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A recent theoretical model developed by Imparato et al. �Phys. Rev. E 76, 050101�R� �2007�� of the
experimentally measured heat and work effects produced by the thermal fluctuations of single micron-sized
polystyrene beads in stationary and moving optical traps has proved to be quite successful in rationalizing the
observed experimental data. The model, based on the overdamped Brownian dynamics of a particle in a
harmonic potential that moves at a constant speed under a time-dependent force, is used to obtain an approxi-
mate expression for the distribution of the heat dissipated by the particle at long times. In this paper, we
generalize the above model to consider particle dynamics in the presence of colored noise, without passing to
the overdamped limit, as a way of modeling experimental situations in which the fluctuations of the medium
exhibit long-lived temporal correlations, of the kind characteristic of polymeric solutions, for instance, or of
similar viscoelastic fluids. Although we have not been able to find an expression for the heat distribution itself,
we do obtain exact expressions for its mean and variance, both for the static and for the moving trap cases.
These moments are valid for arbitrary times and they also hold in the inertial regime, but they reduce exactly
to the results of Imparato et al. in appropriate limits.
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I. INTRODUCTION

The growing sophistication of measurements of the ther-
modynamic changes accompanying the random thermal mo-
tions of small molecules in viscous and viscoelastic media
has brought ever greater refinement to tests of the various
fluctuation theorems that are believed to govern the behavior
of matter away from equilibrium �1�. Such measurements
have so far tended to focus on the determination of the work
�2� produced during changes of state, W, rather than the heat
�3�, Q, a generally less accessible quantity. Experiments by
Imparato et al. �4� have now generated data on single-
molecule heat effects, providing fresh opportunities for fur-
ther tests of statistical mechanical models of nonequilibrium
systems.

The experiments of Imparato et al. tracked the fluctuating
trajectories of single, water dissolved, optically trapped poly-
styrene beads of micrometer diameter over a long period of
time. The trajectories were used to construct histograms,
Pexpt�Q , t→��, of the heat produced or consumed by the
bead when the trap was �a� stationary and �b� when it was
moving with a constant speed u. Independently, Imparato et
al. derived analytical expressions, Ptheor�Q , t→��, for these
heat distribution functions from a model based on the over-
damped Langevin dynamics of a harmonic oscillator acted
on by a time-dependent force. The agreement between the
calculated and measured curves is for the most part ex-
tremely close �although in the static trap case the theoretical
heat distribution exhibits a logarithmic divergence that is not
seen in the experimental data.�

However, the model has so far only considered particle
dynamics in simple liquids, such as water, where the white
noise approximation it uses to model the effects of thermal
fluctuations, is generally thought to be quite satisfactory. But
the kinds of solvent environments—such as those inside
cells—in which it might be particularly interesting and po-

tentially useful to carry out similar trapped-particle experi-
ments, typically do not conform to the delta-correlated relax-
ation dynamics of aqueous media. �5� In such solvents, the
effects of the thermal fluctuations are far better described by
colored noise processes, which have finite correlation times,
and which, in the special case of fractional Gaussian noise,
for instance, span multiple time scales �6�. There is, there-
fore, a clear need to extend existing theoretical models of
single-molecule dynamics to these other fluctuation regimes.

The present paper is a generalization of the model of Im-
parato et al. �4� that has this objective in mind. In this gen-
eralized model, the optically trapped particle is described as
a forced harmonic oscillator that evolves under the action of
colored Gaussian noise �7�; its dynamics are therefore de-
scribed by a one-dimensional generalized Langevin equation
�GLE� in both position �x� and velocity �v� variables �8�. The
model reduces exactly to the model of Imparato et al. when
the inertial contribution is neglected and the Gaussian noise
is taken to be delta correlated. The GLE itself—such as the
overdamped Langevin equation used by Imparato et al.—can
be exactly transformed �9,10� to an equivalent Fokker-Planck
equation �FPE� for the probability density distribution of x,
v, and Q at time t, but at present it does not appear to be
possible to solve this equation exactly. Rather than attempt to
solve it approximately, therefore, �as Imparato et al. do in
treating the corresponding equation they derive from their
model�, we determine instead expressions for the moments of
the distribution, which we can calculate exactly �from the
solution of the GLE �11��. These moments �in the over-
damped white noise limit and in the limit of long times� are
in complete agreement with those derived from the model of
Imparato et al. Our results are also valid for arbitrary times,
and also hold when the inertial term in the GLE is retained.
They also suggest interesting parallels with the work theo-
rems satisfied by similar non-Markovian systems �11�.

In the following section, we introduce the generalized
Langevin equations that model the dynamics of an optically
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trapped particle in a thermal reservoir and show how their
solutions �which yield the time-dependent position and ve-
locity of the particle� are used to obtain an expression for the
heat exchanged between the particle and reservoir during an
interval of time t. By averaging this quantity over the noise
and the initial phase space density distribution, we then de-
rive expressions for its mean and variance. In Sec. III, we
discuss how these averages compare with the experimental
and theoretical results presented in Ref. �4�.

II. MODEL AND CALCULATIONS

As in the calculations of Imparato et al. �4�, we shall
assume that the dynamics of a thermally fluctuating, dragged
colloidal bead is adequately modeled by the one-dimensional
dynamics of a Brownian particle of mass m that at the point
x and at the time t experiences both a random force ��t� and
a systematic time-dependent force F�x , t� derived from a
potential U�x , t�. The potential U�x , t� is taken to be k�x
−ut�2 /2, where k is the force constant of the harmonic well,
and u is the speed of the moving trap. �A static trap is mod-
eled simply by setting u to 0�. The random force is taken to
be a Gaussian random variable of zero mean; it is eventually
specialized to the case of white noise. The equations that
govern the time evolution of this particle are therefore given,
in their most general form, by �8,10,11�

ẋ�t� = v�t� �1a�

mv̇�t� = − kx�t� + f�t� − ��
0

t

dt�K�t − t��v�t�� + ��t� �1b�

Here, f�t��kut, � is the friction coefficient of the particle,
K�t� is a memory function, which is related to the random
force ��t� by a fluctuation-dissipation relation: ���t���t���
=�kBTK�	t− t�	�, T being the temperature of the reservoir and
kB Boltzmann’s constant, and the dots on x�t� and v�t� denote
differentiation with respect to t. Equations �1a� and �1b� re-
duce to the equations used in Ref. �4� when the inertial term
mv̇�t� is discarded and ��t� is chosen to correspond to white
noise �and the memory function thereby becomes propor-
tional to the delta function ��t− t���. In the present calcula-
tions, the inertial term is retained, and ��t�, as noted earlier,
is treated initially as a general Gaussian random variable
�with the indicated time correlation function�, and later, for
purposes of comparison with Imparato et al.’s results as
white noise. �It should be noted that the above model had
been used earlier to resolve a puzzle about work theorems for
forced oscillators in non-Markovian heat baths �12�. There it
had been necessary to explicitly consider fluctuations that
did, in fact, have long-lived temporal correlations�.

The quantity measured experimentally is the heat ex-
changed by the bead with its surroundings during an interval
of time t along a given stochastic trajectory; this quantity can
be calculated from the relation �4,13�

Q�t� = k�
0

t

v�t��x�t��dt�. �2�

Ideally, one would like to be able to obtain a theoretical
expression for the probability density of Q�t�, viz., P�Q , t�,

for which experimental data have been reported in Ref. �4�.
A calculation of P�Q , t� would require first setting up and
solving the equation for the evolution of P�x ,v ,Q , t�, the
probability density that at time t the particle is at x with
velocity v, having exchanged an amount of heat Q with the
surroundings, and then integrating out x and v. It proves to
be fairly straightforward to derive the equation that governs
the time dependence of P�x ,v ,Q , t�; it is found by averaging
��x−x�t����v−v�t����Q−Q�t��—a functional of the noise
��t�—over all possible realizations of ��t�. The actual steps
in this averaging procedure are somewhat involved, but they
pose no special difficulties, and they have been discussed at
some length in the context of the calculation of the evolution
equation for the work distribution function �10,12�. So with-
out going into further details, we shall simply set down the
equation that governs the evolution of P�x ,v ,Q , t�; it is
given by

�P

�t
= − v

�P

�x
+ ��t�

�

�v
vP − �2�t�x

�P

�v
−

kBT

k

�2�t� +

k

m
�

�
�2P

�v � x
+

kBT

m
��t�

�2P

�v2 − ��t�
�P

�v
− kvx

�P

�Q
, �3�

where the coefficients ��t�, �2�t�, and ��t�, which are com-
plicated functions of the time �but which can be expressed in
closed form� have been defined in Refs. �10,12�, and are not
reproduced here in the interests of brevity.

Unfortunately, we have not been able to solve Eq. �3� in
closed form. Unlike the mechanical or thermodynamic work,
which are linear functionals of the Gaussian random force
��t�, and are therefore themselves governed by Gaussian
density distributions, as was shown in Ref. �12�, the heat is
not linearly related to the noise �see Eq. �2��, and as a result,
its density distribution is not known a priori. It is, of course,
still possible to get some information about P�Q , t� by evalu-
ating its moments. This can be done, without recourse to Eq.
�3�, by solving Eqs. �1a� and �1b� directly for x�t� and v�t�
�using Laplace transform methods�, substituting the expres-
sions into Eq. �2� and the corresponding expression for Q2�t�,
and then averaging the resulting equations over the noise and
the initial equilibrium distributions of the position and veloc-
ity �11�. This yields the desired first and second moments of
P�Q , t�− �Q�t�� and �Q2�t��, respectively—as a function of
the trap speed u, and these can be compared with estimates
obtained from the experimental histograms. Calculations of
still higher moments can be carried out as well �though at the
cost of greater algebra�, so a great deal of the structure of the
distribution function can be determined, in principle, without
solving Eq. �3� itself. For the present purposes, we shall be
content with the calculation of just the first and second mo-
ments of the heat distribution.

Turning, then, to the calculation of x�t� and v�t�, we can
show, following the approach discussed at length in Refs.
�10,12�, that the solutions of Eqs. �2� are

x�t� = x0	�t� −
mv0

k
G�t� +

1

m
H�t� +

1

m
I�t� �4a�
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v�t� = x0	̇�t� −
mv0

k
Ġ�t� +

1

m
Ḣ�t� +

1

m
İ�t� , �4b�

where x0 and v0 are the initial position and velocity of the
particle, respectively. The functions 	�t�, G�t�, H�t�, and I�t�
are the inverse Laplace transforms of the functions 	̂�s�,
Ĝ�s�, Ĥ�s�, and Î�s�, the Laplace transform ŷ�s� of a function
y�t� being defined by ŷ�s�=�0

�dty�t�e−st. Referring again to
Refs. �10,12�, we find that these functions are given by

	̂�s� =
1

s + k
̂�s�/m
, �5a�

Ĝ�s� = −
k

m
	̂�s�
̂�s� , �5b�

Ĥ�s� = −
m

k
Ĝ�s� f̂�s� , �5c�

and

Î�s� = −
m

k
Ĝ�s��̂�s� , �5d�

where 
̂�s�=1 / �s+�K̂�s� /m�, K̂�s� being the Laplace trans-
form of the memory function. From these results, expres-
sions can be derived for the mean and variance of the heat
for different values of the trap speed u �after fairly lengthy
algebra, some details of which are sketched in the Appen-
dix�. These expressions are �see Eqs. �A.4� and �A.22��

�Q�t�� = − ku2
	��t� −
1

2
	̄�t�2� �6a�

and

�Q
2 �t� � �Q�t�2� − �Q�t��2

= �kBT�2�1 − 	�t�2� + 2ku2kBT
	��t� −
1

2
	̄�t�2�

�6b�

where 	̄�t�=�0
t dt1	�t1� and 	��t�=�0

t dt1	̄�t1�. These expres-
sions �which are the principal results of this paper� are very
general, in the sense that they hold for arbitrary times and for
any Gaussian noise process ��t�. They hold, in particular, for
the process known as fractional Gaussian noise, or fGn,
which is of special relevance to biology �14�. First, however,
we shall consider the special case ���t���t������t− t��, to
confirm that our results in this limit recover results found in
Ref. �4�, where the experimental conditions can be taken to
correspond to white noise thermal fluctuations. In consider-
ing this limit, we set m to 0 and t to � �thereby simulta-
neously passing to the long-time regime of overdamped dy-
namics�.

III. COMPARISON WITH EXPERIMENT [4]

Under the conditions specified above, 	�t� becomes a
simple exponential, e−kt/�. For the static trap, we then find

that Eqs. �6a� and �6b� reduce to �see also Eq. �A.15��

�Q�t → ���0 = 0 �6c�

and

�Q,0
2 �t → ��/�kBT�2 = 1 �6d�

where the subscript 0 refers to the static trap condition.
Furthermore, for this case, the theoretical heat distribution

function that the authors of Ref. �4� derive to fit their data is
given by the very simple �approximate� expression

Ptheor�Q,t → �� =
K0�	Q	/kBT�


kBT
. �7a�

Here K0 is the 0th order modified Bessel function of the
second kind. Although it is undefined at Q=0, where it di-
verges logarithmically �and does not therefore reproduce the
experimental data there quantitatively�, its first moment is
identically zero �by symmetry�, while the second moment is
given by �15�

�Q2� = �
−�

�

dQQ2P�Q,t → �� =
2


kBT
�

0

�

dQQ2K0�Q/kBT�

=
2


kBT
2�kBT�3��3/2�2 = �kBT�2. �7b�

These results are therefore seen to coincide with the re-
sults derived from our model �see Eqs. �6c� and �6d��. The
actual values of the mean and variance of the heat have not
been reported in Ref. �4�, but an inspection of the experimen-
tal histogram in Fig. 2 of that reference suggests that �Q�t
→���expt /kBT is 0, or very nearly 0. As for the variance of
the heat, if one identifies this quantity with the experimental
full width at half maximum, a similar inspection of the same
figure suggests that �Q,expt

2 �t→�� / �kBT�2 is about 0.6–0.7.
Both these estimates are consistent with the corresponding
theoretical values.

In the same way, for the moving trap case, we find from
our calculations that

�Q�t → ���/kBT = − u2�t/kBT �8a�

and

�Q
2 �t → ��/�kBT�2 = 2u2�t/kBT �8b�

For this case, the calculations of Imparato et al. �4� find
that at long times, the heat distribution is Gaussian to leading
order in the time, and is given by

Ptheor�Q,t → �� =
1

�4
kBT�u2t
exp
−

1

4kBT�u2t
�Q + �u2t�2� ,

�9�

from which it is easily shown that �Q�t→���theor /kBT
=−u2�t /kBT and that �Q

2 �t→�� / �kBT�2=2u2�t /kBT. These
predictions are also identical to those derived from our
model �Eqs. �8a� and �8b��.

The actual numerical value of u2�t /kBT turns out to be 2.1
when the following experimental values are used in the ex-
pression: u=10−6 m s−1, �=1.74�10−8 kg s−1, t=0.5 s,
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and T=296.5 K. As estimated from Fig. 3 of Ref. �4�, the
experimental value of the mean, �Q�t→���theor /kBT, �identi-
fied with the maximum in the curve�, is about −2.0, which is
very close to the theoretical value. The corresponding value
of the variance, �Q

2 �t� / �kBT�2, for the same values of u, �, t,
and T is about 4.3. An estimate of the experimental variance
from Fig. 3 of Ref. �4� �identified as before with the full
width at half maximum� yields a value in the vicinity of 5,
which is again close to the theoretical prediction.

IV. CONCLUSIONS

The significance of the findings presented here is that they
provide testable predictions about heat effects in dragged
particle experiments in viscoelastic �as opposed to simple�
fluids. Evidence already exists �11,16� that work distributions
in such fluids are largely consistent with the model defined
by Eq. �1�, so it would interesting to see if the same is true of
the distributions that govern other thermodynamic quantities.
Experimentally, it should be possible to extend the method-
ology of Imparato et al. to study these kinds of fluids as well.

Viscoelasticity is distinguished, among other things, by
memory effects, which can be included in our model by, for
instance, taking the random force in Eq. �1� to correspond to
fGn. When this is done, the memory function in that equation
is given by �14� K�	t− t�	�=2H�2H−1�	t− t�	2H−2, where
H, the Hurst index, is a real number lying between 1

2 and 1
that is a measure of the degree of temporal correlation in the
noise. With this choice of kernel, the function 	�t�, in
the overdamped limit, is easily shown to equal
E2−2H�−�t /��2−2H�, where Ea�z���k=0

� zk /��ak+1� is the
Mittag-Leffler function, ������2H+1� /k�1/�2−2H� and ��¯ �
is the gamma function. Exact expressions for the first and
second moments of the heat distribution can be obtained
for this case in both the static and moving trap cases in terms
of the Mittag-Leffler function and a related function known
as the generalized Mittag-Leffler function, Ea,b�z�
��k=0

� zk /��ak+b�, which enters into the expressions via the
general result �17� �0

ydtt�−1E�,��wt��=y�E�,�+1�wy��. With-
out writing done these expressions explicitly, we shall in-
stead consider their asymptotic long-time limits �using the
result Ea,b�−za��z−a /��b−a�.� In this way we find that �i�
�Q�t��0=0 and �Q,0

2 ��kBT�2�1− �t /��−�4−4H� /�2�2H−1��
for the case of the stationary trap, and �ii� �Q�t��
�−ku2t2H�2−2H /��2H+1�, and �Q

2 �2ku2kBTt2H�2−2H /��2H
+1� for the case of the moving trap. Thus, we predict that for
fluids in which the temporal correlations of random thermal
forces are long lived and decay algebraically, the moments of
the heat distribution exhibit characteristic power-law behav-
ior at long times. The parameter H in these expressions can-
not in general be determined a priori from the model itself,
but one should be able to estimate it from experiment.
Knowledge of H would in turn provide insights into the vis-
coelastic character of the medium.

Other noise sources that lead to memory effects in the
equations that govern particle dynamics include exponen-
tially correlated noise, which Mai and Dhar �11� used to
simulate the non-Markovian thermal environment of har-
monic and anharmonic oscillators driven by forces originat-

ing in sinusoidal and sawtooth potentials. The simulations
confirmed the general validity of the results derived analyti-
cally from their calculated work distribution functions for the
harmonic oscillator system, and suggested the strong possi-
bility of the validity of the Jarzynski equality for the anhar-
monic oscillator system �for which analytic expressions are
not known�. No comparable numerical studies have been car-
ried to explore heat distributions in non-Markovian systems.
For the specific case of exponentially correlated noise, exact
closed form expressions for the moments of these distribu-
tions are easily derived from our formalism, which only re-
quires knowing the precise form of the function 	�t�. In the
overdamped limit, however, it turns out that this function has
exactly the same structure as the corresponding function that
describes delta-correlated noise, so the results of these calcu-
lations are not reproduced here.

There is an interesting parallel between the moments of
the heat distribution function calculated in the present study,
and the corresponding moments of the work distribution cal-
culated in Ref. �11�. The parallel is established by combining
Eqs. �6a� and �6b� with Eq. �A.15� in the form

�Q
2 �t� = �Q,0

2 − 2kBT�Q�t�� �10�

This recalls the relation

�W
2 = − 2kBT�F + 2kBT�W� �11�

derived by Mai and Dhar �11� between the variance of the
work, �W

2 , its mean, �W�, and the free-energy change be-
tween two states, �F, for a model of dragged particle dy-
namics defined by exactly the same GLE as Eq. �1�. Equa-
tion �11� formed the basis for the demonstration of the
validity of the Jarzynski equality in non-Markovian systems.
Although it cannot be concluded from Eq. �10� that a similar
equality applies to heat effects in such systems �since the
heat distribution function is not Gaussian, in general, even
though the noise is�, Eq. �10� is itself quite general, and may
therefore point to the existence of some more fundamental
underlying relation for the heat.

APPENDIX: DERIVATION OF THE MEAN
AND VARIANCE OF THE HEAT

To calculate �Q�t��, the expressions for x�t� and v�t� in
Eqs. �4a� and �4b� are first substituted into Eq. �2�, and the
result averaged over both the distribution of the random
force ��t� �using the relation ���t��=0� as well as over the
distribution of initial positions and velocities �using the rela-
tions �x0�= �v0�=0, �x0

2�=kBT /k, and �v0
2�=kBT /m, the sub-

script 0 denoting the initial value�. This yields

�Q�t�� =
k

m2�
0

t

dt1H�t1�Ḣ�t1� −
1

m
�

0

t

dt1Ḣ�t1�f�t1� ,

�A.1�

the dots indicating differentiation with respect to time t. Par-
tial integration reduces Eq. �A.1� to
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�Q�t�� =
k

2m2H2�t� −
1

m
H�t�f�t� − �
0

t

dt1H�t1� ḟ�t1��
�A.2�

Replacing f�t� in this expression by kut and using Eqs.
�5a�–�5d� to rewrite the function H�t� entirely in terms of the
function 	�t� �which contains details of the correlation of the
random forces�, it is now easily shown that

�Q�t�� = − ku2�
0

t

dt1�
0

t1

dt2	�t2� +
k

2
u2
�

0

t

dt1	�t1��2

�A.3�

The abbreviations 	̄�t���0
t dt1	�t1� and 	��t�=�0

t dt1	̄�t1�
=�0

t dt1�0
t1dt2	�t2� allow Eq. �A.3� to be written in the com-

pact form

�Q�t�� = − ku2	��t� +
k

2
u2	̄�t�2, �A.4�

which is the final expression for the mean.
The calculation of �Q�t�2� is somewhat more involved.

The first step, as before, is the substitution of Eqs. �4a� and
�4b� into Eq. �2�. The resulting expression, when squared,
yields

�Q�t�2� = k2�
0

t

dt1�
0

t

dt2�x�t1�v�t1�x�t2�v�t2��

− 2k�
0

t

dt1�
0

t

dt2�x�t1�v�t1�v�t2�f�t2��

+ �
0

t

dt1�
0

t

dt2�v�t1�f�t1�v�t2�f�t2�� �A.5�

�k2A�t� − 2kB�t� + C�t� �A.6�

The integral A�t� in the above expression, after averaging
over the initial positions and velocities, and again using the
result ���t��=0, becomes

A�t� =
�Q�t�2�0

k2 +
kBT

m2k
	�t�2H�t�2 +

kBT

mk2G�t�2H�t�2

+
1

4m4H�t�4 +
1

m4H�t�2�I�t�2� �A.7�

where

�Q�t�2�0 � �Q�t�2�u = 0�� �A.8�

and

�I�t�2� =
m2

k2 �
0

t

dt1�
0

t

dt2G�t − t1�G�t − t2����t1���t2�� .

�A.9�

The calculation of �Q�t�2�0 also starts by substituting Eqs.
�4a� and �4b� into Eq. �2� �after first setting u to 0�, squaring
the result, and averaging over the noise and initial positions
and velocities. Using the relations �x0

4�=3�kBT�2 /k2, �v0
4�

=3�kBT�2 /m2, and �x0
2��v0

2�= �kBT�2 /mk, one can show that
these steps lead after considerable algebra to

4�Q�t�2�0

k2 =
3�kBT�2

k2 �	�t�2 − 1�2 +
3m2�kBT�2

k4 	̇�t�4

+
2kBT

m2k
�3	�t�2 − 1��I�t�2� +

6kBT

mk2 	̇�t�2�I�t�2�

+
2m2�kBT�2

mk3 �3	�t�2 − 1�	̇�t�2 +
1

m4 �I�t�4� .

�A.10�

Here

�I�t�4� =
m4

k4 �
0

t

dt1�
0

t

dt2�
0

t

dt3�
0

t

dt4G�t − t1�G�t − t2�

����t1���t2���t3���t4�� . �A.11�

Because the integrals in Eqs. �A.9� and �A.11� have a con-
volution structure, they can be evaluated using multiple
Laplace transforms �two such transforms in the case of Eq.
�A.9�and four in the case of Eq. �A.11��, along with the pair
decomposability property of Gaussian random variables,
which renders the average in Eq. �A.11� expressible solely in
terms of the average ���t���t���=�kBTK�	t− t�	�. In this way,
one finds the general result

�I�t1�I�t2�� =
m2kBT

k2 �k�	�	t1 − t2	� − 	�t1�	�t2�� − m	̇�t1�	̇�t2��

�A.12�

from which it may be shown that

�I�t�2� =
m2kBT

k2 �k�1 − 	�t�2� − m	̇�t�2� �A.13�

and that

�I�t�4� =
3m4�kBT�2

k4 �k�1 − 	�t�2� − m	̇�t�2�2 �A.14�

After substituting Eqs. �A.13� and �A.14� into Eq. �A.10�, we
get the very simple result

�Q�t�2�0 = �kBT�2�1 − 	�t�2� �A.15�

Recognizing from Eqs. �5a�–�5d� that the function G�t� in
Eq. �A.7� actually reduces to 	̇�t� �given that 	�0�=1 and
	̇�0�=0� and that H�t� can be written as H�t�=mu�t− 	̄�t��,
A�t� can now be simplified to

A�t� =
�kBT�2

k2 �1 − 	�t�2� +
u2kBT

k
�t − 	̄�t��2 +

u4

4
�t − 	̄�t��4

�A.16�

In the same way, it can be shown that the integral B�t� in Eq.
�A.5� first reduces to
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B�t� =
ukBT

m
	�t�H�t��t	�t� − 	̄�t�� +

ukBT

k
G�t�H�t��tG�t�

− 	�t� + 1� +
ku

2m3H�t�2�tH�t� − �
0

t

dt1H�t1��

+
ku

m3 �tH�t��I�t�2� − H�t��
0

t

dt1�I�t�I�t1��� . �A.17�

From Eq. �A.12�, it is easily established that

�
0

t

dt1�I�t�I�t1�� =
m2kBT

k2 �1 − 	�t���k	̄�t� + m	̇�t��

�A.18�

This result, together with the expressions for G�t� and H�t� in
terms of 	�t�, further simplify B�t� to

B�t� = �t − 	̄�t��2
u2kBT +
ku4

2

 t2

2
− t	̄�t� + 	��t���

�A.19�

Similarly, it can be shown that

C�t� = u2kkBT�t2 − 2t	̄�t� + 2	��t�� + k2u4
 t2

2
− t	̄�t� + 	��t��2

,

�A.20�

which makes use of the result

�
0

t

dt2�
0

t

dt1�I�t1�I�t2�� =
m2kBT

k2 �2k	��t�

− k	̄�t�2 − m�	�t� − 1�2�
�A.21�

Substituting Eqs. �A.16�, �A.19�, and �A.20� into Eq. �A.6�,
and combining with Eq. �A.4�, we finally obtain

�Q�t�2� − �Q�t��2 = �kBT�2�1 − 	�t�2� + ku2kBT�2	��t� − 	̄�t�2�
�A.22�
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