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Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise
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The diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise is studied. Using the
Laplace analysis we derive exact expressions for the relaxation functions of the particle in terms of generalized
Mittag-Leffler functions and its derivatives from a generalized Langevin equation. Our results show that the
oscillator displays an anomalous diffusive behavior. In the strictly asymptotic limit, the dynamics of the
harmonic oscillator corresponds to an oscillator driven by a noise with a pure power-law autocorrelation
function. However, at short and intermediate times the dynamics has qualitative difference due to the presence

of the characteristic time of the noise.
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I. INTRODUCTION

The study of anomalous diffusion in complex or disor-
dered media has achieved a substantial progress during the
last years [1-9]. Anomalous diffusion in physical and bio-
logical systems can be formulated in the framework of the
generalized Langevin equation (GLE) [1,2,8,10-17]. If one
considers the dynamics of a harmonic oscillator with fre-
quency w under the influence of a random force modeled as
Gaussian colored noise, the corresponding GLE is written as
[11,12,18]

X(t)+f di' y(t—1")X(t') + 0’X = &1), (1)
0

where X(#) represents the position of a particle of mass m
=1 at time ¢ and (¢) is the frictional memory kernel. The
random force &(¢) is zero centered and stationary Gaussian
that obeys the fluctuation-dissipation theorem [19]

(Enér)) = C(|t—1']) = kgT|t = 1']), ()

where kg is the Boltzmann constant and 7T is the absolute
temperature of the environment.

It is now well established that the physical origin of
anomalous diffusion is related to the long-time tail correla-
tions [1-3]. Therefore, in order to model anomalous diffu-
sion process, pure power-law correlation functions are usu-
ally employed [1,2,10,12,18,20,21], which may be written as

|t
Ct) = C”l“(l——)\)’

3)

where I'(z) is the gamma function and C), is a proportionality
coefficient dependent on the exponent A but independent of
time. The exponent A can be taken as O0<A <1 or I <A
<2, which is determined by the dynamical mechanism of the
physical process considered.

Vifiales and Despdésito introduced a noise whose correla-
tion is proportional to a Mittag-Leffler function [22]. This
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correlation behaves as a power law for large times but is
nonsingular at the origin due to the inclusion of a character-
istic time.

The aim of this work is to investigate the effects of the
Mittag-Leffler noise on the behavior of a harmonically
bounded particle governed by GLE (1). This paper is orga-
nized as follows. In Sec. II we discuss some characteristics
of the Mittag-Leffler noise. In Sec. III, we show the formal
expressions for the relaxation functions that govern the dy-
namics of the particle in the case of an arbitrary noise corre-
lation function. Analytical solutions of the GLE for a har-
monically bounded particle driven by a Mittag-Leffler noise
are obtained in Sec. IV. Section V is devoted to the analysis
of temporal behavior of the relaxation functions and is com-
pared with that obtained in the case of a pure power-law
noise correlation function. Finally, the conclusions are pre-
sented in Sec. VL.

II. MITTAG-LEFFLER NOISE

It is well known that if the correlation function (2) is a
Dirac delta function the stochastic process is Markovian and
its dynamics can be directly obtained [23]. However, in a
complex or viscoelastic environment, one must take into ac-
count the memory effects through a long-time tail noise to
describe the effect of the environment on the particle. The
non-Markovian dynamics is involved in these physical pro-
cesses.

Recently, Vifales and Despésito introduced a Mittag-
Leffler noise given by [22]

=R (). @

where 7 acts as a characteristic memory time and 0 <<\ <2.
The E,(y) function denotes the Mittag-Leffler function [24]
defined through the following series:

oo

J
E ()= -

—, a>0. (5)
o l(aj+1)

Using the asymptotic behaviors of the Mittag-Leffler func-
tion [25], one can easily deduce that, for N # 1, the correla-
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tion function (4) behaves as a stretched exponential for short
times and as an inverse power law in the long-time regime
[25,26].

Setting A=1, the correlation function (4) reduces to an
exponential form

C(t) = Qe-lf‘”, (6)
T

which describes a standard Ornstein-Uhlenbeck process [23].
Moreover, in the limit 7—0 and from the limit representa-
tion of the Dirac delta [27], we get C(r)=2C,8(t), which
corresponds to a white noise, nonretarded friction, and stan-
dard Brownian motion [23]. Note that the case A=1 does not
reproduce an algebraic noise ~1/¢, which has been previ-
ously investigated in Refs. [2,28].

On the other hand, for N # 1 the limit 7— 0 of the pro-
posed correlation function (4) reproduces the power-law cor-
relation function (3). This behavior is obtained introducing in
expression (4) the asymptotic behavior at large y of the
Mittag-Leffler function [25],

El(=y) ~ DI -l

It is worth pointing out that the Mittag-Leffler correlation
function (4) is a well defined and no-singular function. From
Eq. (4), its value at t=0 is given by C(0)=C,/7, while for
the power-law correlation (3) C(0) diverges. Then, the intro-
duction of the characteristic time 7 enables one to avoid the
singularity of the power law at the origin. Considering that
the Mittag-Leffler function is the natural generalization of
the exponential function [24], we can also consider the
Mittag-Leffler correlation function as a generalization of the
power-law correlation, and similarly, the colored noise (6) is
considered as a generalization of the white noise.

y>0. (7)

III. SOLUTIONS OF THE GENERALIZED LANGEVIN
EQUATION

In what follows we consider the Langevin equation (1)
with the deterministic initial conditions x,=X(0) and v,

=X(0). By means of the Laplace transformation to Eq. (1),
one can easily obtain a formal expression for the displace-

ment X(7) and the velocity V(r)=X(z). The displacement X ()
satisfies

t

X(1) =(X(1)) +f dr" G(t—1")&(t'), (8)

0

where
(X(1)) = 0oG(1) + xo[ 1 = ?I(1)] )

is the position mean value. The relaxation function G(z) is
the Laplace inversion of

1

Gls)=—,
© s2 4 (s)s + w?

(10)

where %(s) is the Laplace transform of the damping kernel
and
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I(r) = fotdt’ G(1'). (11)
On the other hand, the velocity V(r) satisfies
V(1) =(V(1)) + Jotdt' gt—1)&1"), (12)
where
(V(1)) = vog (1) = 050G (1) (13)

is the velocity mean value and the relaxation function g(z) is
the derivative of G(7), i.e.,

g =G'(1). (14)

Explicit expressions of the variances can be obtained from
Egs. (8) and (12). Taking into account the symmetry property
of the correlation function and Eq. (2), yields [11,12,16,18]

Bo (1) =21(1) - GX(t) — ?IA(1), (15)
Bo,,(1) =1 - g*(1) - 0*G*(1), (16)
Bo, (1) = G){1 - g(1) - *1(1)}, (17)

where B=1/kgT.

From an experimental point of view, the information
about the observed diffusive behavior is extracted from the
mean-square displacement p(¢). In the long-time measure-
ment, p(z) is related to the relaxation function (z) as [29]

p(7) =1lim{[X(z+ 7,) - X% = 2kpTI(7;), (18)

—®©

where 7; is the so-called time lag. Alternative information
about the dynamics can be extracted from the normalized
velocity autocorrelation function Cy(z), which is related to
the relaxation function g(z) as [18,29]

L (Va+ ) V()
i) =lim= v oviy

Then, the knowledge of the relaxation functions 1(z), G(1),
and g(r) allows us to describe the diffusive behavior of the
oscillator. In the next section we will give explicit expres-
sions for the relaxation functions in the case of a Mittag-
Leffler noise (4) assuming that \ # 1.

=g(7). (19)

IV. ANALYTICAL RELAXATION FUNCTIONS
FOR A MITTAG-LEFFLER NOISE

From relation (2), the memory kernel y(r) corresponding
to the Mittag-Leffler noise (4) can be written as

A0 = DE (i), 0)

where y,=C\/kgT. Taking into account that the Laplace
transform of the memory kernel reads [25]
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-
'y )
Hs)= 1+ s

1)

the relaxation function /() can be written as the Laplace
inversion of

i(s) = Q = Iy() + 13 (s), (22)

where

S—l

To(s) = , 23
ols) PP 4 2+ s+ @ 23)
Ii(s) = PsIo(s), (24)
and 7Y, is defined as
h=nt+ o' (25)
Following the approach given in Ref. [30] we get
N —o? M\ _ E m
t ( » ) ( 2 )
Iy(t) = <‘) > | > ' 2
T/ n=0 n: m=0 m:
XEgn;T2n+)\+(2 ) m (t/T))\) (26)

- (_ zlz+)\)n o (_ L[Z)m
L(n=2 z > nj‘ tzEg\'f;inz)m(z—)\)m(— /7)),

n=0 n. m=0
(27)

where E,, g(y) is the generalized Mittag-Leffler function [25]
defined by the series expansion

aﬁ(y) E

a>0, B>0, (28)

o I'( ]+,3)

and E® B(y) is the derivative of the Mittag-Leffler function

_dt o GrRly
Fap)= E‘“ﬁ(y) ,Eowr[amkms]' 29)

Then, from Eq. (22),

1(1) =1o(1) + 1, (1), (30)

where I,(z) and I,(¢) are given by Egs. (26) and (27), respec-
tively.

The relaxation functions G(r) and g(¢) can be calculated
using Egs. (11) and (14) and the relation [30]

d
EDQHB_IEE?B(_ )/l‘a)] — tak+ﬁ_2E(ak,)B—l(_ )/l‘a) ) (3 1)
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Then, we get
G(1) = Go(1) + G (1), (32)

where

aio=(1) s EE 5 RN,
7)o n' = m!

XEin;TZ)nHﬁ 2— )\)m( (t/T))\) (33)

R G x
Gil=2 "2 (ES o= (TN,
n=0 :

m=0 m!
(34)
and
(1) = go(t) + g, (1), (35)
where
N _2\ o _&,2 m
t
w=(2)'s =) s %)
T n=0 }’l' m=0 m!
XENT s amnm(= (D), (36)
. (;1;‘2“)" Oo (_ %ﬂ) (n+m) N
gi(n=2 > EX o aonm(= (D).
n! m!
n=0 . m=0 .
(37)

It is worth mentioning that expressions (30), (32), and
(35) fully determine the temporal evolution of the mean val-
ues (9) and (13), variances (15)—(17), mean-square displace-
ment (18), and velocity autocorrelation function (19).

Notice that in the limit w— 0 only the terms with n=0 in
Egs. (26) and (27) survive. Then, Eq. (25) reduces to
=7, and the expression of the relaxation function I(z) for the
free particle case [22] is recovered.

On the other hand, in the limit 7— 0 the function I,(z)
vanishes and the behavior of I,(¢) can be achieved introduc-
ing the asymptotic behaviors of the generalized Mittag-
Leffler function [30]

E,5(-=y) ~ y>0 (38)

1
YL(B-a)
and its derivative

1
k+1 F( B-a)

in Eq. (26). Then, after some algebra we obtain

EW(=y) ~ (39)

2)n 2_}\) ’

1(t) = hm Io(t) = 2 Ceo

Ez )\3+)\n( W

(40)

where we have used y, — vy, for 7— 0, according to Eq. (25).
The expression in series given in Eq. (40) coincides with the
expression for the relaxation integral function I(¢) corre-
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sponding to a pure power-law correlation function, previ-
ously obtained in Ref. [18].

Likewise, one can verify that in the limit 7— 0 the relax-
ation functions G(r) and g(z) are also the same to that in the
case of a pure power-law correlation function given by

2 2\n
G(r) = 2( ) Ez )\2+)\n( ')’)Jz M, (41)
(o 2)n (n) 2-\
() = E | B ane . (42)

V. TEMPORAL BEHAVIOR OF THE RELAXATION
FUNCTIONS

The analytical expressions (30), (32), and (35) are the
main result of this work. In the following we will analyze the
time behavior of the relaxation functions for different re-
gimes.

The short-time behavior (<< 7) of the relaxation functions
can be obtained using the series expansions (28) and (29).
Then

2 4
g 7)\ o2 ﬁ
G(t)y=t 7” . (44)
2
g(t)~1—<%+ )% (45)

which are the expected for a harmonic oscillator driven by a
noise with a finite correlation at the origin [11,12,31].

Now we get an expression for the function I(¢) for times
bigger than the characteristic time 7 of the noise, i.e., t> 7.
For this purpose we introduce approximation (39) in Egs.
(26) and (27). After some algebra we get

Io<r>~2( LWPPYPED, - HED (@46)

and

N\ (=" n 5 -
L) = (;) > T(wztz)"sz(z—))\,s—mxn(_ W,

n=0
(47)
Let us analyze the behaviors of the relaxation functions
I(t), G(t), and g(1) for ,t>*> 1. Introducing approximation

(39) in Egs. (46) and (47), after some calculations and using
Eq. (5) one gets

I(t) = {1 - VE)\< Vﬁztk)}. (48)
pa

Then, from Egs. (11) and (14) we get
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d 2
Gr) ~ - %—E)\(— vﬂﬂ) (49)
W dt b
and
v d* ( »’ )
) ~-——E\|-v—1"], 50
g() wzdzt A V')’)\ ( )

where we introduced the dimensionless factor

P2y
V= __7

poN

The relaxation functions (48)—(50) have the same func-
tional form of that obtained in the pure power-law case [18]
but with the presence of the scale factor v. In the limit 7
— 0, v=1 and one recovers the expressions corresponding to
a pure power-law noise [18].

It is worth pointing out that these expressions are the
same to those that can be obtained directly discarding the
inertial term s in Eq. (10). Then, Eqs. (48)—(50) represent
the solutions in the high friction limit.

The strictly asymptotic behavior of the relaxation func-
tions 1(r), G(r), and g(¢) can be obtained by introducing the
asymptotic behavior (7) of the Mittag-Leffler function in
Egs. (48)—(50). Then, for v?—it)‘>1 the relaxation functions
can be written as

0<v=1. (51)

W sin(A ) T(N)

1
=G e n 52
G()~ﬁsm)\7r)w’ (53)
w t
o) ~ %\ sin(\ ) F():\:-ZZ) . (54)

t

As expected, the relaxation functions (52)—(54) behave as
a power law in the long-time limit. These results are in
agreement with those obtained in Refs. [18,32] due to the
fact that the Mittag-Leffler noise decays as a power law for

12}
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&~ [o)} o [
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FIG. 1. (Color online) Relaxation function I(r) vs time ¢, for X
=1/2, y,=1, 7=1, and w=1. The solid line corresponds to the exact

expression (30) (for a Mittag-Leffler noise); the dashed line corre-
sponds to the exact expression (40) (for a pure power-law noise).
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FIG. 2. (Color online) Relaxation function I(¢) vs time 7, for A
=3/2, =1, 7=1, and w=1. The solid line corresponds to the exact
expression (30) (for a Mittag-Leffler noise); the dashed line corre-
sponds to the exact expression (40) (for a pure power-law noise).

very large times. In the same way, substitution of these
asymptotic expansions into Egs. (15)—(17) give the long-time
behavior of the variances of the process, which again coin-
cide with those obtained in Refs. [18,32].

In Figs. 1 and 2 we have plotted the relaxation function
I(r) (30) obtained with a Mittag-Leffler noise together with
the corresponding expression (40) for a pure power law. Al-
though both functions coincide with Eq. (52) in the strictly
asymptotic limit, it can be seen that in the displayed range of
short and intermediate times they exhibit considerable differ-
ences. In particular, the relaxation function /(¢) given by Eq.
(30) exhibits more oscillations with respect to expression
(40), and minima and maxima are located in different posi-
tions.

Similar behavior can be seen in Figs. 3 and 4 where we
have compared the relaxation function g(z) (35) correspond-
ing to a Mittag-Leffler noise with function (42) obtained with
a pure power law. From these two figures, one can realize
that the function g(¢) (35) also shows more oscillations than
the function g(¢) given by Eq. (42). Moreover, the first one

1
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FIG. 3. (Color online) Relaxation function g(z) vs time ¢, for
A=1/2, =1, 7=1, and w=1. The solid line corresponds to the
exact expression (35) (for a Mittag-Leffler noise); the dashed line
corresponds to the exact expression (42) (for a pure power-law
noise).
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FIG. 4. (Color online) Relaxation function g(¢) vs time ¢, for
A=3/2, »n=1, 7=1, and w=1. The solid line corresponds to the
exact expression (35) (for a Mittag-Leffler noise); the dashed line
corresponds to the exact expression (42) (for a pure power-law
noise).

exhibits more zero crossings, which represent transitions be-
tween a positive velocity correlation and velocity anticorre-
lations.

VI. CONCLUSIONS

In this work we have presented an analytically resoluble
model for the dynamics of a classical harmonic oscillator in
a complex environment, which is valid for all time range. We
have shown that an anomalous diffusion process can be gen-
erated by a Mittag-Leffler noise deriving exact expressions
for the relaxation functions of the oscillator in terms of the
generalized Mittag-Leffler function and its derivatives.
Moreover, in the appropriate limits the results for a harmonic
oscillator driven by a power-law noise are recovered. How-
ever, differences in relation to the usually employed pure
power-law noise appear in the interval of short and interme-
diate times. For times shorter than the characteristic time of
the noise, the relaxation functions include a correction due to
the presence of the characteristic time 7. In the range of
intermediate times, the relaxation functions have a similar
functional form to that previously obtained for a pure power-
law noise [ 18], but with the inclusion of a scaling dimension-
less parameter. Finally, in the strictly asymptotic limit, we
recover the anomalous behavior of a harmonically bounded
particle driven by a power-law noise, which is in agreement
with the previous results given in Refs. [18,32].
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