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Evolution of energy in flow driven by rising bubbles
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We investigate by direct numerical simulations the flow that rising bubbles cause in an originally quiescent
fluid. We employ the Eulerian-Lagrangian method with two-way coupling and periodic boundary conditions. In
order to be able to treat up to 288000 bubbles, the following approximations and simplifications had to be
introduced, as done before, e.g., by Climent and Magnaudet, Phys. Rev. Lett. 82, 4827 (1999). (i) The bubbles
were treated as point particles, thus (ii) disregarding the near-field interactions among them, and (iii) effective
force models for the lift and the drag forces were used. In particular, the lift coefficient was assumed to be 1/2,
independent of the bubble Reynolds number and the local flow field. The results suggest that large-scale
motions are generated, owing to an inverse energy cascade from the small to the large scales. However, as the
Taylor-Reynolds number is only in the range of 1, the corresponding scaling of the energy spectrum with an
exponent of —5/3 cannot develop over a pronounced range. In the long term, the property of local energy
transfer, characteristic of real turbulence, is lost and the input of energy equals the viscous dissipation at all
scales. Due to the lack of strong vortices, the bubbles spread rather uniformly in the flow. The mechanism for
uniform spreading is as follows. Rising bubbles induce a velocity field behind them that acts on the following
bubbles. Owing to the shear, those bubbles experience a lift force, which makes them spread to the left or right,
thus preventing the formation of vertical bubble clusters and therefore of efficient forcing. Indeed, when the lift
is artificially put to zero in the simulations, the flow is forced much more efficiently and a more pronounced

energy that accumulation at large scales (due to the inverse energy cascade) is achieved.
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I. INTRODUCTION

Bubbly flows are ubiquitous in nature and technology, but
exact analytical or numerical results are extremely difficult
to obtain due to the multiscale nature of the problem and due
to the moving interfaces. For a review on the numerical mod-
eling, we refer to [1,2], for recent reviews on the experimen-
tal situation we refer to [3,4], and our own recent work on
the subject has been summarized in [5]. An excellent over-
view on the experimental, numerical, and theoretical knowl-
edge for various bubble Reynolds numbers can also be found
in Refs. [6,7].

The motion of the small bubbles in the fluid induces ve-
locity fluctuations that can be either dissipated immediately
by viscosity or can be enhanced, thus, generating motion on
scales much larger than the disturbance dimension. Owing to
their random character, these fluctuations are referred to as
“pseudoturbulence” [4,6,8]. In a flow initially at rest and
only forced by rising bubbles, the pseudoturbulent fluctua-
tions are the only source of energy. Otherwise, they can add
to the already existing fluid velocity fluctuations, which are
driven in some other way. Depending on the flow conditions
and on the bubble size distribution, the turbulent energy dis-
sipation may be either enhanced or suppressed.

Lance and Bataille [9] suggested that the effect of bubbles
on the flow depends on the ratio of kinetic energy due to the
bubble motion and the typical kinetic energy (u'?) of the
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fluctuations in the liquid velocity before bubble injection,

=%av%~/<u'2>, (1)

where u’ is the typical flow velocity fluctuation, « is the void
fraction, vy is the bubble rise velocity in still water, and we
have taken % for the added mass coefficient. The ratio b is
called the bubblance parameter [5]. For b<< 1, the kinetics of
the bubbly flow are entirely dominated by the turbulent en-
ergy of the flow and the bubbles can be considered as some
distortion, such as in the experiments of Refs. [10-15] or in
the numerical simulations of Refs. [16-21]. In contrast, for
b>1, the flow is dominated by the bubble motion. In this
case, we have bubblance rather than turbulence, such as in
the experiments of Refs. [4,9,22-25] or in the numerical
simulations of Refs. [6,7,26-29]. The analogous situation for
sedimenting particles was experimentally analyzed by Faeth
and co-workers, both for particles in water [30] and in air
[31].

In the present work, we focus on the bubblance case b
> 1, namely, on microbubbles rising in an initially quiescent
flow, where formally b=o. These conditions imply that
pseudoturbulence, due to the bubble buoyancy, is the only
source of flow energy; thus, bubbles drive the turbulence and
eventually the energy dissipation. We will address the fol-
lowing questions: (i) what is the time evolution of the energy
of bubbly driven turbulence initially at rest?; (ii) are mi-
crobubbles able to induce in still fluid a flow that possesses
similar features as real turbulence, i.e., can the inertial scal-
ing law characteristic of homogeneous and isotropic turbu-
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lence be attained in a flow forced solely by bubbles?; and
(iii) how are bubbles eventually distributed in such flow and
what forces determine this distribution?

To be able to address these questions, the flow should best
be driven at least by ten thousands of bubbles, in order to
have sufficient statistics. While hundreds of bubbles can still
be treated with front-tracking techniques [6,7,27-29,32], re-
solving both the shape of the bubble and the flow around it,
this clearly is no longer possible for ten thousands of bubbles
and one therefore is forced to employ approximations. We
will thus follow the complementary approach and model the
bubbles as point particles, on which effective forces such as
drag and lift act [1], similarly as was also done by Climent
and Magnaudet [26]. We thus disregard the near-field inter-
actions among the bubbles. Also the effective forces had to
be modeled, namely, by choosing drag and lift coefficients.
Unfortunately, the lift coefficient is not well known [1]. In
fact, it depends on the bubble Reynolds number and on the
local shear and vorticity in a highly nontrivial way [33-38].
Moreover, due to the interactions with the wake, effective
forces on bubbles can depend on the bubble concentration
and can even be nonlocal in time (history forces) [33,39,40].
Given these complications, for conceptional simplicity, we
decided to simply use the Auton lift coefficient C;=1/2 [41],
realizing that at best qualitative agreement between our
simulations and possible experiments can be expected. Fi-
nally, periodic boundary conditions are employed in all di-
rections, including the vertical one. This means that bubbles
leaving the periodic box at the top enter it back at the bot-
tom, inducing a mean vertical flow.

Summarizing the various limitations and approximations,
which were necessary in the numerical simulations, the aim
of the present paper can only be to identify mechanisms; no
quantitative predictions or comparisons with experiments are
possible. The numerical simulations for bubble-induced con-
vection [26] or for Taylor-Couette flow with microbubbles
inducing drag reduction [42] were done in the same spirit
with related numerical schemes and, indeed, the relevant
physical mechanisms could be identified.

Our numerical simulations are based on the code exten-
sively described in [17], but now as stated above with forc-
ing only by the bubbles to mimic the pseudoturbulent flow.
For completeness, we briefly repeat the dynamical equations
and the central assumption in Sec. II. Sections III and IV
describe the time evolution of global and spectral observ-
ables, respectively. In Sec. V we propose a qualitative physi-
cal explanation for the detected fluid energy time evolution.
Section VI contains conclusions.

II. BUBBLES AND FLUID EQUATIONS

A. Bubble motion equation

The motion of a small undeformable bubble embedded in
a velocity field u(x,7) can be modeled by the equation (see,
e.g., [1,26,43)),

=3y 4 uly(0.0] = 0} -2~ 20
—uly ()]} X ely(),1]. (2)

The four terms on the right-hand side represent (i) fluid ac-
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celeration plus added mass, (ii) drag, (iii) buoyancy, and (iv)
lift, where we have explicitly written out the lift coefficient
C;, which—as discussed in the introduction—will be taken
to be C;=1/2. We will, however, also compare the simula-
tions with those for C;=0. The various symbols denote y(z)
as the bubble position, v as the bubble velocity, @=V Xu as
the fluid vorticity, g as the gravity (acting in negative z di-
rection), and 7;, as the relaxation time, i.e., the time needed to
adjust the bubble velocity to that of the fluid. The latter is
related with the terminal velocity vy in still fluid vy=2g7,. In
the case of small bubble Reynolds number Re=2|u—v|a/v
<1, with a as the bubble radius and v as the kinematic
viscosity, for the bubble response time it holds 7,=a*/6v
[44,45]. For larger bubbles, the prefactor in this relation is
larger than 1/6, which, however, would only quantitatively
affect our results. The material derivative (D/Dt) of the fluid
velocity is evaluated at the bubble position. We refer to Refs.
[1,17,46] for a derivation of the various terms in Eq. (2).

B. Simulation of the flow

The computational domain is a cube of side Ly=2, con-
sisting of N*=1283 mesh points and subjected to periodic
boundary conditions. The simulation is started at t=0 with
the flow at rest and with N, bubbles with Re ~ O(1) placed at
random locations. Bubbles rise because of gravity and trans-
fer momentum to the fluid. We track their trajectories and we
treat each bubble as a point source of momentum. Then, the
total action on the flow results by summing the & forcing that
the bubbles apply at their positions [17,26,47],

N D 4ar 3
f,(x,1) = é [Eu[yi(t),t] - g] <?a ) Ax -y, ()] (3)

Here g is the gravity directed along the negative z axis. The
induced flow velocity u(x,#) evolves according to the incom-
pressible Navier-Stokes equation

(;—l;+u-Vu=—Vp+vAu+fb, (4)
which is solved by direct numerical simulation. The coupling
of the bubbles toward the liquid is thus achieved by intro-
ducing the bubble forcing (3) into the Navier-Stokes equa-
tion (4) at the positions of the bubbles. Those are given by
the dynamical equation (2) for the bubble position.

We use the pseudospectral code described in [17], where
also the other details on the numerical simulations can be
found. The point force approximation is validated by per-
forming the same tests as in [17]. We stress that in contrast to
that earlier work of ours, here Eq. (4) does not contain any
forcing on the large scales. The flow is sustained solely by
the bubble forcing term f;,.

We analyze different cases. A list of the flow and bubbles
parameters is shown in Table I. In Table II, the values of the
numerical parameters and their physical equivalents are pre-
sented for some of the simulations performed.

III. EVOLUTION IN TIME FOR GLOBAL QUANTITIES

We describe the energy time evolution of the pseudotur-
bulent field generated by the rise of microbubbles. As al-
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TABLE I. Simulation parameters for all cases analyzed: void fraction «, total bubbles number N,,, bubble
Reynolds number Re=2va/ v, bubble response time 7,, equivalent radius a in physical units, potential flow
estimate of the total energy induced in the flow Ep:av%/ 4, and time asymptotic estimate from our calcula-
tions of the total energy E. This value has been determined from time averaging the statistically stationary
state. In the numerical simulations, the kinematic viscosity v=0.007, «, the rise speed in still fluid vy
=0.578, and 7, are fixed; the other quantities result consequently. In particular, the intensity of the gravity
results from g=v/27, and therefore is different in the simulation (d) as compared to the other ones.

a
a N, Re 7 (um) E,x10° EX10°
(a) 1.6% 144000 3.10 8.4x1073 78 1.34 1.96
(b) 0.8% 72000 3.10 8.4x1073 78 0.67 1.38
(c) 3.2% 288000 3.10 8.4x1073 78 2.67 2.25
(d) 1.6% 50848 437 16.7x 1073 87 1.34 1.57

ready stated, at time #=0, the bubbles are randomly placed in
the flow, that is originally at rest. Their rise displaces liquid
and thus generates velocity fluctuations. If these fluctuations
are not rapidly dissipated by viscosity, they can be transmit-
ted to larger scales. As a consequence, large-scale motions
are produced and the flow may become turbulent.

We investigate this issue by measuring average flow
quantities as well as by studying the spectral energy distri-
bution. We focus on case (a) of Table 1.

In Fig. 1(a) we plot the total fluid energy E(f)={(u,(1)?
+uy(t)2+uz(t)2>/ 2, as a function of time. In the beginning,
E(r) undergoes a steep rise, afterward it slowly decreases,
until it begins to oscillate and a statistically stationary state is
reached. The behavior qualitatively resembles that one of the
front-tracking simulations of Ref. [6] (see Fig. 1 of that pa-
per). The Kinetic energy is mainly generated by the momen-
tum transfer in the direction of gravity, as we confirm by
measuring the three components of the fluid velocity fluctua-
tions (uiz), with i=x,y,z, which are much larger in the z
direction than in the horizontal ones, and the unidimensional
Taylor-Reynolds number, defined as

Rel = 1] D))
TN v

The behavior of Re; as function of time is presented in Fig.
2. It is evident from the plot that the flow displays strong
asymmetry due to the vertical driving through the rising
bubbles and that there is a mean flow in the vertical direc-
tion. However, it is also clear that due to the dissipation, both

(no sum over i).

TABLE II. Simulation parameters for cases (a)—(c) and corre-
sponding physical equivalents. The bubble Reynolds number is
Re=2vsa/v=3.10.

Dimensionless parameter Physical equivalent

v 0.007 1072 cm?/s
g 34.55 981 cm/s?
a 0.019 78 um
vy 0.58 2 cm/s
7 8.4x1073 1 ms

the energy and the vertical velocity remain bounded, in spite
of the periodic boundary conditions. In by passing, we note
the interesting analogy with the so-called homogenous
Rayleigh-Bénard convection [48], where the flow is also pe-
riodic in all directions, with a vertical volume forcing. In
Ref. [49], we have shown that though in that case exponen-
tially growing solutions exist, they are subject to instabilities
that limit their growth to produce statistically steady flow.

We now compare the results on the energies in the present
pseudoturbulence simulations with potential flow theory, see,
e.g., the work of van Wijngaarden [8,50,51]. We do not ex-
pect agreement given that we deal with point particles and
that the potential flow results of Refs. [8,50,51] only hold in
the high bubble Reynolds number case, and here we have Re
between 3 and 5. Nonetheless, we consider this comparison
to be instructive and, surprisingly, we find the saturated ki-
netic energy to be on the order of av%/ 4, in agreement with
the potential flow theory results for high Re bubbles. How-
ever, the redistribution of the energy along the three direc-
tions deviates from what is predicted by the potential flow
analysis, according to which we should have [50],

3

20(a0§).

1

)= <(avd), (@)=ud)=

The potential flow value is (u?)/ <uf>24/ 3, whereas in our
simulation this ratio is about 15. In the opposite limit Re
—0, under Stokes flow condition, the fluid equations are
linear. In this regime, symmetry considerations require that
rising bubbles cannot force the flow in directions perpen-
dicular to their motion (provided that there are no walls but
periodic boundary conditions as in our case): a result that is
also intuitive for rising point particles in fluid at rest. As a
consequence, the ratio (u?)/ (ui)%oo. Our result, for small
but finite Reynolds number, lies in between the two limits
discussed. The same holds for the case of sedimenting par-
ticles in water (with larger particle Reynolds numbers be-
tween 38 and 545), where this ratio is between 4 and 25 [30].
The total energy induced by high Re bubbles, for which
inertia effects are dominant, can be easily estimated by the
following argument. At low void fractions, the flow energy is
the sum of the energy induced by individual bubbles, i.e.,
E=N,(1/2)m,v3, where the effective mass of a bubble is
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FIG. 1. (a) Total fluid energy as a function of time. The straight dashed line indicates the potential flow result E= a/va/4. (b) Total fluid
energy in simulation with (solid line) and without the lift (dashed line) as functions of time.

my=py(27a’/3), owing to the added mass factor 1/2. Thus,
E= av%/4. On the other hand, when Re~ 1, to estimate the
total energy induced by sedimenting particles or rising
bubbles is far more complicated. Indeed, for Re<< 1, the flow
induced by one particle decreases, with the distance r from
the particle—as 1/r—thus, leading to a total flow energy that
diverges with the system size. Different screening mecha-
nisms have been invoked in the past in order to account for
this problem (see, e.g., [52-57]), but this issue is beyond the
scope of the present paper.

In Table I we report the total energy estimated in our
simulations, correspondent to different void fractions and
bubble dimensions. In all cases, the energy induced is on the
order of av§/4. We note by comparing cases (a) and (d), that
when increasing the bubble dimension while fixing the void
fraction, thus reducing the total bubble-fluid interface, less
energy is generated in the flow.

IV. EVOLUTION IN TIME FOR SPECTRA

After transforming to wave-number space, we consider
the time development of the energy spectrum,

E(k,t):% > i=x,y,z. (5

k<|k|<k+dk

u; (K,0u(k,1)

Here u;(k,¢) is the ith component of the fluid velocity in k
space and repeated indices are considered summed. E(k,?) is

3.5
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FIG. 2. Behavior of the unidimensional Taylor-Reynolds num-
ber as function of time, in the x (pluses), y (circles), and z (dia-
monds) directions.

the total energy contained in a spherical shell of radius k and
width dk.

In Fig. 3(a), the energy spectrum averaged on four subse-
quent time intervals is presented. The intervals correspond to
0<t/T,<6X10%, 12X10°<t/7,<18X10%, 24X 10?
<t/7,<30X 10?, and 100X 10> <t/ 7, <106 X 10? in Fig. 1.
The figure depicts that the energy is originally introduced at
high wave numbers and gradually transported to larger scales
(solid line). However, after some time the spectrum flattens
and a nearly constant energy is measured at all scales. Thus,
in the first stage of bubble-fluid coupling, an inverse energy
cascade, from the small to the large scales, builds up large-
scale eddies. The corresponding slope of the spectrum—
indicating the local transfer of energy—would be -5/3;
however, as the Taylor-Reynolds numbers are small, such a
scaling regime cannot really develop. Later on, the inverse
energy cascade cannot be sustained and it disappears in the
final state. We investigate whether this last state is statisti-
cally stationary by having a closer look at the energy-transfer
equation in k space,

%E(k,t) =T(k,t) = D(k,1) + F(k,1). (6)

Here, the various terms indicate, respectively, the energy
transfer to wave number k, T(k,1),

Tk)= 2,

k<|k|<k+dk

T(Kk,?),

where

T(k.0) = Im[k,u;*(k,t)z (ke - k’,t)ul(k’,t)} NG)
k’

the viscous dissipation, D(k,f)=2vk?E(k,t), and the bubble
forcing contribution F(k,1),

> Fykr),

k<|k|<k+dk

Fb(k,t) =

where
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FIG. 3. (a) Energy spectra for the simulation that includes lift forces obtained by averaging on four different time intervals: 0<<t/7,
<6X 107 (solid line), 12X 10><1/7,<18x 10? (dashed line), 24 X 10> <1/ 7, <30 10> (dotted line), and 100X 10*><1/ 7, <106 X 10>
(dot-dashed line). The straight line indicates the behavior in homogeneous and isotropic turbulence. The employed time period is a
compromise of, on one hand, having sufficient statistics and, on the other hand, being able to follow the time evolution (see Fig. 1). We also
tried slightly larger and smaller time periods and get similar results as those shown in this figure. So our results are robust. (b) Energy spectra
for the simulation without lift forces obtained by averaging on four different time intervals. For the various symbols, look at the caption of

(a).
F)(k,7) =Re[u*(k,7) - £,(k,1)], (8)

with fb(k,t) as the Fourier transform of the coupling term
f,(x,1), defined in Eq. (3). Here Im and Re indicate, respec-
tively, the imaginary and real parts of the expression between
the brackets.

The spectra of the bubble forcing and of the dissipation
are shown in Fig. 4(a). The strongest forcing is concentrated
on the small scales, as we expect, owing to the dimension of
the energy sources. However, the energy that is initially
transferred to the large scales via the nonlinear interactions
has to return to the small scales in order to be dissipated by
viscosity. In fact, there is no energy sink on the large scales
that could take the energy out of the system. Therefore, the
condition for establishing a stationary state is that the time
average energy transfer has to be zero on all wave numbers
and dissipation has to equal bubble forcing, i.e., T(k)=0 and
D(k)=F,(k), where the time dependence has dropped out
after the average on time.

As we show in Fig. 4(a), apart from the large scales where
the average still has not converged, this requirement is satis-
fied by our simulation. In real flow, with walls instead of
periodic boundary conditions, energy dissipation in the de-
veloping boundary layers will of course, eventually, play a
crucial role in the energy balance.

The time evolution of the energy spectrum can be com-
pared to the one presented by [58], where the authors study a
similar system, namely, fluid motion generated by rising
bubbles, by applying a different technique for the implemen-
tation of two-way coupling. The results agree qualitatively,
i.e., the initial induction of structures at large scale is fol-
lowed by a state in which the slope of the energy spectrum is
reduced. As the authors state themselves, the reason is con-
nected with the temporal evolution of the bubble distribution.
Indeed, bubble clusters, which are assembled in the begin-
ning and are able to force the liquid efficiently, are not stable
and bubbles tend to distribute uniformly in the flow. More-
over, the structures induced in the flow itself are far too weak
to trap the bubbles. Thus, the phenomenon of vortex trapping

0.01

D(k), Fy(k)

(b)

FIG. 4. (a) Time average of the contribution of the bubble forcing to the energy spectrum, as defined in Eq. (8) (solid line), and of the
viscous energy dissipation D(k)=2vk*E(k) (dotted line), in the simulation with the lift force. (b) Time average of the contribution of the
bubble forcing to the energy spectrum (solid line) and of the viscous energy dissipation D(k)=2vk>E(k) (dotted line), in the simulation

without the lift force.
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FIG. 5. Energy spectra, in the statistically stationary state, for
case (a) (dashed line) and (d) (solid line) of Table I.

of bubbles does not occur and therefore high local bubble
concentration as in bubbly turbulent flows (see, e.g.,
[16,59,60]) are not created here.

Note that the front-tracking simulations of Ref. [6] for 27
bubbles with a bubble Reynolds number of about 25 gave a
quite different spectrum, namely, a slope of about —3.6 in the
large wave-number regime. Also Martinez et al. [61] found a
slope of —3.2 in the large wave-number regime of experi-
mental velocity spectra in experimental pseudoturbulence
generated with mm-size bubbles. Indeed, a slope —3 has
theoretically been attributed [9] to this regime, in which the
energy deposited by the wake is directly dissipated and
which obviously cannot be modeled with the point-particle
approach. All this wake energy dissipation is missing in our
approach.

We carry on the comparison with the results of [58] by
looking at the high wave-numbers behavior of the spectrum.
In that paper, a steeper slope with respect to homogeneous
and isotropic turbulence is observed. The critical wave num-
ber k. above which it shows up is estimated by the average
distance between the bubbles, that is LC~27T/Nl',/3. In our
simulation, for case (a) of Table I, we have L.~ 0.12 (about
1/50 of the box with Ly=2), thus k.=27/L.~52 and for
case (d) L.~0.17, thus k.~37. As we show in Fig. 5, a
transition in the slope of the energy spectrum occurs at high
wave numbers. However, neither the critical wave number
nor the slope of the spectra can be clearly defined.

We find agreement with the results of [58] on the strongly
anisotropic energy distribution along the three velocity com-
ponents. Indeed, also in that work, about the 90% of the flow
energy is contained in the vertical component (z) of the fluid
velocity.

We again also compare our results with the case for sedi-
menting particles in originally still fluid [30,31]. Also for that
case, the energy spectrum is very broad. The spectral slope
of the frequency spectrum was found to be around —1.1 for
remarkably several decades; but a comparison of this value
with the slopes in the wave-number spectra obtained in this
paper is difficult as Taylor’s frozen flow hypothesis will most
likely not hold for this weak turbulence.

V. PHYSICAL EXPLANATION OF THE RESULTS

The occurrence of the inverse cascade phenomenon in
three-dimensional turbulence has been related to the pres-
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FIG. 6. Sketch of the action of the lift force on a bubble rising in
the wake of another one: the lift tends to expel the bubble from the
wake.

bubble
trajec tory

ence of strong anisotropies at small scales (see e.g., [62,63]).
These anisotropies can be produced by bubble clusters elon-
gated in the gravity direction. Within them, the energy pro-
duction term due to the bubbles can be far more intense in
the vertical direction than in the horizontal ones, owing to
the high values reached by the (u-g) contribution. The sta-
bility of these structures is opposed by a horizontal force that
laterally spread the bubbles. When considering the bubble
motion equation, it appears that the lift is the most relevant
of such forces. Therefore, we further investigate the system
by comparing the outcome of simulations with lift and with-
out lift force.

Surprisingly, without the lift the results are very different.
In Fig. 1(b), the total energy in the two simulations, one
including the lift (solid line) and the other excluding it
(dashed line), are compared. In both cases, the bubbles pa-
rameters correspond to run (a) in Table I. The energy induced
in the second simulation is up to 30 times larger than in the
first. The reason for the larger total energy (not necessarily
the fluctuations) is illustrated in the sketch of Fig. 6. Without
the lift, the rising bubbles can better group together and thus
more efficiently force the flow; whereas with the lift, they are
horizontally repelled from each other. Also Murai et al. [64]
measured a higher turbulence intensity in numerical simula-
tions without the lift force than in simulations with the lift,
though the difference detected is quantitatively much smaller
than in our case.

The behavior in spectral space is remarkably different too.
In Fig. 3(b), the time evolution of the energy spectrum in the
latter simulation is presented. The spectrum is averaged on
four subsequent time intervals, which are the same as for
Fig. 3(a). The process of inverse energy cascade is now
strongly enhanced. In fact, the spectral intensity at small
wave numbers increases in time, whereas it is constant at
large ones.

Moreover, it is remarkable that a local slope close to —5/3
settles nearly at once at high wave numbers and is stable
during the whole process—though the scaling regime again
is not very pronounced due to the small Taylor-Reynolds
numbers. Therefore, the small scale forcing is strong enough
to generate a flow that presents the same characteristics as
real three-dimensional turbulence—or also two-dimensional
turbulence in the inverse cascade regime. On the other hand,
this simulation is not statistically stationary. In Fig. 4(b), we
show that there is a difference on a wide range of scales
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between the bubbles forcing term F,(k) and the fluid viscous
dissipation D(k). Thus, the condition of stationarity is not
fulfilled and the large flow scales are still fed with energy
from the small ones.

We again stress that the model for the equation of motion
without the lift force does not give a complete representation
of the surface forces acting on bubbles or particles of Re
~O(1). Indeed, previous works (see e.g., Refs. [17,33] and
Ref. [65] for the case of uniform shear) have pointed out the
relevance of the lift in this regime. Of course our results can
only be expected to be qualitative and not quantitative, as the
near-field interactions between the bubbles are not correctly
described by the present point-particle approach and as the
lift coefficient is set to be constant C;=1/2. However, re-
fined expressions for the lift force are not likely to give
qualitatively different behaviors. The main effect of the lift is
to cause the bubble dispersion along the horizontal direc-
tions, thus, strongly reducing the anisotropy in the flow
caused by the forcing in the vertical direction. Indeed, by
definition, the lift force drifts the bubbles in horizontal
planes, in directions perpendicular to their average motion.

We now qualitatively investigate the breaking effect of the
lift on vertical bubble chains. Note again that for a quantita-
tive analysis the near field as, e.g., obtained from the front-
tracking simulations of Refs. [6,7,28,29], is crucial. We base
our analysis on the description of the two-bubble long-range
interactions proposed in Ref. [52]. The main finding is that a
bubble in the wake of another one experiences because of the
lift, a lateral force, leading to a deficit of nearby bubbles in
the gravity direction (see again Fig. 6).

We further explore this phenomenon by computing the
bubble density autocorrelation function defined according to

(c'(x+R)c’(x))

p12(R) W) 9)
Here ¢’(x) is the fluctuation of the bubble concentration in x
with respect to the average value a and the brackets denote
averages over all x. We consider the autocorrelation in the
horizontal (x-y) plane and in the vertical (z) direction sepa-
rately. The analysis is carried out for the two simulations
presented in Fig. 1(b). The results are plotted in Fig. 7. It is
shown that, whereas in the simulation without lift forces the
pair correlation goes monotonically to zero, in the one with
lift the autocorrelation in the z direction becomes negative
and later on approaches zero from below. A negative auto-
correlation at small distances R is detected also in the hori-
zontal planes. The interpretation of the result is that the
bubbles approach is resisted by the lift, and this is occurring
especially in the vertical direction, where a bubble rising in
the wake of another experiences horizontal forces that expels
it from the wake.

Qualitatively, the organization of the bubbles in our sim-
plified simulations is similar to what has been observed in
above-mentioned front-tracking simulations by Tryggvason
and co-workers [6,7,27-29] or in the experiments of Ref.
[22]. Small bubbles with Re~1 were dispersed in a nearly
homogeneous manner, with an increasing tendency of hori-
zontal alignment when the bubble Reynolds number ap-
proaches 10. Also in the recent experiments by Harteveld e?
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FIG. 7. Autocorrelation function p;,(R) as a function of the
distance |R], in the horizontal x-y directions (open symbols) and in
the vertical z direction (filled symbols). The results indicate simu-
lations without the lift force (diamonds) and with the lift force
(squares).

al. [66], bubbly driven flows have been found to be rather
homogeneous and no vortex trapping has been detected. The
front-tracking simulations show that for even larger bubble
Reynolds numbers, horizontal bubble clusters can emerge,
which also have been seen in the experiments of [25]. Even
in the two-dimensional simulations described in Ref. [67], a
preferential tendency of bubbles to stay rather side by side
(along the horizontal direction) than in “tandem configura-
tion” (along the vertical) was reported.

VI. CONCLUSIONS

The behavior of a flow-driven exclusively by rising
bubbles has been investigated by direct numerical simulation
for the Navier-Stokes equations and Lagrangian tracking for
the bubble trajectories, where the bubbles have been treated
as point particles on which effective forces act. The evolu-
tion of global quantities, such as the total flow energy, as
well as of spectral quantities has been followed in time. The
results show that the bubble motion initially generates large-
scale structures by local in scale energy transfer, though the
corresponding —5/3 scaling regime in the spectrum is not
very pronounced due to the small Taylor-Reynolds numbers.
Later on, however, the bubbles distribution tends to be more
disperse, the energy spectrum becomes flat, and energy input
equals viscous dissipation at all scales. Therefore, the statis-
tically stationary state of this pseudoturbulent velocity field
does not possess the characteristics of real turbulence.

We give qualitative evidence that the physics that deter-
mines it are the bubble-bubble indirect interactions that oc-
cur via the carrier flow. Indeed, a bubble in the wake of
another one, experiences—because of the lift—a horizontal
force that prevents the assembling and the stability of verti-
cal clusters, similarly as has been observed in the front-
tracking simulations of bubbles of comparable size [27,28]
or of larger bubbles [6,7], where the bubbles also distribute
homogeneously and horizontal pairs of bubbles are favored.
In our case, as a consequence the total forcing induced in the
flow is not strong enough to sustain high-energy levels and
an inverse energy cascade from small to large scales.
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Does an inverse energy cascade also exist in real (experi-
mental) pseudoturbulence? Also there the energy input is on
small scales through the rising bubbles in originally still wa-
ter and out of this a large-scale motion develops. In this
sense, an inverse energy cascade must exist. However, in real
pseudoturbulence, also the dissipation in the detailed wake
structure of the rising bubbles will play a role. The very
recent measurement on the spectra of pseudoturbulence for
rising mm bubbles in Ref. [61] does not show —5/3 scaling
but a scaling exponent consistent with —3. This latter expo-
nent results from balancing the wake energy input into the
flow with dissipation, as suggested by Lance and Bataille [9].

The results presented in this work apply to a flow with
periodic boundary conditions. In a real experiment, such as
in Taylor-Couette flow, the existence of boundaries can lead
to the generation of large-scale vortex structures, which, in
turn, affect the bubble motion, as seen in the experiments of
Murai et al. [68] and the corresponding numerical simula-
tions of Sugiyama er al. [42]. In those flows, the energy
dissipation in the developing boundary layers will play a
crucial role in the stationary energy balance.

PHYSICAL REVIEW E 79, 066317 (2009)

We understand this work as complementary to the front-
tracking simulations. Bunner and Tryggvason [6] ended their
numerical study on the dynamics of homogeneous bubble
flows with the question: “what happens when the number of
bubbles increases beyond 216?” (the number of bubbles they
could numerically treat in the paper). Here, we treat up to
288000 bubbles, though in an approximate and simplified
way. Nonetheless, we see very similar phenomena as ob-
served in the front-tracking simulations and can even iden-
tify the lift force as the origin of the homogeneous bubble
distribution by artificially turning it off. A full verification
can of course only come from simulations which both re-
solve the individual bubbles including their wakes and deal
with hundred thousands of individual bubbles. Such simula-
tions will, however, unfortunately not be numerically fea-
sible for many years to come.
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