is monotone in
r. Therefore Eq. �4.8� gives g�a�=−u�r� /U��r� for a=
−U�r�−log Z.

Further, the more general example of Sec. III A has c
= �0, j�r� /q���� with nonvanishing divergence whenever q is
not a constant, in contrast with form �4.5�. The point is that
this example has a velocity field which is not defined at the
origin, it being excluded from the domain. Hence, Stokes’
theorem in the form of Eq. �4.7� cannot be used and a modi-
fication is needed; we omit details.

The above solution, basically obtained by a suitable de-
formation of polar coordinates, provides a class of examples
with nonvanishing radial current. The latter is generally the
case whenever � does not decompose into independent radial
and angular parts; compare with the model of Sec. III A.

B. Variational approach

Write now Fokker-Planck-Smoluchowski equation �2.2�,
considered again as the inverse stationary problem for the
test potential 	, in the form

� · �J0 − ��	� = 0 �4.9�

with J0=J0��� the 	-independent part of the probability cur-
rent J,

J0��� = ��v − �U� − �� . �4.10�

Recalling that it is an elliptic partial differential equation for
	, its solution coincides with the minimizer of the quadratic
functional

F���� =
1

2
� ��� · ��dx +� �� · J0���dx �4.11�

under the unchanged boundary conditions if present. This
formulation is suitable for numerical computations; see, e.g.,
via �31�.

There are other variational principles of physical impor-
tance that appear intimately related to our inverse stationary
problem. To explain those, consider the functional

G��, j� =
1

4
� �−1�j − J0���� · �j − J0����dx �4.12�

defined for all normalized densities � and all divergenceless
currents j, � · j=0; see Appendix C for its meaning within the
dynamical fluctuations theory. This functional is manifestly
positive and zero only if � and j coincide with the stationary
density, respectively, the stationary current �for the case 	
=0�. It can be used to construct the variational functional

I��� = inf
j:�·j=0

G��, j� �4.13�

with minimizer equal to the stationary density. This is a con-
strained variational problem that can be solved by Lagrange
multipliers; the solution reads

I��� =
1

4
� ��	 · �	dx �4.14�

with 	 the test potential that makes the density � stationary,
cf. Eq. �4.9�,

� · �J0��� − ��	� = 0. �4.15�

In this way, the solution to the inverse stationary problem is
an essential step in constructing the variational functional
I��� on densities.

Finally, recall that Eq. �4.15� is equivalent to the varia-
tional problem F����=min with F� introduced in Eq.
�4.11�. Combining with Eq. �4.14� we have the relation

inf
�

F���� = F��	� = − 2I��� �4.16�

that yields the next expression for the functional I���
�changing �→2� for convenience and integrating by
parts�,

I��� = sup
�
� �� · �J0��� − ����dx . �4.17�

This unconstrained variational formula is apparently more
useful for numerical computations than Eq. �4.13� above.

V. CONCLUSION

The relation between potential and stationary density in
mesoscopic �stochastic� systems appears to be generically
long ranged whenever there is a true nonequilibrium driving.
That long-range effect is a priori distinct from the long-
range correlations under conservative dynamics extensively
studied before, and it occurs already for free particles. In
models of overdamped diffusions considered in this paper,
we have linked that long-range effect to the slow spatial
decay of the Green’s function for a certain equilibrium dif-
fusion process �in the first order around equilibrium�.

Vice versa, a similar nonlocal change of potential is ge-
nerically needed to create a local change in the stationary
density. This issue appears relevant for the inverse stationary
problem that naturally emerges in the context of dynamical
fluctuations and nonequilibrium variational principles. We
have indicated how these specific issues become mutually
related, together with comparing some numerically feasible
schemes based on the dynamical fluctuation theory that
might be of use in applications.
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APPENDIX A: McLENNAN THEORY OF STATIONARY
DISTRIBUTIONS

It is useful to see how the original McLennan reasoning
�29� can be used to provide some physical interpretation for
the stationary density of a weakly driven diffusion. We can
write formula �3.10� in the equivalent form, always to linear
order in �,

��x� = �o�x�exp�
0

+�

dt�v�xt� · �V�xt� − � · v�xt��x
o,

�A1�

where � · �x
o denotes expectation over the equilibrium process

�that is process �2.1� with v=0� started from position x. �For
a mathematical discussion on how to take the limits �→0,
T→+�, we refer to �32�.� It is interesting to recognize here
the linear part in the irreversible entropy flux. When the den-
sity of the test particles is � then the instantaneous mean
work done by the background field v is

W =� v · ��v − �V�� − ���dx

as the expression between square brackets is the current pro-
file at density �. Clearly, for small driving that equals

W = −� �v · �V − � · v��dx + O��2� .

In other words, to linear order in the nonequilibrium back-
ground, −v�x� ·�V�x�+� ·v�x� equals the mean dissipated
work per unit time provided the particle is at x. �Incompress-
ibility of the background fluid can be imposed by letting
� ·v=0.� That linear term is exactly what appears in the ex-
pectation in Eq. �A1�. Therefore, the linear nonequilibrium
correction to the Boltzmann distribution corresponds to the
total dissipated work under the equilibrium relaxation pro-
cess as started from different initial configurations.

APPENDIX B: MORE TECHNICAL ASPECTS OF THE
NONLOCALITY

1. Nonlocality in (equilibrium) transient distributions

The nonlocal features as discussed in the present paper
refer to fluctuations and responses in steady nonequilibria.
Nevertheless, their origin takes us to Poisson equations for
reversible dynamics; see Eqs. �3.12� and �3.16�. We therefore
start here with a look at equilibrium dynamics but in the
transient regime.

Take a reversible �v=0� diffusion in a potential landscape
V at equilibrium, �=log �=−V �up to an irrelevant constant�.

Perturb the system by changing the potential at time t=0 to
V+�V and let the system relax toward a new equilibrium.
The evolved distribution at time t be �t=�+��t, correspond-
ing to the effective time-dependent potential �+��t, ��t
=��t /�. By the linear-response theory,

d

dt
��t = LV��t +

1

�
� · ����V�, ��0 = 0. �B1�

Using that the second term on the right-hand side equals

1

�
� · ����V� = LV�V ,

we find

��t = 	�
0

t

esLVds
LV�V = �etLV − 1��V , �B2�

where the equilibrium condition has been used. As a result,
denoting with pt�x ,y� the transition kernel,

��t�x� = − �V�x� +� dypt�x,y��V�y�

or

��t�x�
�V�y�

= − ��x − y� + pt�x,y� . �B3�

Remember that ��t is only determined up to a constant,
which explains why limt→� ��t=−�V+ ��V�� differs from the
“naturally expected” value −�V; in the above the additive
constant has been fixed by the initial condition ��0=0. The
nonlocal part in the linear response for fixed time t, thus,
exactly equals the transition-probability density pt�x ,y�. It is
nonlocal in the sense that over distances where � is approxi-
mately constant and maximal (or around the minimum of V�,
there is only slow decay in �x−y�. As time grows larger, that
effect typically dies out, restoring a strictly local response in
the infinite-time limit.

As an example, the standard one-dimensional Ornstein-
Uhlenbeck process �or, oscillator process� corresponding to
the potential V�x�=x2 /2 has a response function with the
large-time asymptotics

�

�V�y�
��t�x� − �t�x��� = ��x� − y� − ��x − y�

+ e−t�x� − x�y��y� + O�e−2t� ,

�B4�

the nonlocal component of which has a weight exponentially
damped in time.

2. Green’s function in confinement region

The response analysis in Secs. III B and III C reduces the
problem to finding the Green’s function,
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L�
�x�G�x,y� = − ��x − y� , �B5�

with L�= 1
� � · ���� generating diffusion in the potential

−log �. It has an explicit solution in terms of the transition
kernel �or transition-probability density�,

G�x,y� = �
0

+�

�pt�x,y� − ��y��dt . �B6�

In a confinement region where � is approximately constant
around its maximum, one expects that G�x ,y� is essentially
determined by a free diffusion. To asses this conjecture, we
need to understand how the inhomogeneities in � outside the
confinement region influence the Green’s function inside it

and, more basically, how to make sense to the generally ill-
defined expression Eq. �B6� for the free diffusion.

As well known �33�, for a free diffusion �related to the
Brownian motion as �2Bt� in dimension d, with the transition
kernel

pt
free�0,x� = �4�t�−d/2e−�x�2/4t, �B7�

the Green’s function Gfree�x�=
0
�pt�0,x�dt only exists in the

transient case, d�3. For d=1,2 the divergence cannot be
“renormalized” via a stationary density like in Eq. �B6� as
the latter does not exist. Yet, its divergent part is in fact x
independent and one has in all dimensions well-defined
differences,

�
0

�

�pt
free�0,x� − pt

free�0,x���dt =�
1

2
��x�� − �x�� , if d = 1

1

2�
�log�x�� − log�x�� , if d = 2

1

4
�−d/2��d/2 − 1���x�2−d − �x��2−d� , if d � 3.

� �B8�

Hence, the free diffusion Green’s function is well defined up
to a possibly infinite additive constant. However the latter
becomes irrelevant due to the “dipole” character of the
source term in Eq. �3.12� and �3.16�; cf. also Eq. �B20� be-
low.

It remains to see in what sense the exterior of a confine-
ment region enters the properties of the �true� Green’s func-
tion. To simulate that, we consider the �standard� diffusion in
a cube �−L /2,L /2�d with reflexive boundary conditions. The
transition kernel is pt�x ,y�=�i=1

d qt�xi ,yi� with

qt�xi,yi� =
1

L
+

2

L
�
n�1

cos��n	 xi

L
+

1

2

�


cos��n	 yi

L
+

1

2

�e−�2n2/L2t �B9�

For d=1 the Green’s function can be obtained explicitly,

G�x,y� = �
0

�

�pt�x,y� − ��y��dt =
L

12
−

1

2
�y − x� +

1

2L
�x2 + y2� .

�B10�

Clearly, up to a correction O�1 /L� it coincides with the
Green’s function for free diffusion; moreover, the “infinite”
additive constant has been regularized and fixed by the
length of the region.

In general one has

pt�0,x� =
1

Ld�
k

exp�ik · x − �k�2t� �B11�

with the summation over the dual lattice, ki= . . . ,
−2� /L ,0 ,2� /L , . . .. Hence,

G�0,x� =
1

Ld �
k�0

1

�k�2
eik·x, �B12�

which is to be compared with the free diffusion for which,
formally,

Gfree�0,x� =
1

�2��d� dk

�k�2
eik·x. �B13�

The latter is “infrared divergent” for d�2 and the above
finite lattice version just provides its particular regularization
�above all it provides a cutoff of the neighborhood of k=0�.
Note that an alternative �and more standard� way of regular-
izing the free Green’s function is to add a “positive mass:”
for d=2 one obtains

G��0,x� =
1

4�2� dk

�k�2 + �2eik·x

=
1

2�
�

0

� uJ0�u�x��
u2 + �2 du

=
1

2�
K0���x�� �B14�

with J0 and K0 the Bessel functions of the first and of the
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second kind, respectively. Its short-distance asymptotics is

G��0,x� =
log 2 − �

2�
−

1

2�
log���x�� + o�1� �B15�

�� being the Euler constant�.
These calculations indicate what the “boundary effects”

on the Green’s function in a region with approximatively
constant density profile are: the difference from the free
Green’s function becomes negligible on length scales much
smaller than size of the region. Although this comparison
includes the removal of an infrared divergence in low dimen-
sions, the latter is well “renormalizable” in the above sense
of finite differences. Our conclusion is that one could for the
present purposes deal just with the free Green’s function �al-
though as such being ill defined�.

As a specific example we consider the Ornstein-
Uhlenbeck process for the diffusion in a quadratic spheri-
cally symmetric potential. Its Green’s function can be found
by solving the Eq. �B5� with ��x�� exp�−V�x��
�exp�−�2�x�2 /2� �for simplicity we restrict here to a source
located at the origin�. Again in two dimensions, this has a
solution

GOU�0,x� = −
1

2�
�

1/�

�x� dr

r
eV�r� �B16�

up to an arbitrary additive constant. For ��x��1, what we
have called the confinement region, it reads

GOU�0,x� = −
1

2�
log���x�� + o�1� , �B17�

in agreement with either of the two above regularization pro-
cedures. Similarly, for dimensions d�2 one gets

GOU�0,x� = −
��d/2�
2�d/2 �

1/�

�x� dr

rd−1eV�r�, �B18�

yielding a power-law decay �x�2−d if ��x��1.

3. “Reciprocity relations” in the inverse problem

In contrast to Sec. III B, the analysis of Sec. III C does not
make any use of close-to-equilibrium assumptions while all
the same, in Eq. �3.16� and for the inverse problem, the lin-
ear response is given in terms of a reversible process. A
solution to Eq. �3.16� can be written as

�G�x� = −� dyG�x,y�	 J

�
· ���
�y� , �B19�

where G�x ,y� is the Green’s function, Eqs. �B5� and �B6�.
Since the transition probabilities satisfy detailed balance, the
Green’s function exhibits the same symmetry: ��x�G�x ,y�
=��y�G�y ,x�.

We now propose a partial integration which is allowed if
the current J decays sufficiently fast at infinity; using more-

over that J is divergenceless and that �G is physically deter-
mined only modulo a constant, one can then write Eq. �B19�
as

�G�x� =� dy�y

G�x,y�
��y�

· �J����y� �B20�

and therefore

J�x� · �x
�G

���y�
= J�y� · �y

�G

���x�
. �B21�

That relation vaguely resembles an Onsager reciprocity:
− �

���y��xG can be interpreted as the extra �gradient� force at x
needed to have a delta-function-like response at y.

APPENDIX C: DYNAMICAL FLUCTUATIONS

Variational principles often arise in the context of fluctua-
tion theory. For example, the entropy and related thermody-
namic potentials play a role both as important equilibrium
variational functionals �second law� and as functionals gov-
erning the equilibrium fluctuations �Einstein’s fluctuation
theory�. Here we sketch how the functionals G and I intro-
duced in Sec. IV B also fit such a scheme; a more technical
account of this problem for overdamped diffusions can be
found in �1�.

We consider the diffusion process �Eq. �2.1�� with the test
potential 	 set to zero. For any random realization xt, t�0,
of this process we introduce the empirical occupation density

�̄T�z� =
1

T
�

0

T

��xt − z�dt �C1�

that counts the relative time spent at each point z. Appar-
ently, �̄T�z� is the random density dependent on the realized
history. In the limit T→� it converges to the stationary den-
sity �, with probability one by the ergodic theorem. The main
result reads that for large but finite times T, the probability of
fluctuations of �̄T has the asymptotics given by the large
deviation law

P��̄T = �� � e−TI���, �C2�

in which the functional I��� of Sec. IV B is recognized as an
exponential decay rate. Then, the variational inequality
I����I���=0 is a mere consequence of fluctuation law
�C2�. As observed before, finding I��� amounts to solving
inverse stationary problems �4.14� and �4.15� or, equiva-
lently, to evaluating variational expression �4.17�.

Similarly, functional �4.12� reveals to be the exponential
decay rate in the large deviation asymptotics of the joint
probability law for the empirical occupation times and the
empirical current. For proofs and for more details see �1�.

The large deviation theory for stochastic systems has been
started and rigorously established by Donsker and Varadhan
�34,35�. In the physics literature, these methods go back to
the seminal work of Onsager and Machlup �36�.
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