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Brown, Preston, and Singleton �BPS� produced an analytic calculation for energy exchange processes for a
weakly to moderately coupled plasma: the electron-ion temperature equilibration rate and the charged particle
stopping power. These precise calculations are accurate to leading and next-to-leading order in the plasma
coupling parameter and to all orders for two-body quantum scattering within the plasma. Classical molecular
dynamics can provide another approach that can be rigorously implemented. It is therefore useful to compare
the predictions from these two methods, particularly since the former is theoretically based and the latter
numerically. An agreement would provide both confidence in our theoretical machinery and in the reliability of
the computer simulations. The comparisons can be made cleanly in the purely classical regime, thereby
avoiding the arbitrariness associated with constructing effective potentials to mock up quantum effects. We
present here the classical limit of the general result for the temperature equilibration rate presented in BPS. In
particular, we examine the validity of the melectron /mion→0 limit used in BPS to obtain a very simple analytic
evaluation of the long-distance collective effects in the background plasma.
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Brown, Preston, and Singleton �BPS� �1� performed
a controlled first-principles analytic calculation of the
Coulomb energy exchange processes for weakly to mo-
derately coupled plasmas, namely, the electron-ion tem-
perature equilibration rate and the charged particle stop-
ping power. These calculations are accurate to leading and
next-to-leading order in the plasma coupling parameter
g��e2 /�Debye� /T and to all orders in the quantum parameter
�̄�e2 /�v̄T for the two-body quantum scattering within the
plasma, where v̄T is a thermal averaged electron velocity.
Here we shall examine the electron-ion temperature equili-
bration rate in some detail, particularly with regard to recent
molecular-dynamics �MD� calculations �2,3�.

In general, we write the energy density exchange rate be-
tween the electrons and ions in a plasma as1

dEeI

dt
= − CeI�Te − TI� , �1�

where the rate parameter that appears here,

CeI =
�e

2

2�
� me

2�Te
�1/2

�I
2 ln � , �2�

serves to define the “Coulomb logarithm” ln � for this spe-
cific process. The electron Debye wave number �e
=1 /�Debye

electron, and

�I
2 = �i

�i
2 �3�

is the sum of the squares of the ion plasma frequencies.
Throughout this paper we shall measure temperature in en-
ergy units.

For plasma conditions that often occur in inertial confine-
ment fusion �ICF� capsules, the coupling g is weak to mod-
erate and the electron temperature Te is much greater than
the binding energy 	H of the hydrogen atom, Te
	H. Since
v̄T�	Te /me, the quantum parameter can alternatively be
written as ��		H /Te. Thus, for these ICF conditions, the
quantum parameter is small, ��1, which corresponds for-
mally to � being large, and so the scattering must be de-
scribed quantum mechanically. The electron mass me is
much smaller than an ion mass mI in the plasma. Taking
advantage of me /mI≪1, BPS made use of a sum rule for
the contributions of collective long-distance effects in the
me→0 limit and were able to find a simple expression for the
Coulomb logarithm under these conditions:

ln �BPS
QM =

1

2

ln� 8Te

2

�2�e
2� − � − 1
 , �4�

where �=0.57721. . . is the Euler constant and �e is the elec-
tron plasma frequency. Result �4� corresponds to Eqs. �3.61�
and �12.12� of �1�, with a small transcription error corrected
when BPS passed from their Eq. �12.43� to Eq. �12.44�.

Molecular-dynamics methods �2� have been used to ex-
tend such perturbative results into nonperturbative regimes.
However, most MD methods employ ad hoc potentials that
mock up quantum-mechanical effects in a fashion that has
little theoretical basis. Consequently, even in the perturbative
regime, it is problematic to compare such MD results with
the result of a systematic calculation such as that given in

1We use the rate of change in electron-ion energy density dE /dt
on the left hand-side of Eq. �1�, rather than the corresponding tem-
peratures dT /dt, because, in general, the conversion between E and
T entails higher-order plasma corrections in the equation of state.
However, as noted in Ref. �1�, a clean separation into separate elec-
tron and ion energy components within the plasma can be made
only up to the order g to which we work here. The kinetic energy
does not depend upon the coupling g, and its time derivative is of
order g2 ln g. On the other hand, the potential energy starts at order
g2, and its time derivative is of higher order than we are calculating.
At higher orders, collective plasma potential energies come into
play, and this clean separation into electron and ion energies cannot
be made.
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Eq. �4�. To surmount this problem, Dimonte and Daligault
�DD� �3� recently performed purely classical2 MD simula-
tions with the Coulomb potential. The MD simulations of
DD give results that can be directly compared with the clas-
sical limit of the BPS calculation. As with the extreme quan-
tum limit �Eq. �4��, for light electrons the classical result also
takes a simple form,

ln �BPS
C = �i

�i
2

�I
2 ln� 4Te

�eei��e
� − 2� −

1

2
. �5�

This expression follows from adding terms �12.25� and
�12.44� of Ref. �1�, except for the trivial modification to or-
dinary Gaussian units from the rationalized electrostatic units
employed by BPS. Here, e and ei=Zie are the values of the
electron and ion charges. For the electron-proton plasma
considered by DD, the classical BPS result can be written as
ln �BPS

C =ln�C /ge�, where ge=e2�e /Te is the plasma cou-
pling, and C=4e−�2�+1/2�=0.7648. . .. For small values of ge,
the regime in which the BPS formalism is valid, DD found
an agreement with expression �5� to within their statistical
error of 5%.

To avoid the formation of unstable configurations of two
particles of opposite charge that experience an attractive
force, DD worked with electrons and ions of the same charge
moving in an implicit neutralizing background charge den-
sity of opposite sign. Since it is either the square or the
absolute value of the electron and ion charges that enter into
the perturbative regime, as made explicit by expressions �2�
and �5�, this sign change causes no problem for small
coupling.3 To increase the speed of convergence of the simu-
lations, DD use an “electron” mass me and a single species of
“ion” mass mI whose ratio is on the order of 1/100 rather
than the physical value of 1/1836 for the electron and proton.
This larger choice of electron-ion mass ratio allows them to
obtain accurate numerical results with high statistics, and it
in no way alters the relevance of their work in testing ana-
lytic results for which this mass ratio can be changed at will.
However, to properly compare with BPS in this mass regime,
one must now include the finite electron mass corrections to
Eq. �5�. Some are trivial kinematic corrections. Others,
which we shall denote by 
, arise from long-distance collec-
tive effects and are nontrivial. For the parameter regime con-
sidered in DD �3�, we shall find that these corrections are less
than their 5% statistical error.

Before turning to the calculation of the electron mass cor-
rections for the classical case, we note that the extreme quan-

tum limit �Eq. �4�� contains exactly the same nontrivial long-
distance correction 
 in addition to other trivial kinematic
corrections. Therefore, the calculation in the text is also rel-
evant for the extreme quantum case. For plasmas in the ICF
regime, these corrections may be of comparable size to the
degeneracy corrections4 calculated in Ref. �5�. To have a
place in which all the small corrections to the quantum limit
�Eq. �4�� are collected, we quote results of Ref. �5� in the
Appendix. These entail not only the first Fermi-Dirac correc-
tion when the electron density starts to become large but also
the first classical correction when the quantum parameter �
starts to become large. Thus, we shall have a convenient
reference to all of our results on the energy relaxation rate
relevant to ICF recorded in the Appendix.

To begin our development, we note that the work of BPS
�1� expresses the coefficient appearing in Eq. �1� as the sum
of three contributions,

CeI = �CeI,S
C + CeI,R

C � + CeI

Q, �6�

with the three terms given by Eqs. �12.25�, �12.31�, and
�12.50� in �1�. The first term CeI,S

C is the short-distance clas-
sical contribution. The second term CeI,R

C is the contribution
from long-distance cooperative dielectric corrections. These
two terms comprise the complete classical rate coefficient,
which is the main topic of this note. The remaining term CeI


Q

is the complete quantum correction �which vanishes in the
formal limit �→0�. The method used by BPS enables these
terms to be unambiguously and precisely calculated to lead-
ing and first subleading order in the plasma coupling—
expressed in terms of the plasma number density n, this is a
unique evaluation to the formal orders n ln n and n. Since the
expression for CeI


Q is not needed for the discussion in the
text, and since its ingredients are somewhat complex, we
shall relegate it to the Appendix. The quantum result is, how-
ever, an essential contribution in practical ICF applications.

The first term in Eq. �6�, the short-distance classical scat-
tering contribution, reads5

CeI,S
C = − �i

�e
2�i

2 �TI
2meTe

2mi�1/2

�TIme + Temi�3/2� 1

2�
�3/2

�
ln� ZigeTe

4meiVei
2 � + 2�
 . �7�

Here, the sum runs over all ions of charge Zi in the plasma,
ge is the electron coupling parameter, which in ordinary cgs
units �not the rationalized units employed by BPS� is2Dimonte and Daligault obtained unambiguous and accurate re-

sults for a well-defined problem. They do not treat quantum-
mechanical effects, and thus their work is not directly applicable for
the conditions that appear, for example, in an ICF capsule.

3However, in the nonperturbative regime where the plasma cou-
pling g becomes of order one or larger, the relative sign of the
electron and ion charges is important. For example, the first correc-
tion to the perturbative results quoted in the text has an overall
coefficient involving �eei�3 that is negative in the physical case.
This is experimentally confirmed in the differing ranges of positive
and negative pi mesons stopping in nuclear emulsions �4�.

4Section III of Ref. �5� contains a detailed pedagogical account of
the method of dimensional continuation that we employ. Section IV
of this paper reviews the ad hoc nature of the “convergent kinetic
equations” that have been used in the literature. The work of Kihara
and Aono �6� which examines the energy relaxation of a slow par-
ticle in a plasma falls into this latter category.

5This is Eq. �12.25� of Ref. �1� in somewhat different notation,
and with the arbitrary wave number K set to the electron Debye
wave number �e for convenience; see also Eq. �B8� of Ref. �5�.
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ge =
e2�e

Te
. �8�

The square of the thermal velocity entering Eq. �7� is defined
by

Vei
2 =

Te

me
+

TI

mi
, �9�

while the quantity

1

mei
=

1

me
+

1

mi
�10�

is the reciprocal of the reduced mass of an electron-ion pair.
The second term in Eq. �6�, the long-distance dielectric

term that accounts for collective effects in the plasma, is
given by

CeI,R
C =

1

2�
�

−�

�

dv
�e�v��I�v�

�total�v�
i

2�
Ftotal�v�ln�Ftotal�v�

�e
2 � .

�11�

The individual spectral weights in this expression are defined
by

�b�u� = �b
2	 mb

2�Tb
u exp�− mbu2/2Tb� , �12�

the sum over ion components is denoted by

�I�u� = �i
�i�u� , �13�

and so the total spectral weight is given by

�total�u� = �e�u� + �I�u� , �14�

where �e�u� is the electron contribution. The function
Ftotal�v� is related to the classical leading-order plasma di-
electric permittivity by

k2	�k,kv� = k2 + Ftotal�v� , �15�

and it can be written in terms of the dispersion relation

Ftotal�v� = �
−�

�

du
�total�u�

u − v − i0+ . �16�

As explained in BPS �1� in the work about their Eq.
�12.44�, in the limit of small electron mass the long-distance
contribution reduces, in leading order in me, to the simple
form

CeI,R
CL =

�e
2

2�
� me

2�Te
�1/2�

−�

�

dvv
i

2�
��e

2 + FI�v��ln�1 +
FI�v�

�e
2 � ,

�17�

in which FI�v� differs form Ftotal�v� by simply replacing
�total�u� in dispersion relation �16� by �I�u�. The integrand in
the leading term �Eq. �17�� is analytic in the upper-half plane,
and hence, noting the asymptotic behavior FI�v�→−�I

2 /v2 as
v→�, the integral can be evaluated by contour integration
with the result that

CeI,R
CL = −

1

2

�e
2

2�
� me

2�Te
�1/2

�I
2. �18�

This is result �12.44� of �1� after correcting for the trivial
transcription error noted above. We express the general long-
distance contribution �Eq. �11�� in the form

CeI,R
C =

�e
2

2�
� me

2�Te
�1/2

�I
2�−

1

2
+ 
� , �19�

which, upon comparing Eq. �11� with Eqs. �17� and �18�,
defines6


 =
�e

2

�I
2�

−�

�

dvv
i

2�

e−mev2/2Te

�I�v�
�total�v�

Ftotal�v�
�e

2 ln�Ftotal�v�
�e

2 �
− 
1 +

FI�v�
�e

2 
ln�1 +
FI�v�

�e
2 �
 . �20�

The correction 
 vanishes as me→0. All the various ratios
that appear within the outer square brackets are dimension-
less. The prefactor �e

2 /�I
2 has the dimensions an inverse ve-

locity squared, which combines with the integration measure
dvv to produce a dimensionless quantity. Hence 
 is dimen-
sionless as it must be, and therefore it is a function only of
dimensionless quantities. One might expect that the only rel-
evant dimensionless parameter is the ratio of the squares of
the thermal velocity of the ions and electrons, TIme /TemI.
However, the Debye wave numbers are important and they
involve the temperature and the density. Therefore, with the
ion species at a common temperature TI, the most general set
of dimensionless quantities is the ion-electron temperature
ratio TI /Te, the ion-electron number density ratios ni /ne, the
ion-electron mass ratios mi /me, and the dimensionless ionic
charges Zi=ei /e. Hence,


 = 
� TI

Te
,� ni

ne
�,�mi

me
�,�Zi�� . �21�

In the case of a single-ion species, as considered by Dimonte
and Daligault in Ref. �3�, the correction 
 depends only upon
TI /Te, mI /me, and ZI. We have examined analytic approxi-
mations for 
, but they are long and cumbersome and do not
provide insight into its structure. Hence in what follows, we
shall present graphs of 
 obtained numerically for various
parameters.

Adding Eqs. �7� and �19� and comparing with the defini-
tion �Eq. �2�� of the Coulomb logarithm shows that in the
classical limit

ln �BPS
C = �i

�i
2

�I
2�1 +

TIme

Temi
�−3/2�ln�4meiVei

2

ZigeTe
� − 2�� −

1

2

+ 
 . �22�

This reduces to Eq. �5� in the limit me→0. Dimonte and
Daligault �3� used the conventional definition of the Cou-

6Note that the result of Ref. �6� contains nothing in the nature of
the finite electron mass, long-distance collective plasma contribu-
tion 
.
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lomb logarithm for a single-ion species rather than conven-
tion �2�, one that applies to plasmas containing a variety of
ions. For a single species of ions, the two conventions are
related by

ln �C = �1 +
TIme

TemI
�−3/2

ln �C, �23�

where we have denoted the conventional definition7 of the
Coulomb logarithm by ln �C. Pulling together previous defi-
nitions gives

ln �BPS
C = ln� 4

ZIge
� + ln� mI

mI + me
�1 +

TIme

TemI
��

− 2� + �1 +
TIme

TemI
�3/2
−

1

2
+ 

 , �24�

which in Fig. 1 is plotted as a function of the electron-ion
mass ratio for several values of the temperature ratio. Upon
expanding to leading order in me /mI we can express the Cou-
lomb logarithm in terms of a zero electron-mass contribution
and a correction,

ln �BPS
C � ln �BPS

C,0 + 
 ln �BPS
C , �25�

where

ln �BPS
C,0 = ln� 4

ZIge
� − 2� −

1

2
�26�

is the zero electron-mass limit and


 ln �BPS
C = −

me

mI
�1 −

TI

4Te
� + 
 �27�

is the leading-order electron mass correction. Dimonte and
Daligault �3� used ge=0.1 and considered the cases in which

Te /TI varies from about 1 to 5 with me /mI varying from
about zero to 0.02, while ZI=1=ne /nI are fixed. Figure 2
displays the values of 
 about this parameter range.

Figure 3 presents the complete leading corrections for the
Coulomb logarithm �Eq. �24�� as the mass ratio me /mI is
varied—Eq. �27� divided by Eq. �26�. The leading term �Eq.
�26�� is about 2.0, and so the relative correction is corre-
spondingly smaller. Figure 3 shows that the relative size of
the electron mass correction in the range examined by Di-
monte and Daligault �3� is less than 2%, which is less than
their statistical accuracy of 5%. With smaller statistical error,
one could resolve the mass effects �Eq. �27�� with an MD
simulation.

We would like to thank D. Preston for a number of useful
conversations. We would also like to thank G. Dimonte, J.
Daligault, and J. Reynold for comments on the paper.

7As is apparent from Eq. �22�, the logarithm depends upon ion
species, and thus an overall factor of the form �1+TIme /TemI�−3/2

cannot be extracted in the general case.

FIG. 2. �Color� The correction 
 defined in Eq. �20� plotted as a
function of the mass ratio me /mI for a hydrogen plasma. The four
curves correspond to the temperature ratios Te /TI=0.5,1 ,5 ,10.

FIG. 1. �Color� The BPS Coulomb logarithm ln �BPS
C plotted as

a function of me /mI for four values of the electron-ion temperature
ratio, Te /TI=0.5,1 ,5 ,10, all with the coupling ge=0.1.

FIG. 3. �Color� The relative electron-mass correction

 ln �BPS

C / ln �BPS
C,0 plotted as a function of the mass ratio me /mI for

four values of the temperature ratio Te /TI=0.5,1 ,5 ,10. In each

case ge=0.1. The mass correction 
 ln �BPS
C is defined in Eq. �27�,

while the zero-mass logarithm ln �BPS
C,0 is given by Eq. �26�.
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APPENDIX: RESULTS COLLECTED

We put together here all the formulas relevant to the cases
of physical interest in which the scattering is predominantly
quantum mechanical. These include the small classical cor-
rections to this purely quantum limit and the leading effects
of Fermi-Dirac statistics that come into play as the electron
density is increased. This we do because, with the inclusion
of the 
 correction, we now have in hand all the small cor-
rections to the leading quantum-mechanical scattering limit.
To exhibit these, we write

ln �BPS = ln �BPS
QM + ln �BPS


C + ln �BPS
FD . �A1�

Here ln �BPS
QM is the leading term in the quantum limit to-

gether with the 
 correction that we have exhibited in the
text, ln �BPS


C is the first classical correction that appears
when the parameters depart from the extreme quantum limit,
and ln �BPS

FD is the first correction when Fermi-Dirac statistics
start to become important. The latter two terms have been
computed in Ref. �5� to leading order in the small ratio
me /mi; this suffices since the terms are already themselves
small.

In the text we examined the limit of purely classical scat-
tering and thus omitted the quantum correction term CeI


Q in
Eq. �6� from the complete relaxation rate. As a first step in
presenting the collection mentioned, we quote this omitted
correction which is Eq. �12.50� of �1�:

CeI

Q = − �i

�e
2�i

2

2

�TI
2meTe

2mi�1/2

�TIme + Temi�3/2� 1

2�
�3/2�

0

�

d�

�e−�/2
Re ��1 + i
�̄ei

�1/2� − ln� �̄ei

�1/2�
 . �A2�

Here ��z�=d ln ��z� /dz, and

�̄ei =
�eei�
�Vei

�A3�

makes precise the definition of the quantum parameter al-
luded to at the beginning of the text with the square of the
thermal velocity in this expression Vei

2 defined previously in
Eq. �9�. The extreme quantum limit in which �̄ei→0 of this
formula is spelled out in detail in Ref. �1�. Here we shall not
repeat the derivation but simply quote the BPS limit �12.53�
with slightly different notation:

CeI

Q = �i

�e
2�i

2

2

�TI
2meTe

2mi�1/2

�TIme + Temi�3/2� 1

2�
�3/2

�
3� + ln� Zi
2e4

2�2Vei
2 �
 . �A4�

This quantum correction, added to the classical scattering
contribution �Eq. �7��, produces

CeI,S
Q = �i

�e
2�i

2

2

�TI
2meTe

2mi�1/2

�TIme + Temi�3/2� 1

2�
�3/2

�
ln�� 8Te
2

�2�e
2��mei

2

me

Vei
2

Te
�� − �
 . �A5�

In the same way that the classical Coulomb logarithm �Eq.
�22�� was constructed, with quantum scattering it now reads

ln �BPS
QM = �i

�i
2

2�I
2�1 +

TIme

Temi
�−3/2

�
ln�� 8Te
2

�2�e
2��mei

2

me

Vei
2

Te
�� − �
 −

1

2
+ 
 . �A6�

The explicit electron-ion mass ratio terms that appear here
�including those contained in the definition of mei and Vei

2 �
are easy to compute. For typical ICF conditions, they make
very small corrections on the order or less than 1%. So as to
make the significance of the 
 correction clear, a correction
that does require some computation, we now omit these
small explicit terms and write

ln �BPS
QM =

1

2

ln� 8Te

2

�2�e
2� − � − 1
 + 
 , �A7�

which is precisely result �4� of the text, but with the addi-
tional finite electron mass correction 
.

We show the 
 correction in Fig. 4 over a wide range of
the temperature ratio TI /Te for the typical ICF case of an
equimolar DT plasma. For a burning plasma, the Coulomb
logarithm has the rough value ln �BPS

QM �4, and so the relative

 correction is about a quarter of the number shown in
Fig. 4.

For the remaining terms in Eq. �A1�, we shall just quote
the result from Eq. �2.6� presented in Ref. �5�, namely,

ln �BPS

C = −

	H

Te
�i

Zi
2�i

2

�I
2 
��3��ln� Te

Zi
2	H

� − �� − 2���3�
 ,

�A8�

FIG. 4. �Color� The correction 
 defined in Eq. �20� for an
equimolar DT plasma �solid� and a hydrogen plasma �dashed� plot-
ted as a function Te /TI for the physical values of the electron and
ion masses.
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and8

ln �BPS
FD =

ne�e
3

2

− �1 −

1

23/2�1

2

ln� 8Te

2

�2�e
2� − � − 1


+ �1

2
ln 2 +

1

25/2�
 . �A9�

The ratio 	H /Te describes the relative size of the first quan-
tum to classical correction, where

	H =
e4me

2�2 � 13.6 eV �A10�

is the binding energy of the hydrogen atom. The numerical
values of the zeta-function and its derivative are

��3� = �
k=1

�
1

k3 = 1.20205 . . . , �A11�

and

���3� = − �
k=1

�
1

k3 ln k = − 0.19812 . . . . �A12�

The electron thermal wavelength

�e = �� 2�

meTe
�1/2

�A13�

sets the scale at which quantum statistics comes into play,
with ze=ne�e

3 /2 the electron fugacity.
For some temperature and number density regimes of in-

terest, the two corrections �Eqs. �A8� and �A9�� become
comparable in size �5�.
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