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Under the generalized coherent-potential approximation, we established a “quasimode” theory to study the
effective-medium properties of electromagnetic metamaterials. With this theory, we calculate the self-energy,
density of states �DOS�, and mean-free paths for optical modes traveling inside a metamaterial, and then
determine the effective permittivity and permeability of the metamaterial by maximizing the DOS function.
Compared with the traditional methods for calculating effective-medium parameters, the present approach
could provide quantitative judgments on how meaningful are the obtained effective-medium parameters. As
illustrations, we employed the theory to study the effective-medium properties of several examples including
finite metallic wires and split ring resonators.
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I. INTRODUCTION

There is much recent interest in artificial media with ar-
bitrary permittivity � and permeability �, stimulated by
many fascinating properties discovered based on such media,
such as negative refraction �1,2�, super lensing �3�, and
cloaking �4,5�. However, such unusual media do not exist
readily in nature since ordinary materials do not exhibit mag-
netism at high frequencies �6�. It is only until recently that
practical realizations of these unusual media �often called
metamaterials� became possible, after Pendry proposed the
famous split ring resonator �SRR� that possesses a magnetic
response at any desired frequency �7�. The main idea to fab-
ricate a metamaterial is to combine local resonance structures
of electric and/or magnetic type to form a composite mate-
rial. A standard method to determine the effective parameters
of such composite medium is the so-called S-parameter re-
trieval method �8,9�, which is to directly retrieve the effec-
tive � and � by comparing the transmission spectra of the
realistic structure and the model medium. The retrieval
method, together with its improved versions �10–14�, has
been successfully applied to determine the effective param-
eters of metamaterials in many cases. Other methods were
also employed to calculate the effective parameters of
metamaterials �7,15–22� with different advantages and limi-
tations.

Despite the great successes achieved by these methods,
there are still several problems. It is shown that the effective-
medium parameters cannot be determined by standard meth-
ods in some cases even when the input wavelength �0 is
much longer than the inhomogenity feature size �the lattice
constant� in a metamaterial �23�. More mysteriously, in some
cases, people found that the effective parameters obtained
based on a thin metamaterial layer did not work for a thick
sample possessing the same microstructure �24,25�. This is
very intriguing at first sight, since in principle the effective

parameters should be the local properties of a material and
should not depend on the sample thickness. To address these
problems, we feel that a theory that can be applied to justify
the “quality” of the obtained effective parameters for a given
metamaterial is highly desired.

In this paper, under the generalized coherent-potential ap-
proximation �CPA� �26�, we establish a “quasimode” theory
to study the effective-medium properties of metamaterials.
Embedding the metamaterial under study into a reference
medium whose permittivity �ref and permeability �ref can be
tuned freely, we employ the Green’s function �GF� theory to
study the self-energy, the density of states �DOS�, and the
mean-free paths �MFP� for electromagnetic �EM� modes
traveling inside the medium. We then determine the effective
�eff and �eff of the metamaterial by varying the parameters of
the reference medium to maximize the DOS function. We
found that the theory can not only uniquely determine the
effective-medium parameters of metamaterials �even ap-
proaching the resonance frequency�, but more importantly, it
also yields the MFP which can be used to judge the qualities
of obtained effective parameters. A similar idea has been
applied to study the equivalent parameters of a photonic
crystal to mimic a homogeneous slab �27�. The main contri-
butions of the present paper are the DOS function and the
MFP that can help judge the qualities of the obtained effec-
tive media parameters.

The present paper is organized as follows. We will first
present the basic formalisms of the theory in Sec. II, and then
apply our theory to study three typical examples in Sec. III,
including two basic building blocks of metamaterials—finite
metallic wires and SRRs. Finally, we conclude our paper in
Sec. IV.

II. THEORETICAL FORMALISMS OF THE QUASIMODE
THEORY

Consider a metamaterial whose effective parameters are
to be calculated. For simplicity and definiteness, we assume
that the metamaterial is a periodic lattice of complex micro-
structures, which is the case for many practical situations.
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Consider the wave propagations inside such a complex me-
dium. To make the problem more tractable, we adopted the
CPA concept to replace most part of metamaterial by a ref-
erence homogeneous medium with permittivity �ref and per-
meability �ref, and leave a slab of the realistic metamaterial
embedded inside the reference medium, as shown in Fig.
1�a�. The metamaterial slab should be thick enough so that
the surface effects can be neglected. With this simplification,
the EM wave propagations can be easily solved by a stan-
dard GF method following Ref. �26�, which we recapitulate
next.

Consider a fixed polarization and assume the propagation
direction to be perpendicular to the slab �28�, the problem is
then reduced to a one-dimensional �1D� scalar problem. De-
fine a GF satisfying

��2 + ��r����r��k0
2�G��,r� − r��� = ��r� − r��� , �1�

where k0
2= �� /c�2 in which c is the speed of light, and ��r��

and ��r�� are the permittivity and permeability functions.
Equation �1� can be solved as

G�r�,r��� = G0�r� − r��� +� dr1G0�r� − r�1�V�r��1G�r�1,r��� , �2�

where G0�r−r�� is the GF solution for the reference medium
satisfying

��2 + �ref�refk0
2�G0��,r� − r��� = ��r� − r��� , �3�

and V�r� ,��= ���r����r��−�ref�ref�k0
2 is the scattering potential

�26�. Following Ref. �26�, we rewrite Eq. �2� as a symbolic
form,

G = G0 + G0VG = G0 + G0TG0, �4�

where T=V+G0VG0+G0VG0VG0+ ¯ =V�1−G0V�−1 is the
standard T matrix. The configurational averaged GF is given
by

�G�c = G0 + G0�T�cG0, �5�

where �T�c= �V�1−G0V�−1�c �29�. Now define a function � as

� = G0
−1 − �G�c

−1, �6�

we can rewrite the final GF �after standard Fourier transfor-
mations� formally as

Gc��,k� =
1

kref
2 ��� − k2 − � ��,k�

. �7�

One immediately finds that � is nothing but the “self-
energy” of the EM mode, analogous to the interacting elec-
tron case �30�. Equation �7� shows that an EM mode travel-
ing inside such a complicated medium still behaves like a
“free” mode except that there is a “self-energy” correction.

According to Ref. �26�, in the weak-scattering limit, the
self-energy can be expressed in terms of the forward-
scattering amplitude as

� ��,k� 	 T�k,k�/L , �8�

where L is the total size of the system used for normalization
purpose only. The detailed derivation of Eq. �8� is summa-
rized in the Appendix. We next evaluate the T matrix. The
electric field, which satisfies the standard scalar wave equa-
tion ��2+��r����r���� /c�2���� ,r�−r���=0, can be written in
term of the GF and the T matrix as


�� = 
�0� + G0T
�0� = eikrefz −
i

2�0

�� exp�ikref
z − z1
�T�z1,z2�eikrefz2dz1dz2,

=eikrefz −
i

2�0
exp�ikref
z
�T�kref


z

z

,kref� , �9�

where 
��0�=exp�ikrefr−�t� �with kref=
�ref�refk0� is the free
wave solution inside the reference medium. Here we have
omitted the common factor of e−i�t. Suppose the scattering
problem for the complex structure has been solved by some
numerical methods, we have generally

��z� = S21e
ikrefz z → 	

��z� = eikrefz + S11e
−ikrefz z → − 	

, �10�

where S11 and S21 are the standard S parameters. It is
straightforward to obtain

T�kref,kref� = 2krefi�S21 − 1�, T�− kref,kref� = 2krefiS11,

�11�

through comparing Eqs. �9� and �10�. Therefore, the self-
energy � can be calculated from the S parameters, once the
latter are obtained with numerical methods.

We now discuss how to determine the effective param-
eters of the target system. In the spirits of CPA, one needs to
vary the reference medium properties �ref and �ref, so as to
make the real part of self-energy 
 zero. However, this is not
generally possible, especially in metamaterials near reso-
nance frequencies. To determine the effective medium in
such a situation, we employ the concept of generalized CPA
as described in Ref. �26�. Let us define the DOS function,
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FIG. 1. �Color online� �a� Schematic illustration of the calcula-
tion strategy. Unit cells of three examples studied in present paper:
�b1� 1D AB lattice; �b2� finite metallic wire; �b3� SRR. Here the
cross section of the metallic wire in both �b2� and �b3� is
0.5 mm�0.2 mm.
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���,k� = − Im Gc��,k� = − Im� 1

kref
2 ��� − k2 − � ��,k�� ,

�12�

which describes the probability of finding a mode with fre-
quency � and wave-vector k in a medium. For a given fre-
quency �, the k value that yields the highest DOS defines a
“quasimode” which has the highest probability to exist in
such a complex medium. In clean systems with ��� ,k�=0,
the DOS function is just a collection of delta functions,
which means that the mode is a perfect one and has an infi-
nite lifetime. In a dirty system, the DOS function is no longer
like a delta function and the resultant optical mode will be a
quasimode with a finite lifetime.

The DOS function ��� ,k� is also an implicit function of
�ref and �ref, since both kref

2 ��� and ��� ,k� are functions of
�ref and �ref. Therefore, for a given frequency �, we should
in principle vary three quantities, �ref, �ref, and k, to maxi-
mize the DOS function when searching for a mode. To make
the calculations more tractable, we adopt a further approxi-
mation to simplify the searching process �See Sec. 3.9 of
Ref. �26��. We put k2=kref

2 ���=�ref�ref�
�
c �2 into Eq. �12�, and

then define an effective DOS function as

�eff��ref,�ref� = − Im G��,k�
k2=kref
2 = Im

1

�eff
��ref,�ref�

=
− Im �eff

��ref,�ref�

�Im �eff
��ref,�ref��2 + �Re �eff

��ref,�ref��2
,

�13�

where �eff= ��� ,k� 
k2=kref
2 is the effective self-energy, which

is a function of the reference medium parameters. Under this
approximation, the DOS function now depends only on �ref
and �ref. Therefore, we only need to vary these two param-
eters, �ref and �ref to maximize �eff when determining the
effective parameters �denoted by �eff and �eff� of the target
metamaterial. This simplification would significantly save
our computational time in practice. We note that such an
approximation inevitably generates errors in estimating the
DOS function. However, the induced error is significant only
when the point ��ref ,�ref� is far away from ��eff ,�eff� which
yields the peak value of �eff, but becomes less significant
when the point ��ref ,�ref� approaches ��eff ,�eff� �see Sec. 3.9
of Ref. �26��. Therefore, adopting such an approximation
would not affect our finding the peak position ��eff ,�eff� of
the DOS function, which we really care about.

The approach described above can give us more informa-
tion about the quasimode besides the effective-medium pa-
rameters �eff and �eff. Let us look at the dispersion of EM
mode, which is determined by finding the pole of the GF,

�eff�eff��

c
�2

= k2 − �eff
. �14�

Apparently, the solution k of Eq. �14� must be a complex
value. Define k=k�+ i�, we find that the imaginary part of k
is given by

� = Im
�eff�eff��

c
�2

+ �eff
. �15�

The imaginary part of a wave vector usually characterizes
the “damping” of a mode traveling inside a medium, which
comes from both scatterings and absorptions. In our case, the
damping is mainly caused by scatterings, and is present even
in the absence of absorptions. The scatterings by the inho-
mogenity cause a traveling EM mode to lose its phase coher-
ence. While such scattering loss is easy to understand in a
disordered medium �26�, its origin in a periodic system is not
commonly appreciated. Let us look at the geometry shown in
Fig. 1. When a plane EM wave with a definite k� =k��,0+kzẑ is
incident on the metamaterial slab, within the effective-
medium picture, the wave inside the slab �which is assumed
homogeneous in effective-medium picture� should be a
single mode with a definite wave-vector k��,0+kz,effẑ. How-
ever, in realistic situations, the EM wave inside the metama-
terial slab is a linear combination of multiple modes with
different parallel wave-vectors k�� =k��,0+nG� . Here G� is the
reciprocal vector of the periodic lattice on the x-y plane and
n is an integer. Since each mode �i.e., high-diffraction order
mode� possesses a different k value along the z axis, the
whole wave function will gradually lose its phase coherence
as a single mode in the traveling process, particularly in the
case where the scattering to higher-order mode channel is
significant. Such scattering loss is the origin of the “damp-
ing” in the wave vector of the quasimode, and has also been
mentioned in Ref. �24�. In fact, such scatterings are some-
times termed as “Umklapp scattering” in electron case �31�.
We note that the above discussions are general, and thus
applicable to the normal-incidence case with k�,0=0.

Considering such scattering loss, we can explicitly define
a MFP by

l��� =
1

����
, �16�

which has the physical interpretation of an “effective dis-
tance” to measure how long can an EM mode travel in the
system before encountering a scattering. The MFP thus helps
us justify how good the true system behaves as an effective
medium, and how reasonable are the effective-medium pa-
rameters to describe the studied metamaterials.

III. APPLICATIONS OF THE THEORY

In this section, we employ our theory to study the
effective-medium properties of various systems. We first
study a simple 1D AB lattice as a benchmark test, and then
apply our theory to study two basic constitutional elements
of metamaterials—a finite metallic wire and a SRR. The po-
larization is the same for all three cases, with the electric
field along x direction, magnetic field along y direction, and
wave vector along z direction. The lattice constants of the
metamaterials formed by finite metallic wires and SRRs are
16 mm�6 mm�7.5 mm along the x, y, and z directions,
respectively.

Consider a 1D AB lattice consisting of two homogeneous
dielectric slabs with parameters given by �A=16, �A=1, and
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dA=3.75 mm; �B=4, �B=1, and dB=3.75 mm. To study its
effective-medium properties, we follow the established
quasimode theory to embed a unit cell as shown in Fig. 1
�b1� in a reference medium, and employed the conventional
transfer-matrix method to calculate the S parameters. Since
there is no magnetism in this problem, we simply set �ref
=1 in the calculations. Figure 2 shows the DOS � as func-
tions of �ref for several typical frequencies; we find that all
the DOS functions are maximized around �ref�10, coincid-
ing well with the volume-averaged value predicted by the
standard effective-medium theory. However, while at lower
frequencies, the peak is very sharp and the maximum DOS
value is very high indicating that the effective-medium de-
scription is good, at higher frequencies, the peak is obviously
broadened with a decreasing maximum DOS value implying
that the effective-medium description becomes bad.

We next employ our theory to study a metamaterial con-
sisting of finite metallic wires. Each metallic wire is 15-mm-
long and has a cross-section 0.5 mm�0.2 mm �see inset to
Fig. 1 �b2��. In our calculations, the metamaterial slab that
we took is 7.5-mm-thick and consists of one planar array of
metallic wires. The scattering problem here is much more
difficult to solve than the 1D AB lattice case, and we em-
ployed a full-wave finite element method �32� to compute the
S parameters, from which we calculated the DOS and the
MFP functions. We choose a typical frequency to illustrate
how we determine the effective parameters. With the fre-
quency fixed at f =5.0 GHz, we plotted in Figs. 3�a� and
3�b� the obtained DOS function � and the MFP function l vs
�ref for different �ref �33�. We found that the DOS function is
maximized at �ref=2.793 and �ref=0.906 which are identified
as the effective-medium parameters of the system at this fre-
quency. Meanwhile, we found from Fig. 3�b� that the MFP
also takes the maximum value at this position. This is rea-
sonable, since with this particular medium as a reference, the
scatterings will be mostly reduced, and thus the MFP is the
longest. Compared with the standard S-parameter retrieval
method, we note that the obtained effective medium is
unique in our method, and the drawback of multiple solu-
tions is overcome.

We repeated the calculations for eight different frequen-
cies f =1,2 ,3 , . . . ,8 GHz, and plotted the spectrum of DOS
vs �ref for each frequency. For illustrative purposes, we
stacked the eight spectra together in Fig. 4 �34�. We note that

such an illustration technique is widely adopted in literature
to show the electronic quasiparticle dispersions �35�. It is
shown that each spectrum exhibits a peak at different �ref
values, which clearly illustrates the system’s effective per-
mittivity �eff as a function of frequency f . In fact, we can
gain more physics from Fig. 4. We find that the peak in the
DOS function is broadened and the maximum DOS value
decreases as the frequency increases. Such a tendency is sig-
nificantly enhanced when the frequency is higher than 7
GHz. Since the DOS function has the physical interpretation
of the probability to find a mode, Fig. 4 suggests that the
uncertainty region for the calculated �eff value is significantly
enhanced as the frequency increases. In a homogeneous me-
dium without scatterings, the DOS function is a delta func-
tion and thus the effective parameter takes a definite value
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FIG. 2. �Color online� DOS �in arbitrary unit� as the function of
�ref calculated at a series of frequencies for the 1D AB lattice struc-
ture. Here we set �ref=1 in the calculations.
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FIG. 3. �Color online� �a� DOS �in arbitrary unit� and �b� MFP
�in unit of a: lattice constant along z direction� as function of �ref for
different �ref, calculated at f =5.0 GHz for the finite metallic wire
structure with geometry shown in Fig. 1 �b2�.
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FIG. 4. �Color online� For the finite metallic wire structure as
shown in Fig. 1 �b2�, DOS��ref spectra �solid lines� calculated at
frequencies 1, 2, 3, 4, 5, 6, 7, and 8 GHz, stacked from bottom to up
with increasing frequency. Here each spectrum has the same label-
ing scale. The dashed line represents �eff as a function of frequency
calculated by the retrieval method for the same system.
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without any uncertainty. Indeed, we found that the uncer-
tainty range is small in the long-wavelength case. However,
as frequency increases, particularly near the resonance fre-
quency ��10 GHz here�, even we can still get some effec-
tive medium to describe the realistic system, the uncertainty
range of the obtained effective parameter increases drasti-
cally, and the effective-medium description deteriorates and
gradually breaks down.

The result of the frequency dependence of �eff is also
obtained by the retrieval method �short dash line in Fig. 4�.
While the retrieval results are generally in good agreements
with ours, in fact our calculations show that the retrieved �eff
have “bad” qualities at frequencies higher than 7 GHz.

The physics can be better understood through looking at
the calculated MFP. We showed in Fig. 5�a� the calculated
MFP l as a function of frequency for the present system. As
expected, the MFP is a decreasing function of frequency,
which means that the probability to encounter a scattering is
enlarged as frequency increases, and in turn, the effective-
medium properties become worse. We now quantitatively
study the role played by the MFP. At a fixed frequency, we
studied the transmission properties for a metamaterial slab
with thicknesses d �here the reference medium is air�, and
define the calculated S parameters as Sreal. Then we do the
same calculations but with the realistic metamaterial slab re-
placed by a homogeneous slab of the same thickness and
with effective parameters �eff, and �eff. The S parameters
thus obtained are defined as Seff. Let us now define a quantity

S as


S = 

S11
eff − S11

real
2 + 
S21
eff − S21

real
2, �17�

which measures the absolute “differences” between the ef-
fective medium and the realistic system in terms of both
transmission and reflection spectra �36�. Obviously, 
S
serves to testify the quality of the effective-medium descrip-
tion. The smaller the 
S, the better the effective-medium
description.

We have performed numerical calculations at three typical
frequencies—1, 5, and 7 GHz, for the metamaterial slabs
with different thicknesses d. The obtained 
S for different
frequencies are shown in Fig. 5�b� as functions of d /a �a�
=7.5 mm� is the lattice constant along z direction for the
metallic wire structure�. We find that the effective-medium
description works very well in the low-frequency situation
�f =1 GHz�, and 
S is very small �typically smaller than
0.03� for all the slab thicknesses considered. However, at
modest frequency �f =5 GHz�, it is found that while the
effective-medium description is still good for thin metama-
terial slabs, 
S is significantly enhanced as d increased, in-
dicating that the effective-medium description is no longer
reasonable for thicker samples. Such a tendency is even more
prominent for the case of f =7 GHz—while the effective-
medium parameters work well to describe the EM properties
of a thin metamaterial slab, the same effective-medium pa-
rameters cannot work to describe a thick metamaterial
sample composed by the same type of unit cells. We note
that similar observations were found in previous studies
�24,25�.

The physics behind such an intriguing effect can be un-
derstood from the MFP shown in Fig. 5�a�. As we have dis-
cussed, the MFP has the physical significance of the “effec-
tive distance” for an EM mode traveling inside the
metamaterial freely. For a thin metamaterial slab, its thick-
ness d is always smaller than the MFP l, and therefore, the
phase coherence of the EM quasimode is preserved when
passing through the medium. That is why the effective-
medium description is good for the thin-slab case. However,
as the ratio of d / l increases, more scatterings are introduced
so that the effective-medium description becomes bad. Ap-
parently, such a tendency is less significant for the case of
long MFP �say, f =1 GHz case�, and the effective-medium
description can sustain to thicker samples in such a case.
Therefore, the MFP can help us judge the quality of the
effective-medium description.

One may argue that the effective parameters may change
for a thicker system. To clarify this point, we recalculated the
effective parameter for the system at f =7 GHz using a two-
layer sample �d=2a�, and found that the effective-medium
parameters are �eff=5.200 and �eff=0.658 �quite close to the
result calculated with the thin sample �d=a� :�eff=4.819,
�eff=0.699�. With this new set of effective-medium param-
eters, we repeated the calculations for 
S and plotted 
S as
a function of d /a in Fig. 5�b�. We note that the hollow-star
line has relatively smaller 
S than the solid-star line when
d /a increases. This is because the effective-medium param-
eters obtained with a two-layer film are more reasonable than
that with a 1 layer film, since the former calculation has
naturally taken more multiple-scattering effects into account.
However, we note that significant errors still exist in thick
samples. Therefore, this “improved” effective-medium de-
scription still cannot hold for thick samples, since the “quasi-
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FIG. 5. �Color online� �a� Calculated MFP �denoted by l� as a
function of frequency for the finite metallic wire structure; �b� 
S as
functions of the sample thickness calculated at three frequencies: 1,
5, and 7 GHz. The open stars represent 
S as a function of the
sample thickness calculated at f =7 GHz but with effective param-
eters calculated based on a two-layer sample.
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modes” inside the samples inherently possess strong damp-
ing.

Our theory can be employed to study other metamaterials
with more complex micro structures. Below we illustrate its
applications to a SRR structure, with geometry shown in Fig.
1 �b3�. Compared with the metallic wire structure, because of
the polarization of the present calculation, the SRR structure
mainly exhibits magnetic responses, although it also pos-
sesses electric resonances with different resonance frequen-
cies. To illustrate the frequency dispersion of the SRR’s mag-
netic permeability, we plotted the DOS function � vs �ref at
a series of frequencies: 0.5, 1.0, 1.5, 2.0, . . . ,5.0 GHz, and
stacked these spectra together in Fig. 6 �37�, which clearly
illustrates the frequency dependence of �eff. For comparison,
we again added the results obtained from the retrieval
method in the same figure. Similar to the finite wire case, as
a resonance is approached �at about 5.78 GHz�, the uncertain
regions of �eff become wider. Although one can still obtain
some effective-medium parameters for the studied metama-
terial both by the retrieval method and by our theory, the
qualities of such effective parameters become bad; the effec-
tive description at higher frequency may not hold for thicker
samples because such modes typically possess shorter mean-
free paths.

IV. CONCLUSIONS

To summarize, under the generalized coherent-potential
approximation, we established a “quasimode” theory to
study the effective-medium properties of electromagnetic
metamaterials. The main idea is to determine the effective
parameters of the target medium through maximizing the
DOS function, which has the physical interpretation of the
existing probability of a particular EM mode. The most im-
portant output of our theory is the mean-free path of an EM
mode, which measures how far can an EM mode travel
“freely.” Compared with some standard methods, the present
approach is applicable to frequency region near resonances,
and most importantly, provides quantitative judgments on
how meaningful are the obtained effective-medium param-
eters. We found that a system with a larger MFP has a better
effective-medium property, and its effective-medium de-

scription can hold for thicker samples. We have successfully
employed the theory to study the effective-medium proper-
ties of both finite metallic wires and split ring resonators.
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APPENDIX: DERIVATION OF Eq. (8)

According to Ref. �26�, Eq. �4� can be rewritten as

G�z,z�� = G0�z − z�� +� G0�z − z1�T�z1,z2�G0�z2 − z��dz1dz2.

�A1�

Following Ref. �26�, we need to perform configuration aver-
age for both G�z ,z�� and T�z1 ,z2�. The configuration average
is a necessary step in the homogenization, and includes: �a�
average over all possible scatters; �b� average over different
positions with the same source-detector distance. Consider
that

G�z,z�� =� dk1dk2

�2��2 G�k1,k2�eik1ze−ik2z�

=� dk1dk2

�2��2 G�k1,k2�ei�k1−k2�Zei�k1+k2��z/2, �A2�

Where Z= �z+z�� /2, �z=z−z�, we find that averaging step
�b� yields generally

Gc�z,z�� = Gc�z − z�� =
1

L
� dZG�z,z��

=
1

L
� dk

2�
Gc�k,k�eik�z−z��. �A3�

Here L is the total size of the studied system, which is a
constant for normalization purpose only. Now that Gc is a
function of �z only, we can define another quantity Gc�k�
such that

Gc�z − z�� =� dk

2�
Gc�k�eik�z−z��/ . �A4�

Obviously, we get Gc�k ,k�=Gc�k� ·L by comparing Eq. �A3�
with Eq. �A4�. The same arguments apply to the T matrix
and we get Tc�k ,k�=Tc�k� ·L. Based on the Fourier-
transformed form of Eqs. �5� and �6�, we can easily find that

� ��,k� = T�k��1 + T�k�G0�k��−1. �A5�

In the weak-scattering limit, i.e., T�k�G0�k��1, we finally
get

� ��,k� 	 T�k� = T�k,k�/L . �A6�
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FIG. 6. �Color online� For SRR structure as shown in Fig. 1�b3�,
DOS spectra as function of �ref calculated at frequencies: 0.5, 1,
1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5 GHz, stacked from bottom to
up with increasing frequency. Here each spectrum has the same
labeling scale. The dashed line represents �eff as a function of fre-
quency calculated by the retrieval method for the same system.
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