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Central configurations of identical masses lying along curves
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A central configuration is an arrangement of point masses in which the net gravitational accelerations are
proportional to the displacements from the center of mass. Here several families of central configurations are

described consisting of a large number of identical masses that occupy one or more curves. The families are
found numerically. These central configurations are regular, an algebraic condition that assures their persistence
in the presence of small perturbing forces such as external fields or tethering forces. Both planar and nonplanar
families exist; the planar central configurations are associated with (unstable) periodic solutions to the n-body
problem. Similar configurations are exhibited for objects having pairwise interaction proportional to d™7 at

distance d for p different from 2, such as point vortices.
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In the n-body problem of celestial mechanics, the term
central configuration is used to denote an arrangement of
masses in which the acceleration of each mass due to gravi-
tational forces is proportional to the displacement from the
center of mass. Central configurations play a distinguished
role in the analysis of the n-body problem appearing as lim-
iting configurations in certain motions and marking topologi-
cal changes in configuration space of the level sets of an
important conserved quantity [1-3]. Planar central configu-
rations are the basis for the simplest periodic solutions of the
n-body problem, the relative equilibria, in which each body
moves in a uniform circular orbit around the center of mass.
The three-body central configurations (associated with the
names Euler and Lagrange) have been known for two centu-
ries; they are significant in the structure of the solar system
(Trojan asteroids) and have been exploited as parking orbits
for space telescopes such as SOHO and WMAP.

Despite their importance, little is known about central
configurations of more than a few masses. Planar central
configurations containing up to n=10 identical masses have
been investigated numerically [4,5], but the number of con-
figurations grows rapidly with n; indeed, it has not been
proved that the number is finite for n>4 [6-8]. For arbitrary
n a planar central configuration can be formed by properly
arranging the masses along a straight line [9] or at the verti-
ces of a regular n-gon, as in the classical three-body configu-
rations mentioned above. Configurations consisting of con-
centric rings of masses are also known to exist [10]. These
configurations may be viewed as having all the bodies on
one or more straight line segments or circles.

In this note several families of central configurations are
described consisting of large numbers of identical masses
lying on one or more curves. Both planar and nonplanar
families exist; they are found numerically as solutions to a
system of algebraic equations. The solutions form families in
the sense that the distribution of mass varies in a continuous
way as the number of masses is increased. The solutions are
regular in that the derivative matrix of the defining system of
equations (described below) is nonsingular; thus a careful
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application of interval arithmetic and the inverse function
theorem should suffice to rigorously establish the existence
of these configurations. The regularity also assures that the
solutions will persist in the presence of perturbations to the
system, such as a weak external gravitational field, tethering
forces between adjacent masses, or replacement of one or
more point masses by nonsymmetric mass density distribu-
tions. Indeed, configurations exist even when some of the
parameters of the defining equations are varied over a wide
range. The masses of the bodies, for example, need not be
identical; interesting configurations are exhibited below in
which one body is 20 times more massive than the others.
Furthermore, it is shown that analogous central configura-
tions exist when the inverse-square gravitational interaction
is replaced by one with a different exponent such as the one
giving the interaction between point vortices in an inviscid
fluid. In the vortex case the limit n — % may be taken giving
a relative equilibrium configuration of vortex sheets.

Let n bodies of mass M/n be found at positions r;, 1 =i
=n. We fix the center of mass at the origin so that the posi-
tions satisfy 2r;=0. These point masses form a central con-
figuration if for some nonzero constant \ the equations
r,—r
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I<=i=n (1)
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are satisfied. Different values of N merely reflect different
scalings for the configuration, so it is sufficient to set A2
=GM and use the system of equations

1 r,—r;
0=f:=r,—— ’—LS, 1=i=n. (2)
I |ri_rj

It is important to note that central configurations are deter-
mined by algebraic conditions, not dynamic ones.

For the moment, assume that all the bodies lie in a plane;
we may write r;=(x;,y;,0) for each i. Because the center
of mass is fixed at the origin, there are only n— 1 independent
positions for the bodies. Also any solution to Eq. (2) will
still be a solution after rotation of the configuration around
the origin; let us assume a rotation that enforces the
condition y;=0. Thus there are N=2n-3 real variables
X15X2, Y25 -+ sXn_1,Vn_1 available to satisfy system (2). On the
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FIG. 1. Planar central configurations of 96 identical masses. The
center of mass is marked by a cross.

other hand the sums 2f; and 2(r; X f;) vanish independent of
the positions ry, ...,r, so that the system of equations (2) is
equivalent to the vector equations 0=f;, 2<i=<(n-1), and
the scalar equation O=r; Xf;. Thus the system of n vector
equations (2) reduces to the vanishing of N real functions in
N real variables. The collection of all partial derivatives of
the real functions with respect to these variables forms a N
X N real derivative matrix that may be used to find central
configurations.

Solutions to Eq. (2) were constructed numerically in the
following way. The n masses were initially arrayed along
selected curves with uniform spacing. A modified form of
Newton’s method that has global convergence properties [11]
was then used to compute a sequence of new positions for
which the f; tend to zero. Specifically, the inverse of the
derivative matrix is multiplied by a small parameter, slowing
the rate of convergence of Newton’s method but increasing
the region of convergence. The process was continued until
all the residuals |f;] were reduced below a fixed threshold,
typically 107'#. Then the derivative matrix of the system was
verified to be nonsingular indicating that the zero sets of the
defining functions intersect transversely in N-dimensional
space and hence that the positions computed are indeed ap-
proximations to an exact solution to the system. Because the
bodies are closely spaced along the curves, the functions f;
are much more sensitive to displacements of the bodies in
the directions tangent to the curves than perpendicular to
them. The condition number of the derivative matrix was
usually quite acceptable, however. For a typical solution with
n=100, the largest singular value of this matrix is 600, the
smallest is 0.5, and all but the smallest 15 are larger than 10.

Planar central configurations obtained in this manner are
displayed in Figs. 1 and 3. Some are clearly related to the
classical solutions mentioned above (all bodies on one line
segment or one circle.) Figure 1 shows six relative equilib-
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FIG. 2. Superposition of four central configurations with n=50,
100, 200, and 300. The area of each circle is proportional to 1/n;
only the upper half-plane is shown.

rium configurations of 96 identical masses that are found by
the numerical scheme when the bodies are initially placed on
several parallel or perpendicular line segments, generalizing
Moulton’s collinear configuration. These configurations ap-
pear to exist for all sufficiently large n generally requiring at
minimum about ten masses on each line segment. For in-
stance, the configuration in the upper left of Fig. 1 could not
be found for n less than 16. There appears to be no upper
limit for n in these families, although hardware and software
limitations became evident for n>300. A subtle dependence
on n in the shape of the configurations appears when n is
large, due to the fact that the net contribution to the accel-
eration of each body from the bodies in its immediate vicin-
ity is proportional to x In(1/8),  being the curvature of the
curve on which they lie and 6 the spacing between the bodies
[12]. The result is that the masses tend to lie along slightly
straighter arcs when n is very large. This effect is visible in
Fig. 2, where central configurations are superimposed for the
values n=50, 100, 200, and 300. In Fig. 3 a number of con-
figurations are shown that are related to the classical n-gon
(circular) configuration. The first is simply an oval with non-
uniform mass distribution; the curve deviates from an ellipse
by a few percent. Some masses may be placed along the
major axis of the oval, as shown in the figure. When their

FIG. 3. Planar central configurations of 108 identical masses.
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CENTRAL CONFIGURATIONS OF IDENTICAL MASSES...

FIG. 4. Superposition of nearly elliptical planar central configu-
rations with n=25, 50, 100, and 200. The area enclosed by each
circle is proportional to the mass M/n.

number becomes great enough, the line segment pierces the
oval. In this circumstance, the number of masses on either
side of the segment may be changed; the segment will bend
in response to any imbalance. The extreme case with no
bodies at all on one side is displayed at lower right.

All of these configurations are regular solutions of system
(2) in the sense that the derivative matrix of the reduced
system is nonsingular. For this reason, Eq. (2) may be per-
turbed slightly and a corresponding perturbed solution con-
figuration will exist. For instance, terms representing the ten-
sion 71in a tether joining adjacent bodies may be added to Eq.
(2); for sufficiently small 7, a solution may be found by
moving the bodies slightly from their zero-tension positions.
Configurations such as these may prove useful for the design
of tethered arrays of bodies (e.g., sensors) in a microgravity
environment. One could also add a weak external gravita-
tional field to obtain perturbed configurations; if the field is
symmetric about the origin then planar configurations will
also be associated with periodic solutions of the n-body
problem.

The oval or nearly elliptical solutions deserve further dis-
cussion. The configuration is very close to an ellipse when n
is large; for example, in the configuration with n=120 each
mass position satisfies (0.317x;)>+y?=0.227+6; with ||
<0.003. Decreasing n leads to lower eccentricity as illus-
trated in Fig. 4. The oval central configuration with ten
masses is quite difficult to distinguish from the circular con-
figuration, as seen in Fig. 5. The mass positions are indicated
by circles, while the dots show the vertices of a regular
n-gon. (The oval configuration of ten masses was published
earlier in a catalog of planar central configurations [4], but
apparently not recognized as noncircular.) No oval configu-
rations were found for n below 10.

Solutions to Eq. (2) in which the bodies do not all lie in a
plane can also be found. The reduction from vector equations
to real equations is similar to the planar case. A typical non-
planar central configuration is shown in plan and elevation
views in Fig. 6. A great variety of such configurations can be
found with ease.

It is interesting to consider solutions to the more general
system of equations:

m: l'l»—l‘» .
0=ri_2<—l)—%’, l<i<n. (3)
j#i M |1'i—1'j

Here the “mass” of the jth body is m; and a parameter « has
been introduced as the exponent of interaction; values of «
different from 3 correspond to objects having different inter-
action potentials. Figure 7 displays some solutions to Eq. (3)
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FIG. 5. A comparison of oval (circles) and circular (dots) central
configurations with n=10 and n=11. For the n=10 oval configura-
tion, the magnitude ratios |rj|/ |r,| take the values 1, 0.989 324, and
0.972 814.

with n=60. In the upper two configurations, the interaction is
the same as in Eq. (2), a=3, but one body is 20 times as
massive as the others. (In the figure, the mass of each body is
proportional to the area enclosed by its circle.) There are
many different configurations possible. As the one large body
is made more and more massive, the smaller bodies eventu-
ally lie on radial line segments only. The equations may be
further perturbed by using a nonsymmetric mass density dis-
tribution rather than a point mass to calculate the gravita-
tional force due to the largest body; this could take into ac-
count the oblateness of a heavenly body, for example.
Experimentation shows that the perturbation can be substan-
tial without gross deformation of the overall central configu-
ration. The lower two configurations show variations in con-
figuration shape with identical m; but changes in a. The
lower left configuration was computed with a=2, corre-
sponding to the interaction between point vortices in a two-
dimensional fluid, the m; now being the vortex intensities.
Many relative equilibria of point vortices have been com-
puted [13] including families with the vortices lying on con-
centric circles [14]. In contrast to the gravitating case, the
sum in Eq. (3) has no divergent local contribution when «
<3; in the limit n— the sum becomes a convergent
principal-value integral over a one-dimensional distribution
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FIG. 6. A nonplanar central configuration with n==80. The upper
figure is the plan view, i.e., a projection onto the xy plane with the
x axis running vertically. The lower figure is the elevation view, the
projection onto the yz plane.

of vorticity, i.e., one or more vortex sheets. Computations of
solutions to Eq. (3) with increasing n show numerical con-
vergence to sheets [15], and vortex sheet relative equilibria
have been observed in a rotating superfluid [16,17]. The con-
figuration shown in the lower right was computed with «
=4, so that the interaction force drops off more rapidly with
distance than gravitation. Most of the relative equilibria
shown in Figs. 1 and 3 have analogs for « as large as 10.
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FIG. 7. Solutions to Eq. (3) with n=60. Upper: large body is 20
times as massive as the others. Lower: @=2 (left) and @=4 (right).

In summary, families of central configurations have been
shown to exist in which large numbers of identical masses
are arranged along curves; both planar and nonplanar con-
figurations can be found. These configurations have an alge-
braic regularity property that assures existence in the pres-
ence of small perturbations to the system such as tethering
forces. Beyond this property, direct computation has shown
that the perturbations may be large: the masses may vary
over a wide range and even the interparticle interaction itself
may be changed considerably. The corresponding configura-
tions of point vortices have been considered elsewhere [15].

Any planar central configuration gives rise to a family of
homographic motions [1], with the zero angular momentum
collision motion at one extreme and the periodic motion
(relative equilibrium) at the other. For the configurations
considered in this paper the relative equilibria are unstable in
general, just as is the case with the Lagrange and Euler three-
body motions. There is an additional source of instability for
configurations with masses closely spaced along a curve:
simulations indicate that even extremely small velocity per-
turbations can cause adjacent masses to collide, so that the
motion becomes singular in a short time. In some ways the
situation is comparable to the roll-up of a vortex sheet [15].
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