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The telegraph equation combines features of both the diffusion and wave equations and has many applica-
tions to heat propagation, transport in disordered media, and elsewhere. We describe a quantum lattice gas
algorithm �QLGA� for this partial differential equation with one spatial dimension. This algorithm generalizes
one previously known for the diffusion equation. We present an analysis of the algorithm and accompanying
simulation results. The QLGA is suitable for simulation on combined classical-quantum computers.
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I. INTRODUCTION

Quantum lattice gas algorithms �QLGAs� are well known
to be versatile in simulating a wide range of physical phe-
nomena. Like their relatives cellular automata, from simple
local rules, complex dynamics may emerge �1,2�.

Lattice gas algorithms are attractive due to their relative
simplicity, physical foundations, and suitability for imple-
mentation on parallel computing architectures. Lattice gas
algorithms may incorporate conservation of mass, momen-
tum, and energy, and in the quantum context, probability.
Lattice gas algorithms have proven successful in a range of
applications including fluid dynamics, plasma physics, and
other multiparticle simulations �3,4�.

Recent experiments and proposals for combined classical-
quantum computing �e.g., �5–7�� further motivate the devel-
opment of quantum lattice gas methods. For instance, a
QLGA for the linear diffusion equation has been demon-
strated in a liquid-state NMR system �7�. In addition, a de-
tailed design for executing a QLGA for the linear diffusion
equation with superconducting qubits has been given �5�.
Such implementations could allow the exploitation of quan-
tum entanglement well before large-scale purely quantum
computers are constructed.

In this paper we present a QLGA for simulation of the
telegraph equation. This hyperbolic partial differential equa-
tion �PDE� combines aspects of both the wave and diffusion
equations. As such, our algorithm subsumes some earlier
works that are restricted to the diffusion equation. We present
representative numerical results verifying the algorithm and
its analysis.

Classical connections between random walk and the tele-
graph equation have been known for quite some time �8–12�.
In such a model on a one-dimensional �1D� lattice, a walker
steps a distance �x in time increment � randomly to the left
or right, with additionally a probability a� to reverse direc-
tion. In the simultaneous limit that a→� as well as the speed
v, such that the ratio 2a /v2�1 /D remains constant, the dif-
fusion equation results

�u

�t
= D

�2u

�x2 . �1�

Another situation for which this equation results is when
a�=1 /2. Then there is equal probability for a move to the

left or right. In a sense, we seek a quantum version of this
stochastic model.

We also mention a connection of the telegraph equation
with relativistic quantum mechanics and the point of view of
a Dirac particle as moving at the speed of light c with ran-
dom reversals of direction. If we write the telegraph equation
in the form ��t

2−2a�t−c2�x
2�P=0, then the change of depen-

dent variable P�x , t�=e−at��x , t� shows that � satisfies the
Klein-Gordon equation ��t

2−c2�x
2−a2��=0. Both the tele-

graph and Klein-Gordon equations may be factored into a
pair of equations first order in time, with the latter instance
giving the well known Dirac equation. In the case of a Dirac
particle, we identify the frequency of probability of reversal
a=m0c2 / i�, with m0c2 as the rest mass energy �10�. This can
provide, for example, an interpretation for the Zitter-
bewegung phenomena of Dirac theory.

Classically or quantum mechanically, lattice gas dynamics
may be thought of in terms of scattering due to local poten-
tials. There is an associated scattering matrix, leading to
transmission and reflection coefficients. Building on such an
approach, recent work has used quantum random walk to
examine diffusion in 1D crystalline nanostructures �13�. The
telegraph equation results in the continuum limit for an irre-
versible second-order Markov process.

A QLGA includes the sequential repetition of four main
steps �4,14,15�. First, initialization creates the quantum-
mechanical initial state that corresponds to the initial prob-
ability distribution for a partial differential equation to be
solved. Second, in the collision step, a unitary transformation
is applied in parallel to all the local Hilbert spaces in the
lattice. Next, in the measurement step, the quantum states of
all the nodes are read out. Lastly, these results are shifted or
“streamed” to neighboring lattices sites, providing reinitial-
ization of the lattice in the state that corresponds to the up-
dated probability distribution.

QLGAs have been shown to solve the diffusion, Burgers,
Boltzmann, Schrödinger, and Dirac equations �4,15–17�. In
some QLGAs �e.g., �16,17�� the measurement step is omitted
and the generally entangled quantum states are streamed.
This places much stronger requirements on the quantum
computing hardware, but it gives an exponential speed up
over classical simulation. We present an algorithm with
intermediate-time measurements.

There is much application interest in both classical and
QLGAs. Elsewhere �18�, we have demonstrated that hybrid
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computing, running versions of diffusion processing, could
be useful for the enhancement of digital images. In particu-
lar, diffusion of intensities, with a constraint on the differ-
ence of pixel iterate values, gives selective smoothing within
an image. In another very recent scenario, we have devel-
oped QLGAs for the Maxwell equations by starting from a
Dirac formulation �19�. The algorithms may be executed
with measurement only at the final time, resulting in an ex-
ponential speed up over classical simulation.

Very recently, a telegraph-diffusion operator has been pro-
posed for purposes of image restoration and denoising �20�.
This approach requires the solution of a nonlinear telegraph
equation with diffusivity dependent on the gradient of the
intensity function. Our results now indicate the possibility to
apply a QLGA with a signal strength constraint for a 1D
telegraph equation for obtaining the denoising of digital sig-
nals.

A drawback of the ordinary diffusion equation for many
applications is that the associated propagation speed is infi-
nite. For any positive time t, there can be diffusion, albeit
usually very small, to arbitrarily large distances. The tele-
graph equation offers one way of correcting this aspect: it
models diffusion with a finite propagation speed. This can
be very important for modeling diffusion in a variety of con-
texts including turbulent fluids, biological processes, and
ecological problems �e.g., �12��. The search for a fully spe-
cial relativistic diffusion equation remains an open and
important problem for statistical physics and other areas,
but the telegraph equation provides an improvement over
Eq. �1�.

Whereas parabolic Eq. �1� has a number of well known
properties, including satisfying a maximum principle, the be-
havior of solutions of the telegraph equation is generally
more complicated. We relegate to Appendix A a brief discus-
sion of a Fourier series solution of the telegraph equation
with special zero Dirichlet or Neumann boundary conditions.
Already these special cases hint at the varied behavior of the
solutions.

The QLGA has a significant numerical advantage inherent
in its formulation. This is the guaranteed stability due to the
use of a unitary collision operator. For a hyperbolic equation
as we are dealing with here, this is not a small matter. We
recall that in comparison an explicit finite difference scheme
for a wave equation must satisfy the Courant-Friedrichs-
Levy �CFL� condition �21� as a necessary constraint.
Roughly described, the CFL condition arises from ensuring
that the domain of dependence of the numerical method con-
tains the domain of dependence of the partial differential
equation being solved. It has the direct consequence of lim-
iting how large the time step may be taken in relation to the
size of the spatial discretization. The severity of the CFL
condition can be reduced only at substantial computational
cost. Either the time step is drastically reduced or another
method such as an implicit scheme is required. In the latter
event, there is significant additional computational cost in
solving a set of coupled equations at each time iteration.
Even then, if the boundary conditions are not treated fully
implicitly also the CFL constraint will manifest.

A QLGA also offers a significant advantage as far as re-
alizing a hybrid architecture. This is because if the nodal

qubits have sufficiently long coherence time, no quantum
error correction is required. In contrast, many other methods
require quantum error correction, and this is typically a tre-
mendous increase in resource. Typical error correcting tech-
niques encode one logical qubit in either five or seven physi-
cal qubits. On top of this, several levels of concatenation are
used.

In the following, we describe the QLGA for the telegraph
equation, with accompanying analysis. We then present nu-
merical results on certain test cases that verify this equation
and its parameter-dependent coefficients.

II. QLGA FOR THE TELEGRAPH EQUATION

We consider a 1D lattice of L nodes, with two qubits per
node, �qa�x , t��=�fa�x , t��1�+�1− fa�x , t��0�, a=1,2, where
the occupancy probability fa is the probability for qubit a to
be in the �1� state. The Hilbert space for one node has four
basis states, taken as �0102�= �0�= �0,0 ,0 ,1�T , . . . , �1112�
= �3�= �1,0 ,0 ,0�T. The local wave function at each node is
given as the tensor product ���x , t��= �q1�x , t�� � �q2�x , t��.
The number operators n1 and n2 for the two qubits are given
by

n1 = diag�1,1,0,0� ,

n2 = diag�1,0,1,0� . �2�

The occupancy probability of the jth qubit at position x at
time t is defined as

f j�x,t� = 	��x,t��nj���x,t�� , �3�

where j=1,2. A nodal density is defined as the sum of the
occupancy probabilities,

��x,t� = f1�x,t� + f2�x,t� . �4�

We describe an appropriate sequence of quantum gate and
classical shift operations applied across the lattice so that the
function � is made to evolve in time as a solution of the
linear telegraph equation

�2u

�t2 +
2 sin2 �

�

�u

�t
= cos 2�

�x2

�2

�2u

�x2 . �5�

The local collision operator U� is given by

U� = 

1 0 0 0

0 e−i�/4 cos � ei�/4 sin � 0

0 ei�/4 sin � e−i�/4 cos � 0

0 0 0 1
� , �6�

where � is taken as a free parameter. As a result of the op-
eration ����x , t��=U����x , t��, we find

f1� = f1f2 + cos2 �f1�1 − f2� + sin2 �f2�1 − f1� , �7a�

f2� = f1f2 + sin2 �f1�1 − f2� + cos2 �f2�1 − f1� , �7b�

satisfying the conservation condition ��= f1�+ f2�= f1+ f2=�.
We can rewrite Eqs. �7� in a standard form,
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f j��x,t� = f j�x,t� − �− 1� j	�x,t�, j = 1,2, �8�

where the collision term 	�x , t�= �f2�x , t�− f1�x , t��sin2 �.
Equation �7� or �8� is akin to a random walk model with

probability of reversal of direction given by sin2 �. Building
on this interpretation, we consider streaming the state of qu-
bit 1 to the right and that of qubit 2 to the left. Then after a
combination of collision followed by such streaming, we
have

f1�x,t + �� = f1��x − �x,t� = cos2 �f1�x − �x,t�

+ sin2 �f2�x − �x,t� , �9a�

f2�x,t + �� = f2��x + �x,t� = sin2 �f1�x + �x,t�

+ cos2 �f2�x + �x,t� . �9b�

If we Taylor expand Eqs. �9� to first order in �x and �,
suppressing the �x , t� arguments, we have

f1 + �
� f1

�t
� cos2 �
 f1 − �x

� f1

�x
� + sin2 �
 f2 − �x

� f2

�x
� ,

�10a�

f2 + �
� f2

�t
� sin2 �
 f1 + �x

� f1

�x
� + cos2 �
 f2 + �x

� f2

�x
� .

�10b�

Adding and simplifying both of these equations gives

�
��f1 + f2�

�t
� − �x cos 2�

��f1 − f2�
�x

, �11a�

while subtracting Eq. �10b� from Eq. �10a� gives

�
��f1 − f2�

�t
� − 2 sin2 ��f1 − f2� − �x

��f1 + f2�
�x

.

�11b�

Differentiating Eq. �11a� with respect to time and using Eq.
�4� yields

�
�2�

�t2 � − �x cos 2�
�2�f1 − f2�

�t � x
, �12a�

while differentiating Eq. �11b� with respect to x and using
Eq. �4� yields

�
�2�f1 − f2�

�x � t
� − 2 sin2 �

��f1 − f2�
�x

− �x
�2�

�x2 . �12b�

We next substitute Eq. �12b� into Eq. �12a�, eliminating
the mixed derivative term,

�
�2�

�t2 �
�x

�
cos 2�
2 sin2 �

��f1 − f2�
�x

+ �x
�2�

�x2� . �13�

Finally, substituting Eq. �11a� into this equation gives a PDE
only involving the density � and the telegraph �Eq. �5�� re-
sults.

In summary, for the QLGA we first initialize with
��x ,0�=g�x�, the initial density, providing the initial nodal

wave functions. We apply collision operator �6� to the local
wave functions ��� across the lattice. We then measure the
states of both qubits across the lattice, giving the local occu-
pancy probabilities f1 and f2. Lastly, the values f1 are
streamed to the right neighboring lattice sites and those of f2
are streamed to the left neighboring sites, providing reinitial-
ization of the nodal wave functions.

In Eq. �5�, we have the speed v=�cos 2��x /�. In the
special case that �→0, the collision operator becomes diag-
onal, and the telegraph equation reduces to the wave equa-
tion. Suppose that we multiply Eq. �5� by � and take �→0.
The diffusion equation results, assuming that �x2 /2�=D re-
mains constant.

III. SIMULATION RESULTS

We illustrate the above algorithm for the 1D linear tele-
graph equation with various initial conditions. Unless de-
scribed otherwise, we take a lattice of stated size with unit
lattice spacing, �x=1.

We have verified our algorithm in the special case �=0
when the wave equation results and we have periodic bound-
ary conditions. In this circumstance the QLGA provides the
correct solution. More challenging is when ��0.

As a first example for the telegraph equation, we consider
on the half line x
0 the initial condition �IC� u�0,0�=1,
with u�0, t�=1 maintained for all later times, u�x ,0�=0 for
x�0, and

� �u

�t
�

t=0
= 0. �14�

This then will generate a Green’s functionlike solution. In
fact, the spatially integrated Green’s function is essentially
the solution we seek. Writing Eq. �5� in the form

utt +
1

A
ut = v2uxx, �15�

corresponding to A=� /2 sin2 � and v2=cos 2��x2 /�2, the
solution for 0�x�vt is given by �8� �pp. 147–149�,

u�x,t� = 1 − �
0

x


�x,t�dx , �16�

where


�x,t� =
e−t/2A

2Av

I0�y� +

t

2A

I1�y�
y

� , �17a�

y�x,t� =
�v2t2 − x2

2Av
, �17b�

and I� is the modified Bessel function of the first kind. For
x�vt, the solution is 0. An alternative form of the solution is
given in Ref. �22�. When the speed v→�, the solution re-
duces to a complementary error function solution appropriate
for the diffusion equation.

For this model problem we are obviously presented with
nonperiodic initial and boundary conditions, and we need the
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QLGA to at least approximately satisfy these. Initially we
put f1= f2=0 across the entire lattice except for f1=1 on the
leftmost node. Since f1 is the occupancy probability that gets
streamed to the right, initially we can look at the system as
an empty lattice, with a flux of particles to the right at the left
boundary and no particles moving to the left �since f2 is
zero�.

Now to satisfy the boundary condition we need to set the
leftmost node to have a total occupancy probability f1+ f2
always equal to 1, and we would also like the solution’s
derivative to be continuous. One way to keep the derivative
approximately continuous is to maintain the f2 values and set
f1=1− f2. This way the density of left and right going par-
ticles at the boundary depends on the node to the right, node
2, and will allow the slope at the boundary to change appro-
priately. This also fixes the total occupancy probability to
one at the left boundary. We expect this method to be most
successful when sin2 � is small, and thus there is a small
chance of reversal, the primary factor in the solution being
the small occupancy probability in f2, which represents the
reversed particles moving to the left.

Although the collision operator conserves the density, the
overall algorithm cannot on the domain of nodes 1 to L since
initially there are no particles and no “signal” on the lattice.
Rather, the total density over the lattice is constantly increas-
ing due to the fixed source on the left.

In Fig. 1 we graphically compare the numerical and exact
solutions for �=5� /180 and L=128. The two solutions are
shown at 32, 64, and 96 multiples of �. Given the approxi-
mations described above in implementing the initial-
boundary conditions, the very near agreement is remarkable.

In the exact solution �16�, 
 acts like an un-normalized
line density of particles, with the property �8�

�
0

vt


�x,t�dx = 1 − e−t/2A. �18�

This relation may be verified by using a change of variable
and the integrals,

�
0

b xI0�cx�
�b2 − x2

dx =
sinh�bc�

c
�19a�

and

�
0

b I1�cx�
�b2 − x2

dx =
cosh�bc� − 1

c
. �19b�

The PDE �15� is the limit of the finite difference equation,


�x,t + dt� = �1 −
dt

2A
��
�x − dx/2,t� + 
�x + dx/2,t��

− �1 −
dt

A
�
�x,t − dt� , �20�

with v=dx /2dt.

Concerning solutions �16� and �17�, we observe that

�

�t
�

0

x

I0�y�x,t��dx =
t

4A2�
0

x I1�y�x,t��
y�x,t�

dx . �21�

Therefore, if either integral in Eq. �16� may be determined in
closed form, the other can be found from it.

Similarly, we have been able to use the QLGA to solve
the related initial-boundary value problem on a finite interval
u�x ,0�=0 for 0�x�L, Eq. �14�, and u�0, t�=u�L , t�=1 for
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FIG. 1. �Color online� Plot of the QLGA �blue, dark gray� and
exact �red, light gray� solutions of Eq. �15� with �=5� /180 after �a�
32, �b� 64, and �c� 96 time steps.

MARK W. COFFEY AND GABRIEL G. COLBURN PHYSICAL REVIEW E 79, 066707 �2009�

066707-4



t�0. Now at the boundary x=L we impose f2=1− f1. We
have obtained good agreement with the known analytic so-
lution �23�.

We have solved a case of the telegraph equation with
elementary functions comprising the solution �11�. Here, we
have initial condition �14� and

F�x,0� =
1

4
sin�2�x

L
� +

1

2
�22�

along with periodic boundary conditions. To write the exact
solution we put v2=cos 2��4� /L�2 /�2, a=sin2 � /�, w1= �v2

−a2�1/2, and w2= �a2−v2�1/2. Then the solution is given by

F�x,t� = e−at
 a

w1
sin�w1t� + cos�w1t��1

4
sin�2�x

L
� +

1

2
,

v 
 a , �23a�

F�x,t� = e−at
 a

w2
sinh�w2t� + cosh�w2t��1

4
sin�2�x

L
� +

1

2
,

v � a . �23b�

This solution can also be deduced from the separation of
variables approach given in Appendix A.

We are also able to solve problems with the zero Neu-
mann boundary condition

� �u

�x
�

x=0
= � �u

�x
�

x=L

= 0. �24�

In this case, we employ reflective boundary conditions for
the QLGA. At the left boundary, we put f1�1, t+��= f2��1, t�
and f2�1, t�= f2�2, t�, and at the right boundary we put
f2�L , t+��= f1��L , t� and f1�L , t+��= f1�L−1, t�, assuming that
the node indices run from 1 to L. This enables the solution of
a variety of other boundary value problems.

For problems with a Dirac delta function initial condition
�24,25�, the algorithm must be modified. This is because the
initial condition is localized at a single node.

IV. ALTERNATIVE COLLISION OPERATOR

In place of Eq. �6� we have found a unitarily equivalent
collision operator. We put

V� =
1

2

2 0 0 0

0 1 + ei� 1 − ei� 0

0 1 − ei� 1 + ei� 0

0 0 0 2
� . �25�

By the method in, for instance, Ref. �26�, one can show that
both U� and V� have controlled-NOT �CNOT� complexity 3.
Thus, up to single-qubit gates, these two two-qubit gates are
equivalent to triple CNOT �or the SWAP gate� and therefore to
one another. We have verified the symmetry H�2V�H�2=V�,
where H is the Hadamard gate.

We give canonical decompositions of V� and U� that
verify their CNOT complexity. We put

a1 =
1

2

1 + i − 1 − i

1 − i 1 − i
�, c1 =

1

2

 1 − i 1 + i

− 1 + i 1 + i
� . �26�

Then with 
 j, the standard Pauli matrices, we may write

V� = ei�/4�a1 � a1�e−i��
x
�2+
y

�2+
z
�2�/4�c1 � c1� . �27�

Similarly, we may write

U� = e−i�/8�
x � 
y�e−i���/2�
x
�2+��/2�
y

�2−��/8�
z
�2��
x � 
y� .

�28�

The explicit decompositions of the central operator factors of
Eqs. �27� and �28� are given in Appendix B.

Following from ����x , t��=V����x , t�� we have the update
rules

f1� = 1
2 �1 + cos ��f1 + 1

2 �1 − cos ��f2 �29a�

and

f2� = 1
2 �1 − cos ��f1 + 1

2 �1 + cos ��f2. �29b�

Thus we obtain for the frequency of probability of reversal
and velocity, respectively, a= �1−cos �� /2 and v=�cos �.

We have verified these results on the model problems of
Eqs. �15�, �16�, �17a�, and �17b� �8� and Eqs. �22� and �23�
�11� and obtained excellent agreement. An advantage of the
a��� and v��� parameters is that the period is longer, so that
the algorithm is not as sensitive to small changes in �.

V. CONCLUDING REMARKS

The 1D telegraph equation arises as the probability den-
sity function �PDF� for the displacement at time t for persis-
tent random walk on a 1D lattice in the continuum limit.
With a form of momentum introduced into the random walk,
persistent random walk has applications in describing scat-
tering and diffusion in disordered media. As we have men-
tioned, the telegraph equation has solutions with a finite ve-
locity of propagation, and this can provide an advantage for
describing heat propagation, light dispersion in turbid media,
or in biological modeling.

We have presented a QLGA for the 1D telegraph equation
that subsumes one for the diffusion equation while comple-
menting that for the 1D Dirac equation. Both the telegraph
and Dirac equations may be developed from microscopic
models with particles undergoing random reversals of direc-
tion. The resulting QLGA for the 1D telegraph equation is
highly parallelizable and well founded on physical principles
including conservation laws. This algorithm offers the pros-
pect for simulation on combined classical-quantum comput-
ing architectures. In such a computing environment, local
nodes with two qubits each are connected to nearest neigh-
bors with classical communication.

We have verified our QLGA on model problems that take
into account the boundary conditions and the initial condi-
tions on both the solution and its first-order time derivative.
Despite using an approximation to implement nonperiodic
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boundary conditions for some test problems, we are still able
to find accurate solutions. The incorporation of further types
of boundary conditions is an area for future research.

We have described the computational stability advantage
given by constructing a QLGA with a unitary collision op-
erator. The stability requirement alone, as evidenced by the
tangible CFL condition, is a serious matter for conventional
computing schemes. This condition can only be mitigated at
a significant computational cost. For a traditional finite dif-
ference scheme using a regular lattice, an order of magnitude
increase in cost is typical in going from an explicit to an
implicit method. This change also increases the complexity
of implementation, including the treatment of the boundary
conditions.

As we have mentioned, there have been initial nuclear
magnetic resonance �NMR� system implementations of
quantum lattice gas methods, one of these being for linear
diffusion. This is a fascinating combination of quantum com-
puting with classical molecular computing. If one could suf-
ficiently sample from the computing ensemble, then Markov
chain problems could be solved that are outside the capabil-
ity of classical digital computers. With current liquid-state
NMR computing using 1018 molecules, Markov chain prob-
lems with up to 260 states could, in principle, be addressed.
This in turn implies that there is a range of NMR-computable
problems of size 230–260 that lie beyond the capabilities of
conventional digital computers.

Moreover, we anticipate that our QLGAs may be gener-
alized to the broader context of such Markov chain prob-
lems. This is a general framework in which one assumes a
number of states and their corresponding transition probabili-
ties to other states. As particular and important cases, this
would enable the simulation of quantum random walk and
quantum search. In particular, we recall that quantum search
may be derived as a form of quantum random walk on a
hypercube or other n-dimensional regular lattice �27�. A hy-
brid architecture provides a pathway to approaching the qua-
dratic speed up that is optimal for quantum search. This is
achieved as the streaming of entangled nodal states becomes
available and intermediate-time measurements are elimi-
nated.

In the continuum limit for dimensions greater than 1, the
PDF for persistent random walk does not satisfy a higher
dimensional telegraph equation nor does the projection of the
motion of persistent random walk on a given axis satisfy a
higher dimensional telegraph equation �28�. The partial dif-
ferential equations for the PDF are of order in time 2d for
dimensions d
2 and are more complicated. It is thus in-
triguing that there should exist QLGAs for these other partial
differential equations. These QLGAs would be expected to
have applications to transport in disordered media in dimen-
sions higher than 1.
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APPENDIX A: FOURIER SINE SERIES SOLUTION
OF A TELEGRAPH EQUATION

Suppose that the partial differential equation of interest is
given by

aut + butt − Duxx = 0, �A1�

with a, b, and D being given constants and subscripts denot-
ing partial differentiation. Suppose for simplicity the bound-
ary conditions u�0, t�=u�L , t�=0. Then we first assume a
separation of variables form

u�x,t� = sin�n�x

L
�e�t, �A2�

with � to be determined as a function of a, b, and D. Sub-
stituting Eq. �A2� into Eq. �A1� we find

b�2 + a� +
n2�2

L2 D = 0, �A3a�

i.e., � is given by

�n
��� =

1

2b
�− a ��a2 − 4b

n2�2

L2 D� . �A3b�

Then we take a Fourier sine series solution,

u�x,t� = �
n=1

�

�An
�+�e�n

�+�t + An
�−�e�n

�−�t�sin�n�x

L
� . �A4�

If the IC is u�x ,0�= f�x�, then as usual by orthogonality
we have the relation

An
�+� + An

�−� =
2

L
�

0

L

f�x�sin�n�x

L
�dx . �A5�

Similarly, from the initial time derivative condition �14�, we
find

�n
�+�An

�+� + �n
�−�An

�−� = 0. �A6�

Therefore, we have obtained solution �A4� with

An
�+� =

2

L

�n
�−�

��n
�−� − �n

�+���0

L

f�x�sin�n�x

L
�dx �A7a�

and

An
�−� = −

2

L

�n
�+�

��n
�−� − �n

�+���0

L

f�x�sin�n�x

L
�dx . �A7b�

For the diffusion equation with b=0 in Eq. �A1�, �n
=−n2�2D /L2a�0 for D�0 and a�0. In contrast, for the
telegraph equation, �n

��� in Eq. �A3b� may be complex. For
large bD /L2 and large enough n, an oscillatory factor enters
the solution.

If instead we have the zero Neumann boundary condition
�u /�x=0 at both end points x=0 and x=L, we may replace
the sine with the cosine function in the above solution. The
frequencies �n

��� of Eq. �A3b� remain the same.
For the initial condition �22�, only the coefficients A2

���

are nonvanishing. Then the solution �23� is obtained from the
sole term with n=2 in the sum of Eq. �A4�.
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APPENDIX B: COLLISION OPERATORS IN TERMS
OF THREE CNOT GATES

Here we complete the decompositions of Eqs. �27� and
�28�. In the following, CNOT denotes the gate with control
qubit the first qubit,

CNOT = 
 I 0

0 
x
� , �B1�

wherein I denotes the 2�2 identity matrix and 0 denotes a
2�2 matrix of zeros. Again, 
k denote the single-qubit Pauli
gates and H denotes the Hadamard gate. We let S
=diag�1, i�, A3=HS, and C=ei�
x/4.

In order to write the central factors of Eqs. �27� and �28�
we use the results in Ref. �29�. We have for Eq. �27�

e−i��
x
�2+
y

�2+
z
�2�/4

= �C � C†�CNOT�A3 � B3�CNOT�A2 � B2�CNOT,

�B2�

with

A2 = He−i�
x/4, B2 = e−i�
z/4, B3 = ei�
z/4. �B3�

Similarly, we write for Eq. �28�

e−i���/2�
x
�2+��/2�
y

�2−��/8�
z
�2�

= �C � C†�CNOT�A3 � B3�CNOT�A2 � B2�CNOT,

�B4�

where now

A2 = He−i�
x/2, B2 = ei�
z/8, B3 = ei�
z/2. �B5�
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