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An exact analytical model for the interaction between an isolated shock wave and an isotropic turbulent
vorticity field is presented. The interaction with a single-mode two-dimensional �2D� divergence-free vorticity
field is analyzed in detail, giving the time and space evolutions of the perturbed quantities downstream. The
results are generalized to study the interaction of a planar shock wave with an isotropic three-dimensional �3D�
or 2D preshock vorticity field. This field is decomposed into Fourier modes, and each mode is assumed to
interact independently with the shock front. Averages of the downstream quantities are made by integrating
over the angles that define the orientation of the upstream velocity field. The ratio of downstream/upstream
kinetic energies is in good agreement with existing numerical and experimental results for both 3D and 2D
preshock vorticity fields. The generation of sound and the sonic energy flux radiated downstream from the
shock front is also discussed in detail, as well as the amplification of transverse vorticity across the shock front.
The anisotropy is calculated for the far downstream fields of both velocity and vorticity. All the quantities
characteristic of the shock-turbulence interaction are reduced to closed-form exact analytical expressions. They
are presented as explicit functions of the two parameters that govern the dynamics of the interaction: the
adiabatic exponent � and the shock Mach number M1. These formulas are further reduced to simpler exact
asymptotic expressions in the limits of weak and strong shock waves �M1−1�1, M1�1� and high shock
compressibility of the gas ��→1�.
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I. INTRODUCTION

The study of the interaction of planar shock waves with
flow inhomogeneities dates back to more than fifty years,
and a vast amount of experimental and theoretical work has
been accumulated since then �1–52�. Without intending to be
exhaustive, we usually recognize two general types of inter-
actions: a planar shock wave may hit a localized perturbation
at a material interface separating two homogeneous fluids,
triggering the well-known Richtmyer-Meshkov instability
�RMI� �7,8,10,11,48–52�, or the shock wave may propagate
into a weakly nonuniform fluid. In this latter case, the pre-
shock perturbations may consist of sound waves �18�, den-
sity inhomogeneities �19,23,44–47�, or velocity/vorticity
perturbations �12–21�. In either case, the initially planar
shock front gets rippled as it propagates into the nonuniform
fluid, generating additional vorticity, entropy, and sonic per-
turbations �37�. To conserve mass, momentum, and energy,
the corrugated shock will generate sound pressure waves
downstream that may behave as evanescent waves or escape
from the shock front as traveling waves. The entropy and
vorticity perturbations would remain frozen to the fluid ele-
ments. This type of problems is of fundamental importance
in fluid dynamics as it appears in several fields, such as in-
ertial confinement fusion �23�, astrophysics �36,46�, and tur-
bulence research �30–33,35�. In this work we study the in-
teraction of a planar shock wave that enters a half-space

filled with random rotational and divergence-free velocity
perturbations �see Fig. 1�.

The shock/turbulence interaction problem has been pio-
neered with the analytical works of Ribner and others
�12–28�, who decomposed the weak turbulent field ahead of
the shock front as a Fourier superposition of infinitely small
statistically independent single-mode shear waves. Each of
these modes, interacting with the shock front, generates be-
hind it a combination of vortical, entropic, and sonic pertur-
bation eigenmodes. The transfer functions, which determine
the amplitudes of these postshock eigenmodes for the given
amplitude of the incident shear wave, depend on the angle �
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FIG. 1. �Color online� A planar shock moving with velocity DX̂
in the laboratory reference frame, hits a turbulent velocity field
located in the half-space X�0.
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between the wave vector k� of the perturbation mode in the
gas upstream and the normal n� to the shock front, the equa-
tion of state of the shocked medium �for the ideal-gas case
expressed by the adiabatic exponent ��, and the shock
strength expressed by the Mach number M1. For given val-
ues of � and M1, the result of the shock interaction with the
whole spectrum of such modes could then be deduced by
properly averaging the downstream quantities over the angle
�.

In the pioneering Ribner’s papers, the “rather cumber-
some” �17� transfer functions of �, �, and M1 have been first
tabulated for �=7 /5 �14�. Then, these functions were used to
calculate the amplification of the turbulent kinetic energy
�16� and the generation of sound in shock-turbulence inter-
action �17� by averaging them over the angle �, which for the
isotropic preshock turbulence required a single integration,
performed numerically. These results have not been reduced
to simplified analytical expressions in either weak-shock or
strong-shock limit. In �17�, Ribner proved the first weak-
shock analytical asymptotic formula proposed by Lighthill
�13� for sound emission in shock-turbulence interaction to be
incorrect.

The renewed interest to shock-turbulence interaction in
the last two decades was stimulated by the progress in iner-
tial confinement fusion/high-energy-density physics and as-
trophysics �see �23,35,38� and references therein�. Starting
from the 1990s, the opportunities for direct numerical
�19–21,28–33,36� and experimental �22,39,40� studies of
shock-turbulence interaction emerged. It turned out then that
practical use of Ribner’s linear interaction analysis for com-
parison with the new results required re-derivation of his
model, as done by the authors of �30–32�. Since few details
of this new derivation have been published, it was not obvi-
ous even to Ribner himself whether or not this new linear
model of shock-turbulence interaction was fully equivalent
to his earlier one �42�: “The LIA (linear interaction analysis)
theory as reconstituted in Ref. [5] �our Ref. �30�� is some-
what ambiguous, and details are lacking.” Other models
have also been developed to deal with the amplification of
the turbulent kinetic energy, among them the rapid distortion
theory �RDT� by Jacquin et al. �41�. However, the authors
themselves recognized the inadequacy of their treatment for
the problem we consider in this article. As extracted from
their conclusions �41�: “Qualitative comparisons have been
made with Ribner’s LIA and DNS. They show that homoge-
neous RDT is not suited for predicting the kinetic-energy
amplification in a free shock/turbulence interaction. It gives
results very different from those given by Ribner’s LIA. In
particular, it leads to a large overestimation of the amplifi-
cation at high Mach numbers. However, the theory devel-
oped here could be more compatible with other flow configu-
rations in which nondiscontinuous compressions or
expansions occur, e.g., in compression or expansion ramps
or in underexpanded or overexpanded jets, in which RDT-
like amplifications are observed.” Other researchers, who did
not re-derive Ribner’s model on their own, apparently did
not find predictions of the linear theory available, even
though their work would have clearly benefited from com-
parison to it �e.g., see �19,35��. Such practical unavailability
of an important theoretical instrument indicates a gap in the

literature on shock-turbulence interaction that our present ar-
ticle aims to close.

We present a complete analytical theory of shock interac-
tion with a weak isotropic turbulent velocity field. The un-
derlying physics is the same as in the model originally de-
veloped by Ribner �14–17� and later reconstituted in �30�
�we demonstrate the equivalence by direct comparison�.
Similarly as in Ribner’s analysis, we only consider the linear
interaction between the shock wave front and the turbulent
field in front of it. This assumption is justified by the fact that
the velocity perturbations in the turbulent fluid before com-
pression are assumed to be subsonic. The theoretical formu-
lation is distinguished by the following important aspects.
First, we used the analytical technique that has been devel-
oped over the last decade, and which has been shown to be
successful in order to understand the linear dynamics of the
RMI and related phenomena �23,48,50–52�, to solve an
initial-value problem, with a shock wave incident from a
uniform fluid into a half-space containing a divergence-free
vorticity field. We demonstrate how the asymptotic space and
time periodicity is established for any single mode. At the
same time, we describe the transient processes, most notably
the Richtmyer-Meshkov instability growth at the interface
separating the initially quiescent vorticity-free fluid from the
turbulent zone. An exact expression for the asymptotic
growth rate of this instability is presented. Second, all the
results of our linear theory averaged over the isotropic pre-
shock velocity field are derived as exact closed-form analyti-
cal solutions, expressed via elementary functions of � and
M1. This analytical representation allows us to evaluate the
amplification of turbulent kinetic energy, the postshock sonic
energy flux, and other variables of interest in the whole range
of variation in parameters 1���� and 1�M1��. Near
the boundaries of this two-dimensional �2D� domain, our
general analytical expressions are reduced to simple explicit
formulas corresponding to the limiting cases of weak shock
M1→1, strong shock M1→�, and strong shock compress-
ibility of the gas �→1. Most of our results are given below
for a realistic case of three-dimensional �3D� isotropic pre-
shock turbulence. In a numerical simulation, one can also
consider a 2D isotropic turbulence, with preshock and post-
shock vorticities parallel to the incident shock front, as done
in �19�. We present formulas applicable to this 2D case, too.
Our results confirm the accuracy of the numerical simula-
tions done recently for both 3D �31,32� and 2D �19� pre-
shock turbulence. They are also in agreement with the avail-
able experimental data �40�. Our model is exact, it contains
no fitting parameters, and therefore it represents a convenient
analytical tool, helpful for benchmarking of the existing or
future hydrodynamic codes developed to model the interac-
tion of shock fronts with flow inhomogeneities.

Formulas presented below refer to the variables, which
are invariant with respect to the preshock-turbulence energy
spectrum E�k�, such as the amplification coefficient of ki-
netic energy, sonic emission coefficient, and postshock an-
isotropy of velocity and vorticity. They can be readily ap-
plied to calculate the preshock to postshock transformation
of spectrum, amplification of the average wave number, and
other quantities, but these calculations, as well as many pos-
sible generalizations of our model, are beyond the scope of
the present work.
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The paper is structured as follows. In Sec. II, the basic
blocks needed to construct the 2D single-mode model are
presented and developed. Exact temporal evolution of the
different perturbed quantities is shown since t=0+, and the
explicit asymptotic expressions are derived. The generation
of vorticity and sound waves downstream are discussed in
detail. The RMI growth that ensues at the weak discontinuity
formed at the boundary that separates the turbulent field with
the initially quiescent fluid is described. In Sec. III, these
results are used to calculate the quantities averaged over an
either 3D or 2D isotropic preshock velocity distribution. Eu-
ler angles are used to represent the most general divergence-
free velocity/vorticity field in front of the shock, in terms of
elementary shear waves. This representation is greatly sim-
plified by an adequate rotation on the plane of the shock to
deal with the isotropic spectrum upstream. The ratio of the
averages of the kinetic energy �downstream/upstream� are
obtained either for a 3D or a 2D preshock turbulent vorticity
field and are studied as explicit functions of the shock
strength and the compressibility of the gas. The contribution
of the sonic waves is also discussed in detail. The sound
energy flux radiated into the fluid downstream is analyzed in
both the compressed fluid reference and the shock front ref-
erence frames. An analysis of the amplification of the vortic-
ity perturbations is presented. An anisotropy parameter is
defined both for the downstream velocity and vorticity fields.
It is found that the compressed velocity field may remain
isotropic for specific choices of the two parameters that gov-
ern the dynamics of the interaction, � and M1, whereas the
postshock vorticity field is always anisotropic. In Sec. IV we
conclude with a summary. It is emphasized that all the line
and surface plots shown in this work are generated using
exact closed-form analytical formulas. Their complete ex-
pressions are given in the Appendices, which have been in-
cluded in the auxiliary file attached to this work �57�.

II. INTERACTION OF A PLANAR SHOCK WITH
A SINGLE-MODE 2D VORTICITY FIELD

A. Boundary conditions

We refer to Fig. 2�a� where we consider a shock wave that

comes from the left with velocity Dx�̂, as measured in the
laboratory frame of reference �coordinates variables x� and
y�. The fluid is an ideal gas, which is homogeneous for x�
�0 and is only perturbed in the half-space x�	0 �see Fig.
1�. Therefore, the surface located at x�=0 is a weak contact
discontinuity that separates two regions inside the same fluid
�37�. The perturbations consist of steady-state, rotational, and
divergence-free velocity fluctuations. In the space x��0, the
velocity of the compressed fluid measured in the laboratory

is Ux�̂, the density and pressure ahead of the shock are 
1
and p1, and their compressed values are 
2 and p2. The shock
Mach number with respect to the fluid ahead of the shock is
denoted by M1, and that with respect to the compressed fluid
by M2. The sound speed ahead of the shock is c1, and the
compressed fluid sound speed is c2. Before the shock arrives
to the interface x�=0, the following relationships hold be-
tween the quantities at both sides of the shock front �37�,

R =

2


1
=

D

D − U
=

�� + 1�M1
2

�� − 1�M1
2 + 2

, �1�

p2

p1
=

2�M1
2 − � + 1

� + 1
, �2�

c2

c1
=�2�M1

2 − � + 1

�� + 1�R
=

��2�M1
2 − � + 1���� − 1�M1

2 + 2�
�� + 1�M1

,

�3�

M2 =
D − U

c2
=��� − 1�M1

2 + 2

2�M1
2 − � + 1

. �4�

To the right of the surface x�=0, the perturbed velocity field
is described by

v1x = �v1x�x�,y� = c2u1 cos�kxx��cos�kyy� ,

FIG. 2. �Color online� �a� The incident planar shock travels to

the right in the laboratory system of reference with velocity Dx�̂.
The fluid to the right of the surface x�=0 has a rotational velocity
perturbation field with no density disturbances. The situation is
shown at t�0 in the laboratory frame of reference. �b� The trans-
mitted shock front travels inside the perturbed fluid and the re-
flected sound wave travels to the left. The situation is shown for t
	0 in the compressed fluid frame of reference.
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v1y = �v1y�x�,y� = c2u1
kx

ky
sin�kxx��sin�kyy� , �5�

where “x�” in the above two equations is the normal coordi-
nate measured in the laboratory frame and u1=u1�kx ,ky� is a
dimensionless parameter that quantifies the magnitude of the
velocity perturbations. To remain within the limits of validity
of the linear theory, we assume that u1�1. It can be easily
verified that the above velocity field is solenoidal ��� ·�v�1
=0�. The quantities kx and ky are the longitudinal and trans-
verse wave numbers, defined as

kx =
2�


x
, ky =

2�


y
, �6�

where 
x and 
y are the characteristic longitudinal and trans-
verse lengths of the vorticity profile upstream. The vorticity
associated to the velocity components given by Eq. �5� is

��1�x�,y� = kyc2u1�1 + � kx

ky
�2	cos�kxx��sin�kyy� . �7�

Once the shock enters the space x��0, the velocity pertur-
bations in front of it will induce postshock velocity fluctua-
tions downstream, and its shape will be distorted, generating
at the same time pressure and density perturbations in the
compressed fluid. We assume that these fluctuations are al-
ways much smaller than the background values correspond-
ing to a nondistorted shock. We introduce the following defi-
nitions, where the subscript 1 always refers to quantities in
front of the shock front and the subscript 2 refers to the
quantities behind it. We factor out the linear dependence with
the dimensionless parameter u1,

�v1x

c2
= u1 cos�kxx��cos�kyy� ,

�v1y

c2
= u1

kx

ky
sin�kxx��sin�kyy� ,

�
2


2
= u1
̃�x�,t�cos kyy ,

�p2


2c2
2 = u1p̃�x�,t�cos kyy ,

�v2x

c2
= u1ṽx�x�,t�cos kyy ,

�v2y

c2
= u1ṽy�x�,t�sin kyy , �8�

and we defined ṽ1x=cos�kxx�� and ṽ1y = �kx /ky�sin�kxx��. In
Fig. 2�a� we show the perturbation field before the incident
shock refraction at the weak contact discontinuity located at
x�=0. The position of the unperturbed shock in the labora-
tory frame is xs��t�=Dt for t�0. We assume that the shock
enters the half-space filled with the perturbed fluid, at t=0.
For simplicity in the calculations, the linearized equations of

motion are written in a frame of reference that moves with
the compressed fluid, with coordinates x and y as shown in
Fig. 2�b�. Unless the contrary is explicitly said, the perturbed
equations in the fluid downstream will be solved in the ref-
erence frame co-moving with the compressed fluid. After
defining the dimensionless time �=kyc2t, we write

� 
̃

��
= −

� ṽx

��kyx�
− ṽy ,

� ṽx

��
= −

� p̃

��kyx�
,

� ṽy

��
= p̃ , �9�

representing, respectively, the mass, x-momentum, and
y-momentum conservation equations. Besides, we assume
adiabatic flow in the fluid behind the shock, and therefore,
the following relationship holds between the density and
pressure perturbations,

� p̃

��
=

� 
̃

��
. �10�

At t=0+ a shock is transmitted into the space to the right and
a neutrally stable sound wave is reflected back into the space
x�0. The transmitted shock is deformed as it propagates
into the disturbed fluid. As a consequence, pressure fluctua-
tions will be generated behind its surface which propagate
downstream in the form of sound waves. If the shock/
turbulence interaction is started by a planar shock wave en-
tering the weak perturbation field from a quiescent fluid, as
shown in Fig. 2�a�, then none of these waves gets reflected to
the right, when they arrive at the interface x=0. This con-
straint is known as the isolated shock boundary condition.
�Examples of different boundary conditions, applicable when
the incident shock is driven by a piston, are found in �23��.
The sound perturbations radiated by the corrugated front go
into the fluid downstream, eventually reaching the surface
x=0, and are transmitted into the space x�0 without being
reflected toward the shock. Those perturbations will travel at
the local sound velocity behind the neutral sound wave men-
tioned above. Pressure and normal velocity perturbations are
continuous on both sides of it. However, the distorted front
generates vorticity and entropy perturbations and the neutral
sound wave to the left does not. Hence, the x derivative of vy
and the density perturbation are discontinuous at x=0. The
perturbed conservation equations across the neutral sound
wave that travels to the left are the simplest to write,

ṽx + p̃ = 0,

ṽy = 0, �11�

and both are valid just to the right of the left-facing sound
wave, at the position x=−c2t, in the reference frame of the
compressed fluid. There remain the boundary conditions at
the corrugated shock front moving to the right. The unper-
turbed shock front position, as seen by an observer co-
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moving with the fluid downstream, is given by: xs�t�= �D
−U�t. Its shape is deformed and is a function of y and t. We
denote the shock ripple by �s�t�cos kyy, and its dimension-
less amplitude ��s� is defined by: ky�s�t�=u1�s�t�. The bound-
ary conditions at the corrugated shock front are obtained in
the usual way, linearizing the Rankine-Hugoniot equations,
supplemented with the conservation of tangential velocity
across the shock ripple, as done in �7�. The perturbed quan-
tities in Eqs. �12�–�15� below are evaluated at the shock front
position. The linearized mass conservation is written as

�R − 1�
d�s

d�
= Rṽx − ṽ1xs − M2R
̃ , �12�

where ṽ1xs=cos�kxDt�, and the x-momentum conservation is
given by

ṽx = ṽ1xs +
1

2M2
p̃ +

M2

2

̃ . �13�

The perturbation of the Rankine-Hugoniot curve gives us a
relationship between 
̃ and p̃,


̃ =
1

M1
2M2

2 p̃ . �14�

Finally, the conservation of the tangential velocity across the
shock front is written in the form

ṽy = ṽ1ys + M2�R − 1��s, �15�

where ṽ1ys= �kx /ky�sin�kxDt�. It is understood that the down-
stream perturbation quantities ṽx, 
̃, and p̃ in Eqs. �12�–�15�
above are given at the shock front position.

B. Wave equation inside the compressed fluid

As can be seen from the last equations, the boundary con-
ditions at the shock front are written at a moving surface.
This fact certainly complicates the mathematical analysis in
Cartesian coordinates �x , t�. Therefore, we change to a sys-
tem of variables in which the shock front position does not
depend on both independent variables. One of the possible
options, as suggested for the first time in this type of prob-
lems in �5� and used later on in several works �6,9,23,51�, is
the transformation given by

kyx = r sinh � ,

� = r cosh � . �16�

It is easy to see that any surface �=const actually represents
a planar front defined �in the compressed fluid frame of ref-
erence� by x=c2t sinh �. This mathematical surface moves
along the x axis with a velocity c2 tanh �, which for the
shocked gas is lower than the speed of the shock front with
respect to the compressed fluid, M2c2. It is noted that the
new shock front coordinate ��s� can be actually written in
terms of the downstream shock Mach number as: tanh �s
=M2. Further, from Eq. �16�, we see that

� = rs cosh �s =
rs

�1 − M2
2

. �17�

We define the auxiliary function h̃ by �51�

h̃ =
1

r

� p̃

��
, �18�

and the equations of motion �Eqs. �9� and �10�� can be re-
written in the new coordinates r ,�. The mass conservation is
recast as

− sinh �h̃ + cosh �
� p̃

�r
+

cosh �

r

� ṽx

��̃
− sinh �

� ṽx

�r
+ ṽy = 0,

�19�

while the x-momentum equation is given by

−
sinh �

r

� ṽx

��
+ cosh �

ṽx

r
+ cosh �h̃ − sinh �

� p̃

�r
= 0,

�20�

and the y-momentum equation is rewritten as

−
sinh �

r

� ṽy

��
+ cosh �

� ṽy

�r
= p̃ . �21�

The shock/vorticity interaction problem here is analyzed
within the limits of validity of a linear theory. Hence, up to a
first-order expansion in the small parameter u1, either �p,
�vx, or �
 downstream is proportional to cos kyy, which ap-
pears as a common factor in Eqs. �19� and �20� and can be
therefore dropped out from both sides of those equations.
Similarly, the terms that compose the tangential momentum
conservation equation are proportional to sin kyy, which can
also be canceled out. Therefore, we have omitted the y de-
pendence in all the equations, for simplicity, thus only relat-
ing quantities that depend exclusively on r and � �or equiva-
lently, on x and t�. The last equations can be combined into a

system of coupled differential equations involving p̃ and h̃,

r
�2p̃

�r2 +
� p̃

�r
+ rp̃ =

� h̃

��
,

rh̃ =
� p̃

��
. �22�

It is clear that the system of equations above is equivalent to
the wave equation downstream, which we also write here in
Cartesian coordinates �51�,

�2p̃

��2 =
�2p̃

��kyx�2 − p̃ . �23�

To get the solutions of this problem, we use the Laplace
transform. The advantage is that we get exact analytic
closed-form expressions for the Laplace transforms of the
perturbation fields. After some algebra in the complex plane,
we get the complete temporal evolution with an inverse
transformation, and the exact asymptotic behavior by look-
ing at the singularities of the Laplace functions �23,52�.
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C. Shock pressure and shock corrugation as a function of time

1. Solution of the wave equation

For any quantity ��� ,r�, we define its Laplace transform
�indicated with capital letters� by �53–56�

���,s� = 

0

�

���,r�exp�− sr�dr . �24�

It is convenient to make the variable change s=sinh q and
transform Eqs. �22�, following �6,9,51�

�

�q
�cosh qP̃� +

�H̃

��
= 0, �25�

�

��
�cosh qP̃� +

�H̃

�q
= 0. �26�

As discussed in �51�, a first integral is obtained for the above
system of equations, and written as

cosh�q + ��P̃��,q + �� + H̃��,q + �� = 2F1�q� , �27�

cosh�q − ��P̃��,q − �� − H̃��,q − �� = 2F2�q� . �28�

The functions F1 and F2 must be determined with the help of
the boundary and initial conditions. As discussed in
�10,23,52�, it can be seen that F1 represents the sound per-
turbations radiated by the shock into the compressed fluid
and F2 corresponds to the sound waves that arrive to the
shock from behind. These waves might be evanescent or
traveling fronts, depending on the ratio kx /ky, the shock
Mach number, and the gas compressibility �23�. In this work,
we consider an isolated shock, to which no sound waves
arrive from the left. Therefore, the most general form for the
function F2 is a constant, which is used to adjust the initial
conditions behind the front at t=0+ �23�. After some addi-
tional algebra, the following decomposition for the pressure
and pressure gradient fluctuations is obtained:

P̃��,q� =
F1�q − �� + F2

cosh q
, �29�

H̃��,q� = F1�q − �� − F2. �30�

The expressions shown in Eqs. �29� and �30� are valid in the
whole compressed fluid in the space 0�x�xs�t�= �D−U�t.
To get the values of F1 and F2 �equivalently, the values of P̃

and H̃�, we have to work out the boundary and initial condi-
tions both at the shock front and at the surface x=0.

2. Boundary and initial conditions

We transform the boundary conditions �Eqs. �12�–�15��
into a system of coupled partial differential equations for the
shock pressure perturbation and the shock corrugation. From
now on, the variables that are evaluated at the shock front
coordinate are denoted with the subscript “s.” We follow
Richtmyer �7� and take the time derivative of Eq. �13� along

the shock front trajectory. After using Eq. �9� together with
the rest of the boundary conditions at the shock �Eqs.
�12�–�15��, we arrive to the system

h̃s��� = −
M1

2 + 1

2M1
2M2

�1 − M2
2

dps

d�
−

2�1 − M2
2

� + 1
�s���

+
2�1 − M2

2

�� + 1�M2

kx

ky
sin�R

kx

ky
M2�� , �31�

d�s

d�
=

�� + 1�
4M2

ps��� + cos�R
kx

ky
M2�� . �32�

We use the coordinates defined in Eqs. �16�, noting that �
=rs /�1−M2

2 according to Eq. �17�, and recast the system
above into

h̃s�rs� = −
�M1

2 + 1�
2M1

2M2

dp̃s

drs
−

2�1 − M2
2

� + 1
�s�rs�

+
�R − 1��0

R
sin��0rs� , �33�

d�s

drs
=

� + 1

4M2
�1 − M2

2
ps�rs� +

cos��0rs�
�1 − M2

2
, �34�

where �0 is a dimensionless frequency that takes into account
the periodicity of the preshock velocity field, and is given by

�0 =
RM2

�1 − M2
2

kx

ky
. �35�

We take the Laplace transform of Eqs. �33� and �34�, use s
=sinh q, and arrive to the following system:

H̃s�q� = −
M1

2 + 1

2M1
2M2

�sinh qP̃s�q� − p̃s0� −
2�1 − M2

2

� + 1
�̄s�q�

+
�R − 1��0

2

R�sinh2 q + �0
2�

, �36�

sinh q�̄s�q� =
� + 1

4M2
�1 − M2

2
P̃s�q� +

sinh q

�1 − M2
2�sinh2 q + �0

2�
,

�37�

where �̄s=�0
��s�t�exp�−st�dt is the Laplace transform of the

dimensionless shock ripple corrugation. The quantity p̃s0 is
the initial pressure perturbation at t=0+ just behind the
shock front. As commented in the previous subsection, when
the planar shock arrives to the surface x=0, a transmitted
shock starts moving to the right and a planar sonic wave is
reflected to the left. Taking into account the continuity of
pressure and normal velocity, as well as the discontinuity of
density at both sides of x=0, the value of p̃s0 is found to be

p̃s0 = −
2M1

2M2

2M1
2M2 + M1

2 + 1
. �38�

From Eqs. �29� and �30� it is easy to see that
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H̃s�q� = cosh qP̃s�q� − 2F2, �39�

in which the quantity F2 has to be a constant in order to
satisfy the isolated shock boundary condition �23�. Using
Eqs. �36� and �37�, it is not difficult to deduce that 2F2
= p̃s0. The final exact expressions for the Laplace transforms

P̃s and �̄s are obtained,

P̃s�s� =
− 2M1

2M2s

2M1
2M2s�s2 + 1 + �M1

2 + 1�s2 + M1
2

+
2M1

2M2�vs

�2M1
2M2s�s2 + 1 + �M1

2 + 1�s2 + M1
2��s2 + �0

2�
,

�40�

�̄s�s� = −
M1

2�� + 1�

2�1 − M2
2

1

2M1
2M2s�s2 + 1 + �M1

2 + 1�s2 + M1
2

+
M1

2�� + 1�

2�1 − M2
2

�
�v

�2M1
2M2s�s2 + 1 + �M1

2 + 1�s2 + M1
2��s2 + �0

2�

+
1

�1 − M2
2

1

s2 + �0
2 . �41�

The coefficient �v is given by

�v =
2

� + 1
�M1

2 − 1

M1
2 �0

2 − 1� . �42�

The Laplace function defined in Eq. �40� is formally equiva-
lent to the one obtained for a preshock density nonuniformity
�23�. The only formal differences between both cases �veloc-
ity and density preshock inhomogeneity� lies in the value of
the coefficient �v and the initial shock pressure perturbation
p̃s0.

D. Inverse Laplace transforms of P̃s and �̃s

To solve the pressure and velocity profiles in the com-
pressed fluid �that is, the sound pressure waves, the vorticity
generated at each position, the spatial structure of the longi-
tudinal and transverse velocities, etc.�, we must obtain the
dynamical evolution of the shock pressure perturbation, as
the shock moves to the right. This information may be ob-

tained after inverting the expressions for P̃s and �̃s in the
complex plane �10,23�. From the Laplace transform theory,
we know that the function p̃s�rs� is formally calculated from
the integral in the complex plane

p̃s�rs� =
1

2�i



c−i�

c+i�

P̃s�s�exp�srs�ds , �43�

where c is a real number to the right of the singularities of

P̃s�s� and i is the imaginary unit �i2=−1�. To get an algebraic
expression from Eqs. �40�–�43�, we close the integration
contour to the left and use the residue theorem �53–56�, tak-

ing care of the singularities enclosed by the integration path.
For a shock moving into an ideal gas, the only singularities

of P̃s�s�, as can be seen from Eq. �40�, are the branch points
at s= � i, and the poles at s= � i�0. The branch-point singu-
larities represent the generation of evanescent sound wave
perturbations, which decay asymptotically in time like t−3/2,
much in the same way as Bessel functions �55�. On the other
hand, the imaginary poles give rise to asymptotic constant
amplitude oscillations �23�. These permanent oscillations of
the shock ripple are due to the perturbations in velocity dis-
tributed periodically upstream. Besides, the denominator
2M1

2M2s�s2+1+ �M1
2+1�s2+M1

2 never contributes with addi-
tional singularities that could result in permanent oscillations
for an ideal-gas equation of state �52�. We obtain

p̃s�rs� = −
2

�



0

1

fp�z�cos�zrs�dz +
2�v

�



0

1

fp�z�

�� cos�zrs� − cos��0rs�
�0

2 − z2 	dz , �44�

where, the auxiliary function fp is given by

fp�z� =
4M1

4M2
2z2�1 − z2

4M1
2M2

2z2�1 − z2� + ��M1
2 + 1�z2 − M1

2�2 . �45�

From the expressions above, we can also get the formulas for
the asymptotic functions. We have to distinguish between the
long- ��0�1� and short- ��0	1� wavelength regimes. From
Eq. �40�, the asymptotic behavior of p̃s is found from the
residues at the poles s= � i�0 �23�,

p̃s�rs� � 
elr cos��0rs� + eli sin��0rs� , �0 � 1

es cos��0rs� , �0 � 1,
� �46�

where rs=��1−M2
2, according to Eq. �17�. The coefficients

elr, eli, and es are formally equivalent to those obtained in
�23�,

elr =
2M1

2M2�M1
2 − �M1

2 + 1��0
2��v

4M1
4M2

2�0
2�1 − �0

2� + �M1
2 − �M1

2 + 1��0
2�2 ,

eli =
4M1

4M2
2�0

�1 − �0
2�v

4M1
4M2

2�0
2�1 − �0

2� + �M1
2 − �M1

2 + 1��0
2�2 ,

es = −
2M1

2M2�v

2M1
2M2�0

��0
2 − 1 + �M1

2 + 1��0
2 − M1

2
. �47�

It is easy to see that the asymptotic expressions above are
actually functions of the argument �0rs�Dkxt �23�. Besides,
it is worth to note here that the only difference between the
coefficients in the above equations and the corresponding
ones in �23� is the dependence of �v on the shock strength,
gas compressibility, and on the dimensionless frequency �0.
We show the time evolution of the shock front pressure per-
turbations for different regimes, comparing the exact solution
with the asymptotic expressions. The parameter that distin-
guishes both cases �long and short wavelength� is the dimen-
sionless frequency �0. We show the shock front pressure
fluctuations in Fig. 3 for a shock moving into an ideal gas
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with �=7 /5, the shock Mach number is M1=3, and kx /ky
=1 /5, which gives �0=0.416 62 �long wavelength�. The
solid curve is the exact solution given by Eq. �44�, and the
dotted curve is the asymptotic solution �Eq. �46��. In Fig. 4
we show the shock pressure perturbations for the same gas
and shock, but for a short-wavelength case �kx /ky =1 and
�0=2.083 10�, distinguishing between the exact and
asymptotic functions of time. Similar calculations can be
done to study the evolution of the shock ripple amplitude in
both regimes. The details of the exact and asymptotic tem-
poral evolution of the shock ripple amplitude together with
the corresponding plots are shown in the Appendix A, which
can be retrieved in the auxiliary file attached to this article
�57�.

E. Pressure perturbations radiated by the shock
into the compressed fluid

As the shock ripple oscillates, pressure fluctuations are
generated into the downstream fluid in the form of sound
waves. In general, in the long-wavelength regime, those are
evanescent waves that have an amplitude which decays in
time like t−3/2 either at the shock front or at any other point in
space in the compressed gas �5,6,10�. These are surface
waves actually traveling along the ŷ axis and decaying spa-
tially along the x̂ direction. As seen from an observer moving

with the shock, the pressure perturbations decay exponen-
tially with the relative distance to the shock very near the
front �23�. Nevertheless, as discussed in previous works too,
there is the possibility for the oscillating shock to emit con-
stant amplitude traveling sound waves into the compressed
fluid. For this to happen, the frequency of oscillation at the
shock front should be high enough, which in turn puts a
lower limit to the spatial frequency of the vorticity modula-
tion in the uncompressed gas �12,14–18,20,21,23�. We can
easily find the mathematical structure of the sound waves,
and understand the conditions under which those waves
propagate, by studying the information provided by the

Laplace transform P̃�� ,q� in the space behind the shock. In
fact, if we looked for the imaginary poles of the Laplace
function, at any given value of the coordinate �, we would be
able to write the analytical formula that represents the emit-
ted sound perturbations, as well as to determine the neces-
sary conditions for successful emission to occur. The proce-
dure is equivalent to that used in �52�, to study the
spontaneous acoustic emission of a shock front moving into
a fluid with a non-ideal-gas equation of state. With the help
of Eqs. �27�–�29� and �40� we get F1�q�. Then, we go back
again to Eq. �29�, valid for any value of �, in the interval

0����s=tanh−1 M2, to finally obtain P̃�� ,q�. We have
�23�

P̃��,q� =
cosh�q + �s − ��

cosh q
P̃s�q + �s − �� , �48�

where it is not difficult to realize �see Eq. �40�� that the
right-hand side has a denominator of the form

sinh2�q + �s − �� + �0
2 = �sinh�q + �s − �� + i�0�

� �sinh�q + �s − �� − i�0� . �49�

After some elementary algebra, we can see that this term
would contribute with imaginary poles at certain imaginary
complex values for the Laplace variable s which we call s
= � i��, �hence contributing with constant amplitude oscilla-
tions� if and only if the following relationship holds:

�0 + ��0
2 − 1 � exp��s − �� . �50�

It is clear that the equation above implies that �0	1, which
means that the running waves of constant amplitude can be
emitted by the corrugated front only in the short-wavelength
regime. Physically speaking, if �0�1, the longitudinal wave
number associated to the sound wave would be a pure imagi-
nary number, and the amplitude of the emitted perturbation
would decay exponentially relative to the shock front posi-
tion �23�. We define the auxiliary quantity �0 such that �0
=cosh �0. Then, the previous condition may be recast as

�0 � cosh��s − �� . �51�

If Eq. �51� is fulfilled �or equivalently Eq. �50��, the math-
ematical surface defined by x / t=c2 tanh � would exhibit
stable pressure oscillations. The frequency of those oscilla-
tions in the domain of the separable coordinates r ,�, which

0 20 40 60 80 100

−0.5

0

0.5

1
exact [Eq.(44)]
asymptotic [Eq.(46)]

kyDt

FIG. 3. Shock front pressure perturbations originating when a
planar strong shock �M1=3� moves into an incompressible vorticity
field in an ideal gas with �=7 /5. The ratio of longitudinal to trans-
verse wave numbers is kx /ky =1 /5, which gives �0=0.416 62.
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kyDt

FIG. 4. Shock front pressure perturbations originating when a
planar strong shock �M1=3� moves into an incompressible vorticity
field in an ideal gas with �=7 /5. The ratio of longitudinal to trans-
verse wave numbers is kx /ky =1, which gives �0=2.083 10.
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we name ��, is obtained by solving the equation: sinh�q
+�s−��= i�0 �we remind that we here define sinh q=���. We
obtain

�� = cosh��0 − �s + ��

= cosh��0 − �s�cosh � + sinh��0 − �s�sinh � . �52�

Being constant amplitude oscillations defined on a moving
surface, they actually represent traveling sound waves either
to the right or to the left. Let us discern between these two
possibilities, by explicitly working out their mathematical
structure. In fact, when Eq. �50� �or Eq. �51�� is satisfied, the
asymptotic pressure fluctuations are described in space and
time by

p̃��,r� = es cos���r�

= es cos�cosh��0 − �s�� − sinh��s − �0�kyx� . �53�

Here, es is the asymptotic amplitude of the pressure pertur-
bations at the shock front defined in Eq. �47�. Looking inside
the argument of the last equation, we realize that the function
given in Eq. �53� represents propagating planar fronts in the
�x ,�� plane. If 0��0��s �equivalently: 1��0�cosh �s

=1 /�1−M2
2�, the waves are emitted to the right, which then

follow the shock front with a horizontal speed given by
c2M2 tanh ��c2M2. This last result is consistent with the
fact that no sound waves impinge on the shock from behind.
On the other hand, if �0	cosh �s �equivalently: �0	�s�, the
sound waves are emitted to the left. In the absence of a
reflecting surface at x=0, those waves escape toward x=−�.
Furthermore, the frequency of oscillation of the compressed
fluid particles downstream �when �0	1� can be seen to be
equal to

�1 = cosh��0 − �s� =
�0 − M2

��0
2 − 1

�1 − M2
2

, �54�

and the longitudinal wave number of the sonic fronts �kx
ac� is

equal to

kx
ac

ky
= sinh��s − �0� =

M2�0 − ��0
2 − 1

�1 − M2
2

, �55�

which is positive �and hence representing waves that travel
to the right� if �0��s, and negative �representing waves to
the left� if �0	�s. We remind that the frequency of oscilla-
tion of the compressed fluid particles is �1��0 due to the
Doppler shift �37�. The boundary condition at x=0 is that no
sound waves arriving there get reflected. If the reflection was
possible, because of the presence of a piston, for example,
the reflected waves could have reached the shock from be-
hind. For this to happen, �0 should be greater than a certain
value that would depend on the shock strength and the fluid
compressibility. This possibility �as well as the possibility of
having multiple reverberations between the shock and the
reflecting surface� has been discussed in �23,52� and will be
left for future study.

F. Rotational and irrotational velocity perturbations
in the compressed fluid

As the shock moves into the perturbed fluid upstream,
additional velocity fluctuations are generated downstream. In
this subsection we study the velocity field generated behind
the shock front. At first, we discuss the velocity perturbations
as a function of time at the surface x=0. In fact, the initial
discontinuity in tangential velocity at that position will
evolve like the contact surface of a RMI problem. In the next
subsection, we analyze the vorticity deposition in the com-
pressed gas and determine the rotational velocity profiles in
both regimes of short and long wavelength. Finally, the ve-
locity profiles associated to the sound waves emitted by the
shock front are obtained.

1. RMI growth at x=0

To study the velocity perturbations that develop at the
surface x=0, we consider the x-momentum equation in Eq.
�20� and evaluate it at �=0. We take its Laplace transform,
and with the help of Eqs. �27�–�29� and �40� we get the
Laplace transform of the velocity fluctuations at the interface

Ṽx�x = 0, s = sinh q� = −
cosh�q + �s�P̃s�q + �s�

sinh q
. �56�

The exact temporal evolution since �=0+ is formally given
by

ṽxi��� =
1

2�i



c−i�

c+i�

Ṽx�x = 0,s�exp�s��ds , �57�

where c is any real number to the right of all the singularities

of the Laplace function Ṽx�x=0,s�. The procedure to calcu-
late the integral in the complex plane above is the same as
that used to calculate Eq. �43�. We immediately recognize the
existence of a pole at s=sinh q=0, and the possibility of
having imaginary poles at s= � i�1 if, and only if, �0

	1 /�1−M2
2 �see the discussion following Eq. �50��. The

physical origin of the pole at s=0 is understood by realizing
that there will be always RMI-like growth on that surface. In
fact, once the transmitted shock starts to move to the right of
it, the sound perturbations emitted by the corrugated front
would progressively modify the instantaneous circulation,
similarly as happens in a typical RMI problem, enhancing
ripple growth. The difference here lies in the fact that the
initial discontinuity at t=0+ is on the longitudinal derivative
of the transverse velocity, instead of being a discontinuity of
the initial tangential velocity at both sides of x=0, as in the
standard RMI problems �7,8,10,11,23,48–51�. In the long-
wavelength regime, the pressure perturbations emitted by the
shock fade away in time as t−3/2, but they integrate to a final
asymptotic rate of growth for the surface ripple, given by the
pole at s=0 of Eq. �56�. In fact, we can get an explicit closed
expression as a function of � and M1, after using Eq. �40�,
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ṽxi
� = −

P̃s�s = sinh �s�
�1 − M2

2
=

�� + 1�M1
4

��2� − 1�M1
4 + 2M1

2 + 1�
�kx

2 + ky
2�

�R2kx
2 + ky

2�

=
�� + 1�M1

4�M1
2R + �M1

2 − 1��0
2�

R��2� − 1�M1
4 + 2M1

2 + 1��M1
2 + �M1

2 − 1�R�0
2�

. �58�

It is stressed that in order to calculate the asymptotic rate of
growth in Eq. �58�, we need the exact complete expression

for P̃s. This means that the initial conditions are important to
calculate the asymptotic normal velocity at x=0, similarly as
occurs in any RMI problem �10,48–51�. In the short-
wavelength regime, for those cases in which the dimension-
less frequency �0 satisfies �0	1 /�1−M2

2, the sound waves
traveling to the left would induce stable oscillations in time
at any position x in the compressed fluid. In particular, the
ripple at x=0 will oscillate with frequency �1. Thus, in this
regime, besides the pole at s=0 in Eq. �56�, giving rise to the
asymptotic steady value of Eq. �58�, we also have the con-
tribution from the poles that would appear at s= � i�1. The
amplitude of those oscillations can be calculated using the
residue theorem on Eq. �56�, or simply substituting Eq. �53�
into the linearized x-momentum equation �see Eq. �9��, using
Eq. �54�. The asymptotic perturbed normal velocity at x=0
for the short-wavelength situation is

ṽxi�� � 1� � ṽxi
� + Qac cos��1�� , �59�

where

Qac =
�M2�0 − ��0

2 − 1�es

�0 − M2
��0

2 − 1
, �60�

in formal agreement with Eqs. �91� and �92� of �23�. We note
the equivalence between Qac above, and the velocity ampli-
tude vi1 in �23�.

2. Downstream vorticity perturbations

Thanks to the conservation of tangential momentum
across the shock front, it is not difficult to see that vorticity
will be always generated behind a corrugated shock wave
�23,48,50,51�. This vorticity will remain frozen to the fluid
elements in the absence of viscosity, which we assume to be
the case. The total vorticity in the compressed fluid will be
composed of two terms, one due to an amplification of the
upstream vorticity and the other one will be the result of the
shock ripple oscillations. The first term, as will be seen in
this subsection, is the result of the shock compression of the
upstream vortices, in the direction of shock motion. The
shock compression reduces the characteristic x length of the
preshock eddies by a factor 1 /R=
1 /
2. On the other hand,
the second contribution comes from the shock oscillations,
induced by the perturbations upstream. In fact, as the shock
ripple oscillates, lateral pressure gradients are generated be-
hind the shock, which induce an additional lateral velocity
on the compressed fluid particles. Once the shock arrives at
the point x, at the time t0�x�=x / �D−U�, the vorticity that
corresponds to the fluid element at that point will remain
frozen to that fluid particle. We define the dimensionless vor-
ticity for our 2D problem as

�̃�x,y� =
��2

kyc2
= g�kyx�sin�kyy� , �61�

where the function g is given by

g�kyx� = � � ṽy

�kyx
�

t=t0�x�
+ �ṽx�t=t0�x�. �62�

Both terms in the previous equation are evaluated just behind
the shock front position, at the time t0 when the shock arrives
to that position. The space derivative of the tangential veloc-
ity can be obtained by taking the time derivative of Eq. �15�
following the shock trajectory �50,51�. We get

� � ṽy

�kyx
�

x=xs

= �R�1 +
kx

2

ky
2� − 1	cos�Rkxx�

+ � �M1
2 − 1�R − 2M1

2

2M1
2M2

	p̃s�x,t0�x�� , �63�

where use has been made of the linearized Rankine-
Hugoniot conditions �Eqs. �12�–�15��. After some additional
algebra, we obtain

g�kyx� = �1 cos�Rkxx� + �2p̃s�rs =
kyx�1 − M2

2

M2
� , �64�

where the quantities �1,2 are given by

�1 = R�1 + � kx

ky
�2	 =

�� + 1�M1
2

�� − 1�M1
2 + 2

+
M1

2 − 1

M1
2 �0

2,

�2 =
�M1

2 − 1�2�2�M1
2 − � + 1

M1
2��� − 1�M1

2 + 2�3/2 . �65�

The calculation of the vorticity behind corrugated shock
fronts had been studied in �24–26�, and more recently recon-
sidered in �27,28�. In particular, the vorticity calculated in
Eqs. �64� and �65� above coincides exactly with the predic-
tion given by Eq. �2.18� of �28�, with the baroclinic term
equal to zero, as the upstream density is uniform in the prob-
lem treated here. Considering Eqs. �64� and �65�, the term
�1 cos�Rkxx� does explicitly depend on �0, as it quantifies
the amplification of the preshock vorticity. The factor �2 is
the same quantity that appears in the calculation of the rate
of growth of the RMI in �50,51�, and also named � in those
references and represents the generation of vorticity due to
shock curvature. In the long/short-wavelength regimes, both
terms in Eq. �64� are oscillatory functions of x, very far from
the weak/contact discontinuity at x=0. The characteristic
length of the postshock eddies normal to the shock surface is

x /R. If there were a piston at x=0, reflecting the sound
waves radiated by the corrugated shock, and if the conditions
were adequate to make those reflected waves to impinge on
the shock from behind, this effect would induce additional
oscillations of the shock ripple with a lower frequency �2
�because of the Doppler shift, it will be: �2��1��0, as dis-
cussed in �23,52��. These new oscillations would create an
additional vorticity field with a larger characteristic longitu-
dinal scale that would be superposed to that calculated using
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Eq. �64�. This possibility is left for future study. From the
expression shown in Eq. �64�, it is clear that the exact depo-
sition of vorticity in the compressed fluid can be calculated
using the formulas for p̃s shown in Eqs. �44� and �45�. We
can also calculate the asymptotic behavior of the function g,
using the asymptotic expressions given by Eq. �46� or alter-
natively, by looking at the poles of the Laplace transform of
the function g�kyx�. In fact, the transform of g is given by

G��� = 

0

�

g�kyx�exp�− �kyx�d�kyx�

=
�1�0 sinh2 �s

�2 sinh2 �s + �0
2 + �2P̃s�� sinh �s� . �66�

The only poles of the right-hand side of Eq. �66� above are

located at �= � iRkx /ky. After substituting for P̃s from Eq.
�40� into Eq. �66�, and using the residue theorem, we can
also get the asymptotic dependence of the function g on the
coordinate x. We use Eqs. �40�, �66�, and �46� to obtain

g�kyx�

� 
���1 + �2elr�2 + ��2eli�2cos�Rkxx − �rot� , �0 � 1

��1 + �2es�cos�Rkxx� , �0 � 1,
�

�67�

where

tan �rot =
�2eli

�1 + �2elr
. �68�

The expressions for the coefficients elr, eli, and es have been
given in Eq. �47�. Once we have the exact and asymptotic
expressions for the vorticity generated downstream, it is cus-
tomary to calculate the associated velocity field.

3. Rotational velocity perturbations in the compressed fluid

When the shock front moves through the preshock vorti-
ces to the right of x=0, it generates tangential and normal
velocity perturbations in order to satisfy the conservation
equations across the front to match with the upstream fluc-
tuations. This process creates a pressure gradient along the
shock surface, distorting the shock shape. The shock pressure
perturbations escape into the fluid downstream in the form of
evanescent or traveling waves, depending on the specific
value of the ratio kx /ky. Thus, we expect that when the shock
is far enough from x	0, the asymptotic velocity at the po-
sition x will have two sources: on one hand, a rotational
component attributed to the vorticity left in that fluid element
by the corrugated shock, and on the other hand, the integra-
tion of all the impulses given to it, by the sound pressure
waves. Therefore, the situation at any x	0 is similar to the
RMI growth that occurs at the ripple located at x=0. For the
moment we only consider the long-wavelength situation. For
simplicity, we name the rotational normal and tangential ve-
locities by u and v, respectively. It is clear that the following
identities hold, once the shock is far from the point with
abscissa x, and the effect of the evanescent sound waves has
vanished,

ṽx�x,y,t � t0�x�� = u�x�cos�kyy� ,

ṽy�x,y,t � t0�x�� = v�x�sin�kyy� . �69�

In the long-wavelength regime, the asymptotic velocity field
is incompressible and the relationship v�x�=−u��x� holds,
where the prime indicates differentiation with respect to the
argument. Using Eqs. �62� and �69�, and the incompressibil-
ity condition, it is easy to get the ordinary differential equa-
tions satisfied by u and v,

d2u

d�kyx�2 − u = − g�kyx� , �70�

d2v
d�kyx�2 − v = g��kyx� . �71�

We concentrate in the solution of Eq. �70�, as v is obtained
from u by differentiation. The most general solution of Eq.
�70� is written in the form

u�kyx� = A exp�− kyx� + up�x� , �72�

where up is a particular solution and the constant A is chosen
to match with the value of the asymptotic velocity at x=0,
given in this case by Eq. �58�. By direct substitution into Eq.
�70�, it is straightforward to see that a particular solution can
be written as

up�kyx� =
�1 sinh2 �s

sinh2 �s + �0
2cos� �0kyx

sinh �s
�

+
2�2�v

�



0

1 fp�z�ju�z,x�
�z2 − �0

2�
dz

−
2�2 sinh2 �s

�



0

1 � fp�z�
z2 + sinh2 �s

cos� zkyx

sinh �s
�	dz ,

�73�

where the auxiliary function ju is

ju�z,x� =
sinh2 �s

�0
2 + sinh2 �s

cos� �0kyx

sinh �s
�

−
sinh2 �s

z2 + sinh2 �s
cos� zkyx

sinh �s
� , �74�

and we remind that the argument �0kyx /sinh �s is equal to
Rkxx. Besides, using Eq. �58� and �77� below, it can be seen
that: up�0�=2ṽxi

�. From the arguments given above, it is clear
that in order to match the velocity perturbation at x=0, we
have the following expression for the asymptotic longitudi-
nal velocity in the compressed fluid:

u�kyx� = up�kyx� − ṽxi
� exp�− kyx� . �75�

Equation �75� is the exact result for the normal velocity in
the fluid downstream, once the shock is very far from the
point x, for long-wavelength perturbations. In agreement
with Fraley �10�, the velocity is seen to decay exponentially
very near the surface x=0, but is dominated by the vorticity
ahead of it, which in this case induces an oscillatory behavior
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as a function of x with a spatial frequency equal to Rkx. That
is, very far from x=0, the asymptotic behavior is dominated
by the particular solution up, as the effect of the exponential
term can be safely neglected. To get the asymptotic form of
up�kyx�, it is instructive to work with its Laplace transform. If
we go back to Eq. �70�, multiply both sides by exp�−�kyx�
and integrate between x=0 and x=�, we get

Up��� =
up�0� − G���

�2 − 1
, �76�

where we have used the result: up��0�=0 �see Eq. �73��. The
value of G is taken from Eq. �66�. It is easy to see that the
right-hand side of the above equation must be defined for
�=1, as it cannot be a pole. Then, we get the relationship

up�0� = G�1� =
�1�0

1 + �R
kx

ky
�2 + �2P̃s�sinh �s� . �77�

From Eqs. �66� and �76� we realize that there are two imagi-
nary poles for Up located at �= � iRkx /ky. After some alge-
bra we find the asymptotic expressions in the long-
wavelength regime,

up�x � 
y� � Qrot
l cos�Rkxx − �rot� ,

vp�x � 
y� � Qrot
l R

kx

ky
sin�Rkxx − �rot� , �78�

where

Qrot
l =

���1 + �2elr�2 + ��2eli�2

1 + �R
kx

ky
�2 , �79�

and �rot has been defined in Eq. �68�. The coefficients elr and
els can be found in Eq. �47�. In Fig. 5 we show the normal
velocity u�x�, calculated exactly, using Eq. �75�, and com-
pare it with the asymptotic expression given by Eq. �78� for
the long-wavelength case, with the same parameters as in
Fig. 3. Near the weak discontinuity at x=0 the velocity per-
turbation is dominated by the complete expression of u given
in Eq. �75�, in which the exponential term cannot be ne-

glected �10�. This is a characteristic common to RMI prob-
lems: the asymptotic growth very near the contact surface at
x=0 is dependent on the whole history of the pressure per-
turbations evolving between the shock front�s� and the con-
tact surface ripple �10,48,49,51�. That is, initial conditions
are necessary to calculate asymptotic velocity perturbations
at x=0. For x�
y, on the other hand, the velocity perturba-
tions show a periodic asymptotic, only driven by the com-
bined effects of the amplified upstream vorticity and the
vorticity-generated downstream because of shock curvature.
In this case, the shock has already entered its asymptotic
regime and hence, initial conditions are not necessary to de-
termine the velocity perturbations far from x=0.

In the short-wavelength regime, the rotational asymptotic
velocity field is described by

up�x � 
y� � Qrot
s cos�Rkxx� ,

vp�x � 
y� � Qrot
s R

kx

ky
sin�Rkxx� , �80�

where Qrot
s in the short-wavelength regime is given by

Qrot
s =

�1 + �2es

1 + �R
kx

ky
�2 . �81�

The value of es can be found in Eq. �47�.

4. Irrotational velocity profiles in the short-wavelength regime

For short enough wavelengths �that is, when �0�1�, the
shock front successfully radiates traveling sonic perturba-
tions. We know that depending on the value of �0 as com-
pared to that of 1 /�1−M2

2, the pressure waves travel to the
right, following the shock with a lower x velocity, or travel to
the left, escaping from the shock to x=−�. As the sound
wave fluctuations will contribute with velocity fluctuations,
they do contribute to the downstream kinetic energy. It will
later be seen that, actually, the contribution of the sonic ve-
locity field is negligible compared to the rotational contribu-
tion calculated in the last subsection. Nevertheless, the sound
wave field dominates the kinetic-energy budget for very
weak shocks �M1−1�1�. Thus, it is necessary to unveil the
details of the sonic perturbation field. To this scope, we write
the equations of motion �Eqs. �9� and �10�� in a more com-
pact form. We define the dimensionless differential operator,

�� 2D = x̂
�

��kyx�
+ ŷ

�

��kyy�
, �82�

and Eqs. �9� and �10� can be rewritten in the form �56�

�2v�̃
��2 = �� 2D � �g�x�sinh�kyy�ẑ� + �2D

2 v�̃ , �83�

where the product symbol � indicates vector product and the
operator �2D

2 is defined by

�2D
2 =

�2

��kyx�2 +
�2

��kyy�2 . �84�

Evaluating the x component of Eq. �83�, we get

0 5 10 15 20 25 30

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
exact (u) [Eq.(75)]
asymptotic (up) [Eq.(78)]

kyx

FIG. 5. Exact and asymptotic normal velocity perturbation as a
function of the coordinate x, for a planar strong shock �M1=3� that
moves into an incompressible vorticity field in an ideal gas with
�=7 /5. The ratio of longitudinal to transverse wave numbers is
kx /ky =1 /5 which gives �0=0.416 62.
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�2ṽx

��2 = �2D
2 ṽx + g�x�cos�kyy� . �85�

The solution to this last equation can always be put in the
form

ṽx�x,y,t� � ṽx
ac��,x�cos�kyy� + u�kyx�cos�kyy� , �86�

where the function ṽx
ac satisfies the homogeneous wave equa-

tion in 2D,

�2ṽx
ac

��2 =
�2ṽx

ac

��kyx�2 − ṽx
ac. �87�

The function u�kyx� satisfies Eq. �70� and is also formally
given by Eq. �75� in the short-wavelength regime. Summing
up, Eq. �86� expresses the fact that the velocity field is de-
composed in two parts: a steady rotational contribution,
which is also divergence free and has been calculated in the
last subsection, plus a second term which does not add vor-
ticity but travels in the compressed fluid with the local sound
speed. When �0�1, this potential contribution is actually an
evanescent sound wave that vanishes asymptotically in time
like t−3/2 at any position x, and it is only the rotational part
u�kyx�cos�kyy� that remains as a permanent velocity pertur-
bation when the shock is far away. On the other hand, when
�0	1, the solutions to Eq. �87� add a nonzero contribution to
vx consisting of constant amplitude oscillations, for t� t0�x�.
These oscillations travel as planar fronts with a definite ori-
entation in space, which is a function of �0. In fact, in accor-
dance to the previous discussion, the function ṽx

ac can be
written, asymptotically in time, as

ṽx
ac�x,t � t0� � Qac cos��kyx��1

2 − 1 + �1�� , �88�

where Qac has been defined in Eq. �60�. Equation �88� can be
verified substituting it into Eq. �87�. Further, we recognize
the wave vector of the traveling sound wave, defined by

k�ac = �kx
ac,ky� , �89�

where �kx
ac�=ky

��1
2−1. The sonic front described by Eq. �88�

actually represents the superposition of two planar waves
running in opposite directions along the y axis, each of
which has a ray inclined with respect to the x direction
through an angle ��ac. According to Eq. �55�, the value of
�ac is given by

tan �ac =
ky

kx
ac =

�1 − M2
2

M2�0 − ��0
2 − 1

. �90�

To conclude this subsection, we write both components of
the total velocity field when �0�1, for x�
y and t� t0�x�,

ṽx�x,y,t� � �Qrot
s cos�Rkxx� + Qac cos�kx

acx − �1���cos�kyy� ,

ṽy�x,y,t� � �Qrot
s Rkx

ky
sin�Rkxx� −

Qac
�1 − M2

2

��0
2 − 1 − M2�0

�sin�kx
acx − �1��	sin�kyy� , �91�

where Qac is given by Eq. �60� and Qrot
s is given by Eq. �81�.

When 1��0�1 /�1−M2
2, kx

ac	0 and the waves travel to the
right. For �0	1 /�1−M2

2, kx
ac�0 and they move to the left.

If �0=1 /�1−M2
2, the waves that escape from the shock ac-

tually travel along the y direction in the frame co-moving
with the compressed fluid.

To illustrate Eq. �91�, we show the normal velocity �ṽx�
for a short-wavelength case in Fig. 6 for a case in which the
sound waves emitted by the front fill the whole space down-
stream. The velocity curves are shown quite far from the
weak discontinuity at x=0, and enough time has passed such
that the shock entered its own asymptotic regime, oscillating
with the dimensionless frequency �0

�1−M2
2. We show the

normal velocity profiles given by ṽx in Eq. �91�, at different
values of the dimensionless time �. The solid vertical lines
indicate the instantaneous shock front positions at the corre-
sponding values of �. We can see that the velocity field is a
superposition of an average steady profile �corresponding to
up in Eq. �80�� plus an oscillation driven by the sound waves
in Eq. �88�.

III. SHOCK COMPRESSION OF TURBULENT 2D/3D
RANDOM VORTICITY FIELDS

In this section we study the interaction of a planar shock
with a fully turbulent rotational 3D velocity field upstream.
At first, we describe analytically the most general of such
velocity fields in front of the shock, in terms of the Euler
angles. This description is helpful to represent any arbitrary
incompressible velocity perturbation field with prescribed
vorticity, with any degree of anisotropy in terms of three
orientation angles. The discussion will be later greatly sim-
plified to deal only with isotropic distributions of velocity
and vorticity. Nevertheless, the way is prepared in order that
it is possible to analyze the interaction of a planar shock
wave with arbitrary anisotropic velocity fields in future
works.

A. General 3D upstream/downstream perturbation flows:
geometrical representation

Let us consider a rotational and incompressible 3D veloc-
ity field in the space X�0, with arbitrarily oriented coordi-

30 32 34 36 38 40

−0.5

0

0.5

1
ṽx(τ = 75)
ṽx(τ = 80)
ṽx(τ = 85)

kyx

kyxs(τ = 80)

kyxs(τ = 85)

Eq.(91):

kyxs(τ = 75)

FIG. 6. Asymptotic normal velocity perturbation as a function
of the coordinate x, at different times, for a planar strong shock
�M1=3� that moves into an incompressible vorticity field in an ideal
gas with �=7 /5. The ratio of longitudinal to transverse wave num-
bers is kx /ky =1 which gives �0=2.083 10. For this case, the sound
waves fill the whole compressed gas, which induce oscillations
around steady-state value �80� with a beat determined by �1.
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nates axes �X ,Y ,Z�, and the planar shock moving along the

X̂ direction. Without loss of generality, the upstream velocity
field may be assumed to consist of shear waves with a wave
number given by the vector k� = �kX ,kY ,kZ�. Because of in-
compressibility, each k� defines a planar wave, perpendicular
to it, on which the velocity perturbations are prescribed.
These velocity disturbances may be assumed to be of the
form

v�1�X,Y,Z� = �v�1 exp�i�kXX + kYY + kZZ�� . �92�

The components of the velocity vector �v�1
= ��v1X ,�v1Y ,�v1Z� are not arbitrary. In fact, from the incom-
pressibility of the upstream perturbations, we have: �� .v�1

=0, which may be recast as: k� .�v�1=0, after using Eq. �92�.
We also compute the vorticity of the upstream field,

��� 1 = k� � �v�1 exp�i�kXX + kYY + kZZ�� , �93�

where use has been made of the definition of vorticity ��� 1

=�� �v�1� and Eq. �92�. We denote the unit vectors in the
directions of the wave number, the upstream velocity, and the

upstream vorticity by: k̂, v̂1, and �̂1, respectively. It is clear

that the set of vectors �k̂ , v̂1 , �̂1� constitutes a set of rigid
axes with the same geometrical properties as the right-
handed system of Cartesian coordinates �X ,Y ,Z�. Thus, we
can specify the orientation of one of them with respect to the
other set of unit vectors, in terms, for example, of the Euler
angles �58,59�. In this way, the task of representing an arbi-
trary velocity/vorticity field in front of the shock can be ac-
complished by means of three rotation angles: �, �, and �.
To write the components of the velocity and the wave-
number vector as a function of these rotation angles, the best
option is to start with the simplest configuration for the unit

vectors �k̂ , v̂1 , �̂1�. We can initially choose k̂= X̂, v̂1= Ŷ, and

�̂1= Ẑ, shown in Fig. 7�a� The first transformation is a coun-
terclockwise rotation of angle � on the shock plane around

the vector k̂� X̂. In this way, we rotate the velocity and vor-
ticity vectors on the shock plane around the wave-number
vector. The transformed vectors are v̂1� and �̂1�. Next, we
perform a rotation of angle �, around the vector v̂1� �in this
second transformation the vector v̂1� is unchanged�, which
takes the vorticity away from the surface of the shock, mak-
ing it to point into the uncompressed fluid, as shown in Fig.

7�b�. The new rotated vectors after this second motion are k̂�
and �̂1�. The last axes transformation is a rotation of angle �

around the vector k̂�, which makes the final vector v̂1� to
point into the fluid ahead of the shock surface, as well as the

new vectors k̂�= k̂� and �̂1�, indicated in Fig. 7�c�. The com-
position of these three motions gives us the most general set
of vectors �k� ,v�1 ,�� 1�, which are arbitrarily oblique to the
shock surface and simultaneously satisfy the incompressibil-
ity condition. It is not difficult to write the components of the
rotated vectors, in terms of the rotation angles �58,59�,

kX = k cos � ,

kY = − k sin � sin � ,

kZ = − k cos � sin � , �94�

where we have defined: k= �k��. In Fig. 7 we show the rota-
tions that define the components of the upstream velocity and
vorticity fields in terms of the Euler angles as presented in
Eqs. �94�–�96�. The components of the velocity vector are
�we omit the exponential factor exp�i�kXX+kYY +kZZ�� in
each component, for simplicity in the notation�

�v1X = − �v1 sin � sin � ,

�v1Y = �v1�cos � cos � − sin � sin � cos �� ,

�v1Z = �v1�− sin � cos � − cos � sin � cos �� , �95�

where �v1= ��v�1�. The upstream vorticity components are
given by

��1X = k�v1 cos � sin � ,

��1Y = k�v1�cos � sin � − sin � cos � cos �� ,

��1Z = k�v1�− sin � sin � + cos � cos � cos �� , �96�

where the complex exponential factors have also been omit-
ted in the vorticity components for simplicity in the notation.
The angle � describes rigid rotations in the plane of the
shock front and its range of variation is 0���2�. The
angle � is equivalent to the azimuthal angle in spherical co-
ordinates, with the x axis taken as the polar axis, and the
range of variation is 0����. Finally, the angle � describes
rotations in a plane perpendicular to the wave-number vector

FIG. 7. �Color online� Sequence of space rotations characterized
by the Euler angles describing the most general rotational velocity
field in front of the incident shock.
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k�, and it takes values inside the interval: 0���2�. Each
choice of the set �� ,� ,�� represents a different planar shear
wave in front of the shock. The advantage of disposing of the
analytical form given by Eqs. �94�–�96� is the fact that they
could be eventually used to account for non axisymmetric or
nonisotropic conditions upstream. However, if we consider
an isotropic distribution of velocities in front of the shock,
we may assume isotropy of rotations in the plane of the
shock and in the plane perpendicular to the wave-number
vector k�. Then, for given values of �v1 and k, the probability
that the set of vectors k�, �v�1, and ��� 1 will be oriented ac-
cording to Eqs. �94�–�96� is taken proportional to the solid
angle, which in terms of the angle differentials is equal to

1

8�2sin �d�d�d� . �97�

Thus, we can easily compute the mean values of the squares
of the components of the velocity and the vorticity vectors.
For the velocity upstream, we get the averages,

��v1X
2 � = ��v1Y

2 � = ��v1Z
2 � =

�v1
2

3
, �98�

and for the vorticity components we obtain

���1X
2 � = ���1Y

2 � = ���1Z
2 � =

�k�v1�2

3
, �99�

where isotropy is evident, either for the velocity or the vor-
ticity fields. With Eqs. �94�–�96� at our disposal, the formal
procedure to study the interaction of a planar shock wave
with a 3D field of shear waves consists of solving the wave
equation in the compressed fluid domain and impose the cor-
responding boundary conditions at the shock front and far
downstream. It is further not difficult to realize that when
passing from 2D to 3D, kY must be replaced by k�

=�kY
2 +kZ

2 =k sin �. Linearized Rankine-Hugoniot conditions
�31�–�34� remain formally the same, except for the new
value of �0, in which k� is used,

�0 =
RM2

�1 − M2
2

kX

k�

. �100�

Furthermore, due to linearity, the interaction of the shock
front with the velocity field represented by Eqs. �94�–�96�
may be seen as a linear transformation that takes the input
vector �v�1 exp�i�kXX+kYY +kZZ�� upstream, into the velocity
vector downstream,

�v�2 = �v�2
rot exp�i�RkXX + kYY + kZZ�� + �v�2

ac�X,Y,Z,t� ,

�101�

where we emphasized that the velocity perturbations behind
the shock are written as the sum of incompressible rotational
perturbations frozen to the fluid particles �which account for
the vorticity� plus an irrotational part that travels in space
with the local sound speed �which corresponds to the sound
waves emitted downstream�. The superscript “rot” in Eq.
�101� refers to the amplitude of the downstream vorticity
shear waves. The longitudinal wave number of the rotational
perturbations is amplified by a factor R. From now on, we

will concentrate in the asymptotic velocity fields behind the
shock, assuming that the transient for each mode has passed.
Therefore, the potential part of the decomposition above can
be written, asymptotically in time, as

�v�2
ac�X,Y,Z,t � t0� � �v�2

ac exp�i��k�X��1
2 − 1

+ �1k�c2t + kYY + kZZ�� , �102�

where the possibility of having right facing waves or left-
facing waves only depends on whether �0 is smaller or
greater than 1 /�1−M2

2, as discussed in the last section. The
superscript “ac” in Eq. �102� refers to the amplitude of the
downstream acoustic velocity waves. Due to linearity, it is
clear that the values of the downstream velocity amplitudes
�v�2

rot and �v�2
ac can be obtained from the amplitude of the

upstream velocity vector �v�1, through appropriate linear
transformations,

�v�2
rot = M� rot�k�,�0,M1��v�1,

�v�2
ac = M� ac�k�,�0,M1��v�1, �103�

where M� rot and M� ac are square matrices of dimension three,
whose components may be derived after some tedious alge-
bra, by generalizing the calculations of the last Section.
However, taking profit of the symmetry of rotations in the
plane of the shock, for an isotropic field upstream, we can
substantially simplify the algebra, reducing the 3D situation
to an equivalent 2D problem. This task, and the calculation
of the averages of the different quantities in the fluid down-
stream is presented in the following subsections.

B. Reduction to an equivalent 2D problem

The former representation of the velocity field can be
drastically simplified so as to deal with an equivalent 2D
description. In fact, we can always rotate counterclockwise
the set of axes �X ,Y ,Z� around the normal to the shock, by
an angle � /2−� to get a new set of axes, which we name
�x ,y ,z�. The new components of the wave-number vector in
front of the shock are

kx = k cos � ,

ky = − k sin � ,

kz = 0, �104�

where we see that the z component of the wave-number vec-
tor is zero. The new components of the upstream velocity
field are

�v1x = − �v1 sin � sin � ,

�v1y = − �v1 cos � sin � ,

�v1z = − �v1 cos � . �105�

Thanks to isotropy, the dependence on the angle � has been
eliminated, and this is all we need to convert the original 3D
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situation into an equivalent 2D problem. This trick had been
also noticed in earlier works �30�. In Fig. 8 we show the
geometry corresponding to an incident shear wave with
wave-number vector k� that is hit by the incident shock wave.
The incidence angle � is shown as the angle formed by k� and
the x̂ axis.

We also write the components of the vorticity upstream in
the rotated system of coordinates,

��1x = k�v1 sin � cos � ,

��1y = k�v1 cos � cos � ,

��1z = − k�v1 sin � , �106�

where we see that only the angles � and � are necessary. As
before, the mean values of the new components of the up-
stream velocity and vorticity are easily calculated, taking
into account that the probability of having a given orientation
� ,� is proportional to the new solid angle, which is equal to:
sin �d�d� / �4��. We get

��v1x
2 � =

�v1
2

3
,��v1y

2 � =
�v1

2

6
,��v1z

2 � =
�v1

2

2
, �107�

���1x
2 � =

�k�v1�2

3
,���1y

2 � =
�k�v1�2

6
,���1z

2 � =
�k�v1�2

2
.

�108�

The new axes are not equivalent to the old ones, and hence,
the average on each direction is different �except for the x
direction�, but their sum is invariant. Regarding the compo-
nents of the vectors downstream, we realize that in the new
set of rotated axes �x ,y ,z�, there is no z component for the
wave-number vector. This means, physically, that the shock
front ripple does not depend on the coordinate z, and thus
its partial derivative � /�z is identically zero. Then, thanks to
the conservation of tangential momentum across the front
�7,37�, the upstream z component of the velocity is con-
served: �v2z=�v1z. In consequence, we only need to under-
stand how the other two components �v1x and �v1y transform
across the shock. Therefore, the original 3D problem has
been reduced to the interaction of a shock with a 2D vorticity
field in the new system of coordinates. The new wave-
number vector in the equivalent two-dimensional problem is

�k cos � ,−k sin ��. The value of �0 given in Eq. �100� can be
re-expressed in terms of �,

�0 =
RM2

�1 − M2
2

1

�tan ��
. �109�

Each choice of the “incidence” angle � defines a set of shear
waves in front of the shock �the elements within this set have
different values of the angle ��. It is also easy to see that the
intervals 0���� /2 and � /2���� are physically indis-
tinguishable. Besides, the value �0=1 defines a critical value
for the incidence angle of the shear wave upstream, which
we call �cr. For angles of incidence greater than �cr, the
pressure perturbations behind the shock front are evanescent,
as they would be associated to values �0�1. On the other
hand, for ���cr, the shock oscillates and radiates traveling
sound waves downstream, in agreement with previous works
�12,14–18,20,21�. The value of �cr is given by

sin �cr = M1
2� � + 1

2�M1
4 + �3 − ��M1

2 − 2
. �110�

Furthermore, we note that the dimensionless velocity factor
of the upstream field u1 defined for the single-mode 2D prob-
lem before, is changed into ṽ1k sin � sin � for the 3D prob-
lem. The normalization ṽ1k=v1k /c2 is understood, and the
subindex k indicates the dependence of the quantity v1 on
k= �k��.

C. Interaction of a shock with a 3D turbulent velocity field:
average kinetic energy of the downstream perturbations

We deal now with a fully random 3D preshock vorticity
field, for which we have the representation given by Eqs.
�104�–�106�. The rotational velocities downstream are given
by

��v2x
rot� = c2ṽ1k�Qrot��,M1,�0��sin � sin � ,

��v2y
rot� = c2ṽ1kR

kx

ky
�Qrot��,M1,�0��sin � sin � ,

��v2z
rot� = ��v1z� , �111�

for arbitrary values of � and � in the intervals 0���2�
and 0����. The function Qrot is defined with the aid of
Eqs. �79� and �81�.

By analogy, we have for the sound waves emitted down-
stream

��v2x
ac� = c2ṽ1k�Qac��,M1,�0��sin � sin � ,

��v2y
ac� = c2ṽ1k

�Qac��,M1,�0��
��1

2 − 1
sin � sin � ,

��v2z
ac� = 0, �112�

where Qac is given in Eq. �60�. From now on, we denote any
dimensionless velocity component j, in the compressed fluid
as ṽ2j =�v2j /c2. We can write the dimensionless kinetic en-

FIG. 8. �Color online� A planar shear wave with wave number k�

intersects a planar shock wave with an incidence angle �. The shock
moves from left to right along the x̂-axis.
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ergy �per unit mass� of the compressed fluid elements, asso-
ciated to the rotational part of the velocity field, as an ex-
plicit function of the orientation angles � and �, the
isentropic exponent �, and the shock Mach number M1,

T̃3D
rot =

1

2
��ṽ2x

rot�2 + �ṽ2y
rot�2 + �ṽ2z

rot�2� ,

=
ṽ1k

2

2

�1 + �R

kx

ky
�2	�Qrot�2sin2 � sin2 � + cos2 �� ,

�113�

where we used the fact that ṽ2z
rot= ṽ1z

rot= ṽ1k cos �, according
to the discussion following Eqs. �107� and �108�. We proceed
similarly to the sound waves’ contribution to the kinetic en-
ergy,

T̃3D
ac =

1

2
��ṽ2x

ac�2 + �ṽ2y
ac�2� ,

=
ṽ1k

2

2
es

2 sin2 � sin2 � . �114�

Equations �113� and �114� give the kinetic energies �rota-
tional and potential� of the compressed fluid elements, for a
single choice of the incidence angles � and �. As we have
not considered viscosity in the equations of motion and the
boundary conditions at the shock, these expressions do not
take into account the viscous decay that would inevitably
occur far downstream �35�. For a shock interacting with a
full spectrum of shear/vorticity waves, we can calculate the
statistical averages of the interesting quantities, by averaging
over the angles � and �. The averages so obtained would be
valid not very far from the shock front, so that viscosity did
not have enough time to act on the fluid particles
�12,14–18,20,35�. To get the average of the kinetic energy
we multiply Eqs. �113� and �114� by the probability density
for a uniform distribution on the unit sphere, given by
sin �d�d� / �4�� and integrate over the angles. It is also con-
venient to express the integral over � as an integral over the
variable �0. Using Eq. �109�, it can be seen that

sin3 �d� =
M1

4R2�M1
2 − 1

�RM1
2 + �M1

2 − 1��0
2�5/2d�0. �115�

We define the kinetic energy amplification factor for the ro-
tational part

A3D
rot��,M1�

=
2�T̃2

rot��,�

ṽ1k
2

=
1

2



0

� � �Qrot�2��M1
2 − 1�R�0

2 + M1
2�M1

2R2�M1
2 − 1

�RM1
2 + �M1

2 − 1��0
2�5/2 	d�0

+
1

2
. �116�

The term 1/2 comes from the average of the z component,

which is conserved through compression. Thus, one half of
the kinetic energy per unit mass is not modified across the
shock front. We do similarly for the contribution of the sound
waves,

A3D
ac ��,M1� =

2�T̃2
ac��,�

ṽ1k
2 =

1

2



1

� es
2M1

4R2�M1
2 − 1

�RM1
2 + �M1

2 − 1��0
2�5/2d�0.

�117�

We define the total turbulent kinetic-energy amplification
factor across the shock front as

A3D��,M1� = A3D
rot��,M1� + A3D

ac ��,M1� . �118�

In �57�, Appendix C, we show the closed-form analytical
expressions for both A3D

rot and A3D
ac , as a function of � and M1.

The amplification factor A3D can then be calculated either
after a numerical evaluation of Eqs. �116�–�118�, or using the
analytical expressions shown in �57�, Appendix C. This is the
first time that complete and explicit formulas are presented
for the energy amplification factor across a shock front inter-
acting with a weakly turbulent compressible fluid. The same
will be shown for the other quantities of interest, in the fol-
lowing subsections. In Fig. 9 we show the acoustic waves’
contribution to the kinetic-energy amplification factor as a
function of � and M1. We can clearly see a interesting topog-
raphy for the 2D surface in the weak-shock limit and highly
compressible fluids, where a double peak structure is evi-
dent. The exact asymptotic scalings, characterizing these
mathematical structures, will be discussed later on in the
following sections. We show the amplification factors �long/
short-wavelength intervals, acoustic contribution and total� at
different Mach numbers for several ideal gases in �57�, Table
I in Appendix F, inside the auxiliary file. In Fig. 10 we plot
the total amplification factor for an incident shock moving
into air ��=7 /5� given by Eq. �118� and compare it with
recent experiments and direct numerical simulations. The ex-
perimental result at M1=3 is taken from �40�. The simulation
results are taken from �30�. The agreement with the experi-
ments and simulations is seen to be very good. The theoret-
ical curve is also compared with simulation curves obtained
with the CALE code by means of adjustable drag coefficients,
as reported in �35�. The kinetic-energy amplification pre-
dicted by CALE as a function of M1 is approximated by a

FIG. 9. �Color online� Sonic contribution to the kinetic-energy
amplification factor as a function of � and M1 �Eq. �117��.
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simple formula RCp �35�, where R=
2 /
1 is the density com-
pression ratio �Eq. �1�� across the shock front, and Cp is a
heuristic drag coefficient. As can be inferred from the plots,
the kinetic energy seems to be amplified across a shock mov-
ing into an ideal gas and reaches an asymptotic value for
very strong shocks, which is dependent on the value of �. In
Fig. 11 we show the different contributions to A3D for a
shock moving into air, as a function of the shock Mach num-
ber M1. We can see that for weak shocks, the short-
wavelengths part of the upstream spectrum contributes the
most to the kinetic-energy amplification. As the shock-
strength increases and the Mach number stays above 1.3,
both contribute approximately the same. The sound waves
contribution to the kinetic-energy budget downstream is neg-
ligible. The long and short-wavelength integrals for the rota-
tional contribution �A3D

l , and A3D
s � are calculated explicitly in

�57�, Appendix C. There are other related questions that we
may answer, taking profit of the analytical model presented
here. In fact, it is natural to ask whether the kinetic energy
gets amplified without bounds as the shock strength in-
creases, or if it saturates at some finite value. What is the
behavior for highly compressible gases and very strong
shocks? Does it peak at some finite value? It would be natu-
ral to think that the increase in the kinetic energy must be

larger the more compressible the gas. To have an idea of the
behavior of the amplification coefficient in the space of pa-
rameters, we show a two-dimensional logarithmic plot,
where the coefficient � and the shock Mach number M1 are
varied within the limits 1���20 and 1�M1�1000, in
Fig. 12. We can clearly recognize the curve corresponding to
the one shown in Fig. 10, shown as a black curve superposed
on the 3D surface.

Furthermore, we see the interesting result that for � very
near unity and very strong shocks, the kinetic energy gets
reduced, instead of being amplified. The asymptotic value
obtained in that limit is actually 2/3 which can be easily
predicted noting that for a highly compressible fluid and a
very strong shock, the shock ripple amplitude and the value
of v2x go simultaneously to zero. As the shock would not add
additional y-velocity perturbations to those already existing
upstream, and as the z component does not change, the total
average is just the sum of 1/6 �corresponding to the average
in the y direction� plus 1/2 �from the z component�. The
tendency of decreasing the kinetic energy instead of ampli-
fying it as we approach the most compressible conditions can
also be understood by examining the two contributions to the
vorticity in the equivalent 2D problem. In fact, we have to go
back to Eqs. �64� and �65�. The first term in Eq. �64� always
corresponds to an amplification of the upstream eddy. The
second term is due to the shock oscillation dynamics, and
hence, is always present whenever the shock surface is cor-

FIG. 12. �Color online� Behavior of the total kinetic-energy am-
plification factor �Eq. �118�� as a function of � and the shock Mach
number M1.
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FIG. 13. Strong-shock asymptotic of the acoustic contribution to
the kinetic-energy amplification factor �Eq. �121��. We also show
different curves corresponding to shocks of finite strength.
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efficient for a shock moving into air ��=7 /5�, as a function of the
shock Mach number M1.
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rugated, as is usually the case in RMI-like flows. For the
problem considered in this work, this second term has oppo-
site phase with respect to the first term, in most of the spec-
trum, giving rise to the possibility of negative interference
between them. This effect is seen in the sums �1+�2elr and
�1+�2es, which appear in the expressions for Qrot

l and Qrot
s

in Eqs. �79� and �81�. As will be seen in �57�, Appendix C, it
is the interference between the �1 and �2 terms �both in the
short and in the long-wavelength regimes� that can give rise
to a decrease in the energy content of the downstream eddies
as compared to the upstream vorticity. This interference is
positive only within very narrow ranges of values of � and
M1, and only for � close to �cr.

With the help of the analytical expressions obtained in
�57�, Appendix C, we can get the approximations corre-
sponding to different physical limits and show their explicit
dependence on � and M1. We show at first the strong-shock
limit of the kinetic-energy amplification, as an explicit func-
tion of �. In fact, taking the corresponding limit M1→�
either in the defining integrals, or in the analytical expres-
sions in �57�, Appendix C, we get the asymptotics of the
different contributions to the amplification factor. We show
at first the strong-shock asymptotics. The results for the long
�0��0�1� and short �1��0��� wavelength intervals of
the rotational contribution are, respectively,

A3D
l ��,M1 � 1� �

1

2
��2 − ��ln

� + 1

� − 1
+

�� − 1��12�2 + 15� − 1�
6��� + 1�2 	�2��� − 1� , �119�

A3D
s ��,M1 � 1� �

�� − 1��� + 1�2

���2� − 1�2
tan−1� 1

��
� +

�2 − ���10�4 − 23�3 + 16�2 − 3� − 1�
�2� − 1�2

�2��� − 1�

� ln���� − 1� + �2��� − 1�
��� + 1�

	 +
60�6 − 108�5 − 98�4 + 178�3 + 25�2 − 56� + 3

6�2� − 1��� + 1�2

−
120�6 − 156�5 − 284�4 + 222�3 + 165�2 − 46� − 5

12�2� − 1��� + 1�2 �2�� − 1�
�

, �120�

and the strong-shock asymptotic of the acoustic waves’ contribution is �1��0���

A3D
ac ��,M1 � 1� � �� − 1�5/2�5�2 − 10� + 2��2� ln���� − 1� + �2��� − 1�

��� + 1�
	 −

2�� − 1�
3�� + 1�2 �15�5 − 15�4 − 29�3 + 21�2 + 10� − 6�

+
�� − 1�3/2

3�� + 1�2�2

�
�30�5 − 15�4 − 68�3 + 8�2 + 25� − 2� . �121�

The asymptotic curve given by Eq. �121� is shown in Fig. 13, together with the acoustic contribution at other large but finite
strengths as a function of �.

Collecting all the terms together and rearranging, we get the strong-shock limit of the total kinetic-energy amplification
factor, as an explicit function of �,

A3D��,M1 � 1� � −
60�7 − 180�6 + 58�5 + 277�4 − 236�3 − 59�2 + 84� − 12

3�2� − 1��� + 1�2

+
60�7 − 150�6 − 22�5 + 282�4 − 99�3 − 121�2 + 47� − 1

3�2� − 1��� + 1�2 �2�� − 1�
�

+ ��2��� − 1�
�2� − 3��10�4 − 40�3 + 58�2 − 36� + 9�

�2� − 1�2

� ln���� − 1� + �2��� − 1�
��� + 1�

	 + �2 − ������ − 1�
2

ln�� + 1

� − 1
� +

�� − 1��� + 1�2

�2� − 1�2��
tan−1� 1

��
� . �122�
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The result given by �Eq. �122�� is shown in Fig. 14, where
we also show different curves corresponding to strong
shocks with M1�5. The analytical expressions of the inte-
grals for finite values of M1 can be found in �57�, Appendix
C. The amplification factor reaches its maximum on the
M1=� curve, equal to 1.831 43, at �=1.190 39. For very
high values of � the amplification tends to unity because the

shock wave leaves the upstream vorticity unchanged for
poorly compressible fluids,

A3D�� � 1,M1 � 1� � 1 +
4

3�
+

4�34 − 27�2�
105�2 + O� 1

�3� .

�123�

In the opposite limit of high compressibility ��−1�1�, the
amplification coefficient goes through unity �at �=1.001 07�
to reach the asymptotic value 2/3 at �→1, as discussed
above. The asymptotic expression of the amplification factor
in this limit is

A3D�� − 1 � 1,M1 � 1� �
2

3
+ �2�ln 2 −

1

3
��� − 1

− �2 ln�� − 1��� − 1 + O�� − 1� .

�124�

Other interesting limit is the highly compressible case ��
→1� considered as a function of M1. The amplification co-
efficient of the different contributions can be obtained as
before, directly from the defining integrals or from the ex-
plicit analytical expressions derived in �57�, Appendix C. For
the rotational contribution, we get for both, long- and short-
wavelength intervals,

A3D
l �� = 1,M1� �

�M1
2 − 1�25M1

10 + 12M1
8 − 37M1

6 + 8M1
4 + 6M1

2 − 2�
6�M1

4 + M1
2 − 1�3/2�M1

2 + 1�2M1
4 +

2M1
2�M1

2 − 1�
�M1

2 + 1�5/2 ln��M1
4 − 1 + �M1

4 + M1
2 − 1

M1
� ,

�125�

A3D
s �� = 1,M1� �

�M1 − 1�
6M1

4�M1
2 + 1�4�M1

4 + M1
2 − 1�

�M1
15 + 9M1

14 − 6M1
13 + 22M1

12 + 13M1
11 − 75M1

10 + 53M1
9 − 23M1

8 − 10M1
7

+ 142M1
6 − 37M1

5 − 85M1
4 + 8M1

3 + 8M1
2 + 2M1 + 2� −

�M1
2 − 1

6M1
4�M1

2 + 1�4�M1
4 + M1

2 − 1�3/2 �12M1
16 − 23M1

14

− 50M1
12 + 156M1

10 + 42M1
8 − 199M1

6 + 94M1
4 − 6M1

2 − 2� +
2�M1

2 − 1��M1
6 − 3M1

4 − 6M1
2 + 4�

�M1
2 + 1�9/2

� ln� ��M1
4 + M1

2 − 1 + �M1
4 − 1��1 + M1

�M1
2 + 1�

�1 + �M1
2 + 1��M1

4 + M1
2 − 1

	 +
4M1

8

�M1
2 − 1�M1

2 + 1�9/2

� �tan−1��M1
4 − 1� + tan−1��M1

4 − 1

M1
� − tan−1� �M1

2 − 1��M1
2 + 1

�M1
4 + M1

2 − 1
�	 , �126�

and the acoustic waves’ contribution is given by

A3D
ac �� = 1,M1� �

4

3M1
2�M1

2 − 1��M1 + 1��M1
2 + 1�3�M1

4 + M1
2 − 1�

�M1
13 − 3M1

12 + 7M1
11 − 5M1

10 + 5M1
9 + 25M1

8 − 14M1
7 + 20M1

6

− 9M1
5 − 33M1

4 + 5M1
3 + 5M1

2 + M1 + 1� −
2�3M1

14 + 41M1
12 + 58M1

10 − 80M1
8 − 77M1

6 + 77M1
4 − 8M1

2 − 2�
3M1

2�M1
2 − 1�3/2�M1

2 + 1�3�M1
4 + M1

2 − 1�3/2

+
8M1

2�2M1
4 + 3M1

2 − 4�
�M1

2 − 1�2�M1
2 + 1�7/2 ln� ��M1

4 + M1
2 − 1 + �M1

4 − 1��1 + M1
�M1

2 + 1�

�1 + �M1
2 + 1��M1

4 + M1
2 − 1

	 . �127�
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FIG. 14. Kinetic-energy amplification coefficient limiting curve
for very strong shocks as a function of �. We also show different
curves corresponding to shocks of finite strength.
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In Fig. 15 we show the prediction of Eq. �127� for �=1 and other gases with � values near unity, as a function of the shock
strength. The total amplification factor in the limit �=1 is given below,

A3D�� = 1,M1� �
1

3M1
4�M1 − 1��M1 + 1�2�M1

2 + 1�4�M1
4 + M1

2 − 1�
�2M1

19 + 6M1
18 + 6M1

17 − 4M1
16 + 51M1

15 − 81M1
14 + 54M1

13

+ 150M1
12 − 98M1

11 + 226M1
10 − 77M1

9 − 251M1
8 + 23M1

7 + 51M1
6 − 24M1

4 + 6M1
3 + 6M1

2 + M1 + 1�

−
2

3M1
2�M1

2 + 1�4�M1
2 − 1�3/2�M1

4 + M1
2 − 1�3/2 �3M1
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16 + 43M1

14 + 179M1
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8 + 135M1
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− 17M1
4 + 13M1

2 − 4� +
2�M1

12 − 6M1
10 + 14M1

8 + 32M1
6 − 31M1

4 + 2M1
2 − 4�

�M1
2 − 1�2�M1

2 + 1�9/2

� ln� ��M1
4 − 1 + �M1

4 + M1
2 − 1��1 + M1

�M1
2 + 1�

�1 + �M1
2 + 1��M1

4 + M1
2 − 1

	 +
2M1

2�M1
2 − 1�

�M1
2 + 1�5/2 ln��M1

4 − 1 + �M1
4 + M1

2 − 1

M1
�

+
4M1

8

�M1
2 + 1�9/2�M1

2 − 1

tan−1�M1

4 − 1� − tan−1� �M1
2 − 1��M1

2 + 1

�M1
4 + M1

2 − 1
	 + tan−1��M1

4 − 1

M1
�� . �128�

In Fig. 16 a plot of the last formula is shown, with other
curves obtained for � values near 1.

The function has a maximum equal to 2.25519 at M1
=3.5116. It reaches the value 2/3 for very large values of M1,
and the expansion in powers of 1 /M1 is

A3D�� − 1 � 1,M1 � 1� �
2

3
+

12 ln�2M1� − 2

3M1
+ O� 1

M1
2� .

�129�

For very weak shocks and highly compressible gases, Eq.
�128� has the expansion

A3D�� − 1 � 1,M1 − 1 � 1�

� 1 +
2�2

15
�M1 − 1 + O�M1 − 1� . �130�

In the very weak-shock limit, and for arbitrary �, the
main contribution comes from the sound waves ���M1−1�,

as the rotational contribution is smaller in that limit ���M1
−1��. In fact, we have

A3D��,M1 − 1 � 1� � 1 +
8�2

15�� + 1�2
�M1 − 1 + O�M1 − 1� .

�131�

D. Root mean square of the sound wave pressure
perturbations downstream

We can also compute the average of the square of the
pressure perturbations in the short-wavelength interval, to-
gether with the entropic density perturbations.

1. Pressure fluctuations

The corrugated shock will emit traveling sound waves
downstream for wavelengths short enough, which corre-
sponds to incident angles 0����cr �1��0���. For this
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FIG. 15. Acoustic contribution to the kinetic-energy amplifica-
tion coefficient as a function of the shock strength for a highly
compressible gas �=1 �Eq. �127��, and for other gases with � near
unity �Eq. �117��.
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FIG. 16. Total kinetic-energy amplification coefficient as a func-
tion of the shock strength for a highly compressible gas �=1 �Eq.
�128��, and for other gases with � near unity �Eq. �118��.
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part of the spectrum we can calculate the root mean square of
the dimensionless pressure fluctuations associated to the
traveling acoustic fronts,

�2 =��p̃2
2�

ṽ1k
2

=�1

2



1

� es
2M1

4R2�M1
2 − 1

�RM1
2 + �M1

2 − 1��0
2�5/2d�0.

�132�

The quantity inside the square root of the above equation can
be easily recognized as the sonic contribution to the ampli-
fication factor A3D

ac given in Eq. �117�. Hence, all the results
shown in the previous subsection for the sonic contribution
are valid for the behavior of �2 as a function of � and M1,
and will not be repeated here. The maxima and minima of �2
occur at the same values of � and M1 as those shown in Fig.
13. The only difference is the height of the surface, due to
the square root in Eq. �132�. The exact asymptotics in the
different interesting physical limits can be deduced from the
expressions for A3D

ac . We only note here that, using Eq. �131�,
we obtain the weak-shock scaling: �2��M1−1�1/4, in agree-
ment with �15�,

�2��,M1 − 1 � 1�

�
27/4

�15�� + 1�
�M1 − 1�1/4 + O��M1 − 1�5/4� . �133�

E. Sound energy flux

As discussed in the previous section and also in �23�, the
generation of sonic perturbations by the corrugated shock is
different in the long and short-wavelength regimes. As al-
ready discussed before, acoustic energy is being continu-
ously radiated from the shock into the compressed fluid for
any �0	1. In this section we will quantify the emission of
sound energy as a function of the angle of emission, and as a
function of � and the shock strength M1. We study the en-
ergy flux, as seen by an observer co-moving with the com-
pressed fluid and also for an observer in the shock reference
frame. An average over the angles of incidence � is per-
formed and the results are compared with former predictions
published in the literature �17�.

1. Energy flux in the compressed fluid reference frame

The energy flux which we denote by q� , which is trans-
ported by a planar sound wave in the frame of reference in
which the fluid is at rest, is given by �37�

q� = c2Ek̂ac, �134�

where E is the energy density of the sound wave, equal to

E = 
2c2
2p̃2, �135�

with p̃ the pressure perturbation downstream, evaluated as-

ymptotically in time. The unit vector k̂ac in the direction of
propagation of the sound wave can be calculated with the aid
of Eq. �55�,

k̂ac =
kx

acx̂ + kyŷ

��kx
ac�2 + �ky�2

= �cos �ac,sin �ac,0�

= �M2�0 − ��0
2 − 1

�0 − M2
��0

2 − 1
,

�1 − M2
2

�0 − M2
��0

2 − 1
,0� . �136�

The projection of Eq. �134� along the direction of propaga-
tion of the shock front gives

qx = 
2c2
3p̃2 cos �ac, �137�

with cos �ac taken from Eq. �136� above. Positive values of
qx correspond to sound waves that follow the shock and
negative values refer to sonic fronts that escape to the left.
The amplitude of the traveling wavefronts can be retrieved
from Eqs. �53� and �47�. We can therefore write

qx = 
2c2
3ṽ1

2es
2 sin2 � sin2 � cos �ac. �138�

For the sake of simplicity when comparing to previous re-
sults published in the literature, we normalize qx above, ex-
pressing it in units of 
1��v1�2D /2, which is the incident flux
of turbulent kinetic energy upon a planar shock front that
moves with velocity Dx̂. Using the auxiliary results

sin2 � =
M1

2R

M1
2R + �M1

2 − 1��0
2 ,


2c2
3 = 
1c1

3 �2�M1
2 − � + 1�3/2��� − 1�M1

2 + 2�
�� + 1�2 , �139�

substituting into Eq. �138�, and averaging over the polar
angle �, we obtain

�q̃x�� =
�qx��

1
2
1��v1�2D

=
16M1

2M2R�− M2�0 + ��0
2 − 1�

�� + 1�2��0 − M2
��0

2 − 1��M1
2R + �M1

2 − 1��0
2�

� � �M1
2 − 1�2�0

2 − M1
2

M1
2 − �M1

2 + 1��0
2 − 2M2M1

2�0
��0

2 − 1
	2

.

�140�

Before showing the behavior of the averaged energy flux as a
function of the emission angle �ac, it is convenient to have at
hand the relationships that connect �ac with the dimension-
less frequency �0, and with the incidence angle of the up-
stream shear waves �. It is not difficult to get

�0��ac� =
1

�1 − M2
2�1 − M2 cos �ac

sin �ac
� . �141�

The interval cos−1 M2��ac�� /2 corresponds to the interval
1��0�1 /�1−M2

2, and hence, to right-facing sonic waves.
On the other hand, the interval � /2��ac�� corresponds to
the interval �0�1 /�1−M2

2 for the left-facing sound waves.
We recognize that the emitted energy is zero for �ac=� /2,
which is trivial, and for a particular value of �0,
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�0
� =

M1

�M1
2 − 1

. �142�

From the plot we deduce that the waves emitted to the right
are more intense. As a general result, we see that the energy
flux is never zero for �0=1 in the reference frame of the
compressed fluid at rest. Finally, let us calculate the average
of the emitted flux over the incidence angle �. We define

q̃x = q̃x
right + q̃x

left, �143�

where the meaning of q̃x
right and q̃x

left is clear. We express the
corresponding mean values as integrals over �0,

q̃x
right = 


1

1/�1−M2
2 �q̃x��M1

2R�M1
2 − 1

�M1
2R + �M1

2 − 1��0
2�3/2d�0,

q̃x
left = 


1/�1−M2
2

� �q̃x��M1
2R�M1

2 − 1

�M1
2R + �M1

2 − 1��0
2�3/2d�0. �144�

We plot both quantities in Fig. 17. We see that for weak
shocks the energy is mainly directed to the right, while the
opposite is true for stronger shocks.

2. Energy flux measured in the shock reference system

In some experimental conditions, the shock front may re-
main steady with respect to the laboratory walls, and it is the
gas upstream that moves toward the shock �40�. Therefore, it
is convenient to have the previous results expressed in the
shock frame of reference. The modifications are minimal. In
this system, the normal to the sound wave front �which co-

incides with k̂ac� does not coincide with the direction of
propagation of the energy. We write now the energy flux as

q� = v�acEs, �145�

where v�ac=c2k̂ac+ �U−D�x̂ and Es is the energy density in
the shock frame. According to �21�, it is

Es = �M2 − cos �ac�E , �146�

where E is given by Eq. �135�. Collecting these results to-
gether, we get the dimensional energy flux in the shock

frame of reference, averaged over the angle �,

�qx�� =

2c2

3

2
es

2 sin2 ��1 − M2 cos �ac��M2 − cos �ac� .

�147�

The above formula gives us the longitudinal flux in units of

2c2

3. Let us express it, as before, in units of the turbulent
intensity in front of the shock. After some additional algebra,
we get, as an explicit function of �0,

�qx�� =
1

2

1��v1�2D

�
16M2M1

2R�1 − M2
2�2�0

��0
2 − 1

�� + 1�2��0 − M2
��0

2 − 1�2�M1
2R + �M1

2 − 1��0
2�

� � �M1
2 − 1��0

2 − M1
2

M1
2 − �M1

2 + 1��0
2 − 2M1

2M2�0
��0

2 − 1
	2

. �148�

We note that in this reference frame, there is no need to
distinguish between right facing or left-facing sound waves:
for �0�1 the shock oscillates and radiates all the waves to its
left. The acoustic flux is zero for the same values of �0 as
before, but they correspond to different emission angles, as
seen by an observer co-moving with the shock front. In fact,
it is convenient to re-express the flux as a function of another
angle ��, defined by the x̂ axis and the unit vector n̂ac
=v�ac / �v�ac�. We get

cos �� =
cos �ac − M2

�1 + M2
2 − 2M2 cos �ac

. �149�

When �0=1 �that is, cos �ac=M2�, it is easy to see that ��
=� /2, and hence �qx��=0. When �0=�, it is �ac=��=�, and
we get �qx��=0 again. It is only in the shock frame that the
flux is zero when �0=1 because v�ac, the direction of propa-
gation of energy, is perpendicular to the x̂ axis. However,

k̂x
ac�0, even for this value of �0 simply because n̂ac and k̂ac

are not parallel to each other. In Fig. 18 we show polar plots
of the dimensionless flux �q̃x��, emitted by the shock as a
function of the angle �� in the shock frame of reference. We
consider a shock moving into air for different values of the
incident Mach number. The plot has rotational symmetry
around the x̂ axis. There are two pairs of symmetrical wings,
which are separated by a zero flux value, achieved when �0
=�0

� given by Eq. �142�. The first wing corresponds to the
waves facing to the right as seen by an observer at rest in the
compressed fluid. On the contrary, in the shock frame, all the
sound energy escapes to the left. Similarly as we have done
in the previous Subsection, we can integrate the expressions
of the acoustic energy over �0 to have the total average as a
function of the shock strength for a given �. Following Rib-
ner �17�, we define the dimensional acoustic strength emitted
downstream, as an integral over the incidence angle �, in the
interval corresponding to the short wavelengths of the up-
stream spectrum: 0����cr,
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FIG. 17. Averaged longitudinal-acoustic flux emitted by a shock
moving into air ��=7 /5�, as a function of the incident shock Mach
number �M1� in the compressed fluid frame. We have also discrimi-
nated between the parts that corresponds to the right and left-facing
sound waves.
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Iac = �qx��,� =

2c2

3

2



0

�cr

es
2�1 − M2 cos �ac��M2

− cos �ac�sin3 �d� , �150�

or as an integral over the dimensionless frequency �0, in the
interval 1��0��,

Iac = �qx��,� =
1

2

1��v1�2D

16M2
5R4�M1

2 − 1�5/2

�� + 1�2

� 

1

� �0
��0

2 − 1

�M1
2R + �M1

2 − 1��0
2�5/2��0 − M2

��0
2 − 1�2

� � �M1
2 − 1��0

2 − M1
2

M1
2 − �M1

2 + 1��0
2 − 2M1

2M2�0
��0

2 − 1
	2

d�0.

�151�

With Ribner �17�, we define a dimensional upstream turbu-
lent energy flux as

Iturb =
5

6

1��v1�2D . �152�

We define the ratio between both fluxes, as a relative inten-
sity,

S =
Iac

Iturb
. �153�

We plot the relative strength S in Fig. 19, for �=7 /5, as a
function of M1. Our results shown in Fig. 24 have been ob-
tained using the exact analytical expressions for the sonic
flux �Eq. �153�� given in �57�, Appendix D. Their good
agreement with the data from Table I of �17� confirms physi-
cal equivalence of our model and Ribner’s. Figure 24 also
shows the discrepancy between our and Ribner’s results,
which is very low for strong shocks, �1–2% for weak and
moderate-strength shocks, and peaks at 15% for M1=1.25.
This discrepancy appears to be too high for a direct numeri-
cal integration of Eq. �151�. Most likely it results from the
evaluation of this integral in �17� using the interpolated �14�
rather than the exact values of the integrand. As we have
done before with the kinetic-energy amplification, it is inter-
esting to analyze the behavior of S in the plane �� ,M1�. To
this scope, we plot S as a function of � and M1 in Fig. 20.

In �57� Table II to be found in the Appendix F, we show
numerical values of the relative sonic intensity emitted by
the distorted shock as a function of the shock strength for
three different gases. It is also worth to take advantage of the
analytical expressions obtained for the acoustic flux, and ex-
amine its behavior in different physical limits. In fact, the
limits of strong/weak shocks and highly compressible gases
can be obtained either expanding the integral that leads to
Eq. �153� or expanding the formulas shown in �57�, Appen-
dix D. In the limit of very strong shocks, the relative flux
becomes a function of �. We show its analytical expression,

S��,M1 � 1� �
��2 − 1��9 − 100� + 187�2 + 8�3 − 240�4 + 120�5�

20��2� − 1�2

−
�2�� − 1��� + 1��− 1 + 8� − 43�2 + 57�3 + 22�4 − 75�5 + 30�6�

5�3/2�2� − 1�2 −
3�� − 1��� + 1�2�3 + 4� − 13�2 + 10�3�

20�3/2�2� − 1�3

�tan−1� 1
��

� −
3�2�� + 1�2�� − 1�5/2�− 1 − 3� + 2�2��2 − 5� + 5�2�

5���2� − 1�3
ln���� − 1� + �2��� − 1�

��� + 1�
	 . �154�

FIG. 18. �Color online� Polar plots of the dimensionless flux
�q̃x�� as a function of the angle of emission �� in the frame co-
moving with the shock front. The shock moves into air ��=7 /5�
and the wings are shown for different shock strengths.

1 2 3 4 5 6 7 8 9 10
0.01

0.1

1

10

H.S.Ribner [17]
S [Eq.(153)](%)
Relative discrepancy (%)M1

FIG. 19. Comparison between Eq. �153� and Ribner’s results
taken from �17� for shocks moving into air. We also show the rela-
tive discrepancy between both results.
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A plot of the above formula is shown in Fig. 21 together with
the relative flux as a function of � for shocks of large but
finite strengths. The strong-shock limiting curve has a maxi-
mum at �max�1.064 88, to which corresponds a relative

flux: Smax�0.115 85. We can also there derive the analytical
expressions for very compressible gases, in the limit �→1,
in which case the relative flux becomes a function of M1. Its
expression is

S�� = 1,M1� �
4

5�M1 − 1��M1
2 + 1�5�M1

4 + M1
2 − 1�

�− 4 + 4M1 + 50M1
2 − 86M1

3 + 2M1
4 + 72M1

5 − 114M1
6 + 116M1

7 − 45M1
8 − 3M1

9

+ 34M1
10 − 26M1

11 + 19M1
12 − 6M1

13 + 2M1
14� +

4�− 4 + 50M1
2 − 54M1

4 − 29M1
6 + 19M1

8 + 3M1
10�

5�M1
2 + 1�5��M1

2 − 1��M1
4 + M1

2 − 1�

−
12M1

6�− 2 + 8M1
2 − 2M1

4 + M1
6�

5�M1
4 − 1�3/2�M1

2 + 1�4 �tan−1��M1
4 − 1� + tan−1��M1

4 − 1

M1
� − tan−1� �M1

2 − 1��M1
2 + 1

�M1
4 + M1

2 − 1
�	

+
48M1

2�− 3 + M1
2 + 3M1

4�
5�M1

2 + 1�11/2 ln� ��M1
4 + M1

2 − 1 + �M1
4 − 1��1 + M1

�M1
2 + 1�

�1 + �M1
2 + 1��M1

4 + M1
2 − 1

	 . �155�

In Fig. 22 we show the envelope that corresponds to the limit
�=1, together with other curves for � near unity. The highly
compressible envelope curve reaches a maximum value
Smax�0.110 41 for M1�6.087 55. Finally, we show the
weak-shock asymptotics for the sonic flux S, always in the
shock reference frame, valid for any �,

S��,M1 − 1 � 1� �
32

25�� + 1�2�19

7
�M1 − 1�2

− 8�2�M1 − 1�5/2	 + O��M1 − 1�3� .

�156�

FIG. 20. �Color online� Relative acoustic flux as a function of �
and M1 �Eqs. �150�–�153��.
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FIG. 21. Relative acoustic flux as a function of � for M1�1 and
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FIG. 22. Relative acoustic flux as a function of M1 for different
values of � in the highly compressible limit.
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FIG. 23. Comparison between the exact solution Eq. �153� and
the weak-shock limit approximation given by Eq. �156� for a shock
moving into air ��=7 /5�.
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These are the first two terms of the weak-shock asymptotic
formula that Lighthill �13� attempted to derive, and Ribner
�17� later transformed into his Eq. �B10�. The first term of
expansion of Ribner’s Eq. �B10� in powers of M1−1�1 is
the same as in our Eq. �156�. This confirms the accuracy of
Lighthill’s expression �as corrected by Ribner in �17�� for the
energy scattered from the interaction of a small-amplitude
sound wave with turbulence. The next term in this expan-
sion, ��M1−1�5/2, represents the first correction to it due to
small but finite strength of the shock wave. The numerical
coefficient in this term in Ribner’s Eq. �B10� is inaccurate
�too small� by a factor of 32/15 compared to our Eq. �156�.
Due to this error, Ribner’s estimate of S with the aid of the
“converted Lighthill’s” formula �B10� for M1=1.01 was off
by 40% �17�. The correct weak-shock formula �156� is accu-
rate within 4% for �=7 /5 and M1=1.01. A comparison be-
tween Eqs. �153� and �156� is shown in Fig. 23 in the weak-
shock limit, for a shock moving into air ��=7 /5�. The
Ribner’s estimate at M1=1.01 is also shown.

F. Downstream vorticity perturbations

In this subsection we compute the vorticity of the com-
pressed fluid particles in the 3D problem. As discussed be-
fore, the downstream vorticity has two sources: one is the
amplification of the upstream eddies, represented by the term
proportional to �1, and the other source is the terms equal to
�2p̃s, which is a consequence of the shock ripple oscilla-
tions. This second term is intrinsic to any RMI-like flow,
whether the rippled shock moves into an homogeneous fluid
or not, being proportional to the instantaneous shock front
pressure perturbation �10,23,48,51,52�. At a first step, we
calculate the components of the vorticity vector in the system
of rotated axes �x ,y ,z� to later proceed with the 3D averag-
ing. We note that we normalize the vorticity components
with kc2. The easiest to write is the component normal to the
shock front, as it can be easily seen to be conserved across
the shock surface: �2x=�1x. Besides, in the rotated axes
there is no dependence on the z coordinate, a fact that allows
us to get the value of �2y very easily, from the divergence-
free character of the vorticity vector, �� ·�� =0. In fact, we
have

�̃1x = ṽ1k sin � cos � ,

�̃2y = −
Rkx

ky
�̃1x = − ṽ1kR cos � cos � . �157�

The remaining component �̃2z is computed from the expres-
sions given in Eq. �67�, and taking into account that in pass-
ing from the 2D definition of �z to the 3D problem, its am-
plitude is proportional to sin2 � because both ky and u1 are
proportional to sin �. We can write

�̃2z
2 = ṽ1k

2 sin4 � sin2 �

� 
�1
2 + �2

2�elr
2 + eli

2� + 2�1�2elr, �0 � 1

�1
2 + �2

2es
2 + 2�1�2es, �0 � 1,

�
�158�

where the expressions for �1,2 can be found in Eq. �65�. The
expressions for elr, eli, and es can be found in Eq. �47�. As
the normal component of the vorticity is unchanged through
shock compression, we focus our attention on the component
parallel to the shock front, given by: ��

2 =�2y
2 +�2z

2 , as done
in �30�. To this purpose, we define

A�
�
2 =

��̃2y
2 + �̃2z

2 �
��̃1y

2 + �̃1z
2 �

, �159�

as the amplification factor of the averaged squared vorticity,
normal to the direction of shock motion. It is immediate to
see, using Eqs. �108�, �157�, and �159� that

��̃1y
2 + �̃1z

2 � =
2

3
ṽ1k

2 ,

��̃2y
2 + �̃2z

2 � =
R2ṽ1k

2

6
+ ��̃2z

2 � . �160�

We define: A�z
2 = ��̃2z

2 � / ��̃1z
2 �, and using Eq. �157� again we

can write

A�
�
2 =

1

4
R2 +

3

4
A�z

2. �161�

With the help of Eqs. �108� and �159�, we can write

A�z
2 = 


0

1

��1
2 + �2

2�elr
2 + eli

2� + 2�1�2elr�sin5 �d�0

+ 

1

�

��1
2 + �2

2es
2 + 2�1�2es�sin5 �d�0. �162�

It is not difficult to decompose the average in Eqs. �161� and
�162� in the short and long-wavelength intervals. After some
additional algebra we obtain

A
�

�
2

l =
R2

4
cos3 �cr +

3

4
A

�z
2

l ,

A
�

�
2

s =
R2

4
�1 − cos3 �cr� +

3

4
A

�z
2

s , �163�

where A
�z

2
l,s can be easily identified inside Eq. �162�. Whether

we integrate over the variable �0 or over the incidence angle
� is a matter of convenience. For numerical evaluation with
commercial software, the above integrals over �0 are easy to
implement. However, in order to get analytical expressions,
it is better to integrate over �, as has been done for the
kinetic energy and the sonic flux before. The analytical ex-
pressions for A�z

2 are shown in the auxiliary file attached to
this work �57�. Besides, the vorticity amplification factors
�long/short and total� for three gases, at different shock
strengths are also shown in �57�, Table III.

Expanding the analytical expressions found in the corre-
sponding Appendix �57�, we write the limit of very strong
incident shocks. In this case, the amplification factor is only
a function of the � exponent. We show the contribution in
that limit for the long and short-wavelength intervals, as well
as their sum in Eq. �166� below,
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A
�

�
2

l ��,M1 � 1� �
240�6 + 120�5 − 725�4 − 630�3 + 104�2 + 6� + 5

40��� + 1�2�2��� − 1�
−

3��� − 2��� + 1��2� − 1�
2�2��� − 1�

ln�� + 1

� − 1
� , �164�

A
�

�
2

s ��,M1 � 1� �
1

5��2 − 1�2 �105�8 − 210�7 − 275�6 + 575�5 + 224�4 − 480�3 − 27�2 + 115� + 5�

−
1

40��� − 1��� + 1�2�2��� − 1�
�1680�9 − 2520�8 − 5800�7 + 6440�6 + 7051�5 − 4617�4 − 3002�3

+ 446�2 + 71� − 5� −
3��� − 2��� + 1��7�3 − 14�2 + 5� + 1�

�2��� − 1�
ln���� − 1� + �2��� − 1�

��� + 1�
	 , �165�

A�
�
2 ��,M1 � 1� �

105�8 − 210�7 − 275�6 + 575�5 + 224�4 − 480�3 − 27�2 + 115� + 5

5��2 − 1�2

−
210�7 − 525�6 − 230�5 + 1050�4 − 63�3 − 526�2 + 59� + 9

5��2 − 1��2��� − 1�
−

3��� − 2��� + 1��2� − 1�
2�2��� − 1�

ln�� + 1

� − 1
�

−
3��� − 2��� + 1��7�3 − 14�2 + 5� + 1�

�2��� − 1�
ln���� − 1� + �2��� − 1�

��� + 1�
	 . �166�

Equation �166� scales in the strong compressible gas limit
��→1�, as

A�
�
2 �� − 1 � 1,M1 � 1� �

8

5�� − 1�2 + O� 1

�� − 1�3/2	 ,

�167�

and for very strong shocks and highly incompressible fluids,
as

A�
�
2 �� � 1,M1 � 1� � 1 +

4

�
+

28 − 5�2

5�2 + O� 1

�3� .

�168�

We show the total contribution to the vorticity amplification
in the strong-shock limit, as a function of � in Fig. 24, where
the solid line corresponds to Eq. �166�.

As is clear from Fig. 24, the vorticity amplification in-
creases as �→1 and M1 increases. In fact, as the gas be-
comes infinitely compressible, the factor R2 that enters in the
amplification factor of the upstream transverse vorticity com-
ponent �given by the term �1=R /sin2 �� will diverge as
1 / ��−1�2. The reason for the divergence of the vorticity lies
in the fact that the longitudinal characteristic length de-
creases to zero in that limit. However, the kinetic-energy
content remains finite, as has been shown in the previous
subsection. It is clear that a divergence of the vorticity am-
plification in the highly compressible limit is not physical.
As � approaches unity and the shock becomes stronger, the
spatial gradients of the velocity components in the fluid

downstream increase almost without bound, due to the vio-
lent length scale reduction. Hence, the viscous stresses in the
equations of motion become as important as the components
of the pressure gradient, and the inviscid fluid approximation
breaks down, invalidating the solution obtained in this work.
The more realistic approach of considering the evolution of
random downstream perturbations for a gas with non negli-
gible viscosity has yet to be carried out. The influence of
viscosity on shock ripple evolution and the magnitudes
downstream has been treated in �34� for a single wavelength
2D shock corrugation, and its extension to the interaction
with a turbulent spectrum is left for future work.

We show the highly compressible limit, which is obtained
by making �→1, at finite M1, and we get
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FIG. 24. Strong-shock �M1�1� asymptotic of the transverse
vorticity amplification factor �Eq. �166��, together with other finite
values of M1.
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A
�

�
2

l �� = 1,M1� �
�M1

2 − 1

20M1
4�M1

2 + 1�2�M1
4 + M1

2 − 1�5/2 �55M1
18 − 53M1

16 − 333M1
14 + 68M1

12 + 388M1
10 − 105M1

8

− 112M1
6 + 8M1

4 + 32M1
2 − 8� +

3M1
4�M1

2 − 1�
�M1

2 + 1�5/2 ln��M1
4 + M1

2 − 1 + �M1
2 − 1

M1
� , �169�

A
�

�
2

s �� = 1,M1� �
1

5M1
4�M1

2 + 1�4�M1
4 + M1

2 − 1�2 �2M1
24 + 2M1

23 + 20M1
22 + 14M1

21 + 18M1
20 + 109M1

19 − 72M1
18

− 13M1
17 + 181M1

16 − 424M1
15 + 416M1

14 + 179M1
13 − 532M1

12 + 433M1
11 − 366M1

10 − 390M1
9 + 586M1

8

+ 90M1
7 − 168M1

6 − 7M1
4 + 2� −

�M1
2 − 1

20M1
4�M1

2 + 1�4�M1
4 + M1

2 − 1�5/2 �125M1
22 + 43M1

20 − 772M1
18

+ 707M1
16 + 2473M1

14 − 2299M1
12 − 1870M1

10 + 2533M1
8 − 676M1

6 − 32M1
4 + 8�

+
3M1

2�M1
2 − 1��M1

2 + 3��M1
4 − 4M1

2 + 2�
�M1

2 + 1�9/2 ln� ��M1
4 + M1

2 − 1 + �M1
4 − 1��1 + M1

�M1
2 + 1�

�1 + �M1
2 + 1��M1

4 + M1
2 − 1

	 , �170�

A�
�
2 �� = 1,M1� �

1

5M1
4�M1

2 + 1�4�M1
4 + M1

2 − 1�2 �2M1
24 + 2M1

23 + 20M1
22 + 14M1

21 + 18M1
20 + 109M1

19 − 72M1
18 − 13M1

17

+ 181M1
16 − 424M1

15 + 416M1
14 + 179M1

13 − 532M1
12 + 433M1

11 − 366M1
10 − 390M1

9 + 586M1
8 + 90M1

7 − 168M1
6

− 7M1
4 + 2� −

�M1
2 − 1�5/2

5M1
2�M1

2 + 1�4�M1
4 + M1

2 − 1�3/2 �45M1
12 + 70M1

10 − 129M1
8 − 110M1

6 + 133M1
4 − 20M1

2 − 4�

+
3M1

2�M1
2 − 1��M1

2 + 3��M1
4 − 4M1

2 + 2�
�M1

2 + 1�9/2 ln� ��M1
4 + M1

2 − 1 + �M1
4 − 1��1 + M1

�M1
2 + 1�

�1 + �M1
2 + 1��M1

4 + M1
2 − 1

	
+

3M1
4�M1

2 − 1�
�M1

2 + 1�5/2 ln��M1
4 − 1 + �M1

4 + M1
2 − 1

M1
� . �171�

The asymptotic expansion of the last formula in the weak-
shock limit is

A�
�
2 �� = 1,M1 − 1 � 1� � 1 + 4�M1 − 1� + O��M1 − 1�2� ,

�172�

where the linear term comes from �1, and is due to the
amplification of the upstream vorticity by the factor R.

The total amplification of the transverse vorticity for
highly compressible fluids is shown in Fig. 25, where the
solid line corresponds to Eq. �171�. The limiting curve for
�=1 is shown together with curves for near � values. At any
�	1, the amplification saturates at the value given by Eq.
�166�, but for �=1 it grows without limit like

A�
�
2 �� = 1,M1 � 1� �

2M1
4

5
+

2M1
3

5
+ O�M1

2� . �173�

In Fig. 26 we show a 2D map of A�
�
2 as function of � and

M1. We see that the vorticity grows unbounded in the limits
of very strong shock and highly compressible gases in agree-
ment with the previous equations and the graphs shown
in Fig. 24 and 25. The black curve corresponds to a shock
moving into air ��=7 /5�.

The weak-shock limit for arbitrary values of � is given
by

A�
�
2 ��,M1 − 1 � 1� � 1 +

8

� + 1
�M1 − 1� + O��M1 − 1�2� .

�174�

10
−2

10
−1

10
0

10
1

10
210

0

10
5

10
10 Aω2

⊥
(γ = 1)

Aω2
⊥
(γ = 1.001)

Aω2
⊥
(γ = 1.01)

Aω2
⊥
(γ = 1.1)

M1 − 1

FIG. 25. Highly compressible asymptotic ��=1� of the trans-
verse vorticity amplification factor �Eq. �171��, together with the
amplification factor for other values of � near unity.
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G. Anisotropy of the downstream perturbations

One of the questions that we may try to answer using the
model presented here regards the isotropy of the compressed
turbulent field. Being that there is a privileged direction in
space, given by the direction of the shock motion, it seems
natural to think that this fact may modify the isotropy of the
upstream perturbations to some degree, which could be
worth quantifying. Different choices of the “anisotropy pa-
rameter” have been used in the existing literature
�14–17,40�, which are actually ad hoc definitions aimed to
characterize the level of anisotropy of the perturbations
downstream. We define, with the same liberty, the following
parameter:

�v =
�ṽ�

2 � − 2�ṽ�
2�

�ṽ�
2 � + 2�ṽ�

2�
= 1 – 4

�ṽx
2�

�ṽ2� + �ṽx
2�

. �175�

Here, v� refers to the velocity component parallel to the
shock surface and v� is actually equal to vx. The anisotropy
parameter varies between −1 and 1, and a zero value implies
isotropy downstream. The upper limiting value of �v=1 is
actually reached in the limit of strong shock and high com-
pressibility, �→1 and M1→�, where we know that the lon-
gitudinal motion of the compressed particles is suppressed.
In this limit, the velocity vectors of the compressed fluid
elements would be inclined toward the shock surface. In Fig.
27 we show the parameter �v as a function of � and M1. We
see that there are no situations for which this parameter
might reach the limit �v=−1, which would correspond to a
completely longitudinal velocity field. This is quite natural,
as we know that 1/2 of the kinetic energy �with components
parallel to the shock surface� passes unchanged for any value
of � and any shock strength. In between both limits, we have
the possibility of making �v=0, corresponding to isotropic
velocity perturbations downstream. This condition defines an
isotropy curve �besides the trivial curve that is drawn at
M1=1�, which is shown in Fig. 28. Interestingly, we note the
existence of an asymptote of this curve for very strong
shocks, which defines a critical value ��=2.3646. For fluids
with �	��, there is no shock wave that leaves the velocity
perturbations isotropic during compression. If the gas under
study is air, we would instead find regions of lateral and

longitudinal anisotropy. As can be seen, for a shock moving
into air with M1�1.9332, the isotropy of the velocity per-
turbations will not be altered. Having defined an anisotropy
parameter for the velocity field, it is straightforward to do
similarly with the vorticity perturbations. We have already
seen in Eqs. �98� and �99� that isotropy of the upstream ve-
locities implies isotropy of the vorticity perturbations. As the
shock may substantially change the isotropy of the velocity
field, it is natural to ask whether the vorticity field isotropy is
modified to a similar extent. Similarly as in Eq. �175�, we
define a downstream vorticity anisotropy parameter,

�� =
��̃�

2 � − 2��̃�
2�

��̃�
2 � + 2��̃�

2�
=

A�
�
2 − 1

A�
�
2 + 1

. �176�

We know that A�
�
2 →� in the limit of very strong shocks and

highly compressible fluids �M1�1,�→1�, which makes
���1 in that limit. In fact, in that case, the vorticity is
essentially parallel to the shock front, as discussed previ-
ously. Besides, we know that the transverse vorticity ampli-
fication factor is always greater than 1 for any values of �
and M1. Hence, it will be always ��	0, which means that
the vorticity downstream is always essentially laterally an-
isotropic. In Fig. 29 we can see the behavior of �� on the
�� ,M1� plane.

FIG. 26. �Color online� 2D map of the amplification factor for
the transverse component of the vorticity ����

2 =��y
2+��z

2� as a
function of the shock strength and gas compressibility. The black
curve corresponds to a shock moving into air ��=7 /5�.

FIG. 27. �Color online� Downstream velocity anisotropy param-
eter �Eq. �175�� as a function of � and M1.
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FIG. 28. Downstream velocity-isotropy curve, defined by the
condition: �v=0 We also show the regions of longitudinal and
transverse anisotropy.

ANALYTICAL LINEAR THEORY FOR THE INTERACTION… PHYSICAL REVIEW E 79, 066315 �2009�

066315-29



H. Interaction of a shock wave with a 2D turbulent
velocity field: average kinetic energy

of the downstream perturbations

Before finishing the work it is interesting to apply the
formalism developed in the previous subsections to a simpler
problem: a planar shock interacting with an isotropic turbu-
lent field in 2D. Although this case may be considered non
realistic, it is a convenient reference problem that might help
with the understanding of numerical simulations �19�. Rot-
man studied this situation with the help of large scale eddy
simulations �LES�, in which he considered the interaction of
a planar shock with two types of upstream inhomogeneities:
vorticity and density. We concentrate here on the velocity
fluctuations as the density case will be the subject of a future
work. In our model, this 2D problem may be thought of as if
the wave-number vector k� had only components kx and ky
and simultaneously were �vz=0. This case is a particular
subset of Eqs. �105�–�107� corresponding to the choice: �
=� /2 and 0����. This gives us a velocity field contained
in the �x ,y� plane and a vorticity vector only directed along
the z axis. Assuming that the wave number k� ��kx ,ky� is
uniformly distributed along the unit semicircle, it is easy to
see that the probability of a particular orientation is just
d� /�. Before proceeding, it is necessary to define the non
dimensional velocities. For the downstream rotational pertur-
bations, we define

�v2x
rot = c2u1ṽ2x

rot,

�v2y
rot = c2u1ṽ2y

rot = c2u1R
kx

ky
ṽ2x

rot, �177�

and for the sound waves

�v2x
ac = c2u1ṽ2x

ac,

�v2y
ac = c2u1ṽ2y

ac . �178�

In general, the amplitudes of the transformed velocities and
of the sound wave pressure perturbations downstream will be
complex numbers with real and imaginary parts because the
input to the shock equations is chosen as a complex expo-
nential as in the 3D problem. However, it is not difficult to
realize that the absolute value of the complex amplitudes are

the same as the absolute values of the 2D downstream ve-
locities obtained in Sec. II. We note that the small dimen-
sionless amplitude is u1= ṽ1k sin �, after using Eq. �105� with
�=� /2. We can therefore write, for the rotational part,

�ṽ2x
rot� = �Qrot��,M1,�0��ṽ1k sin � ,

�ṽ2y
rot� = R

kx

ky
�Qrot��,M1,�0��ṽ1k sin � , �179�

The function Qrot is defined with the aid of Eqs. �79� and
�81�. Similarly, we have for the sound waves emitted down-
stream,

�ṽ2x
ac� = �Qac��,M1,�0��ṽ1k sin � ,

�ṽ2y
ac� =

�Qac��,M1,�0��
��1

2 − 1
ṽ1k sin � ,

ṽ2z
ac = 0, �180�

where �1 and Qac have been defined in Eqs. �54� and �60�,
respectively. The rotational kinetic energy of the compressed
fluid particles �per unit mass� is

T̃2D
rot =

1

2
��ṽ2x

rot�2 + �ṽ2y
rot�2� ,

=
ṽ1k

2

2

�1 + �R

kx

ky
�2	�Qrot�2sin2 �� , �181�

and the sound waves’ contribution is

T̃2D
ac =

1

2
��ṽ2x

ac�2 + �ṽ2y
ac�2� ,

=
ṽ1k

2

2

�1
2Qac

2

�1
2 − 1

sin2 � . �182�

It is noted that the functions defined above can be thought
either as functions of � or �0, through the relationship that
couples �0 and � given by Eq. �109�. The amplification co-
efficient is defined as the ratio between the averaged down-
stream kinetic energy and the preshock average kinetic en-
ergy per fluid particle,

A2D =
4

�ṽ1k
2 


0

�/2

�T̃2D
rot + T̃2D

ac �d� , �183�

where we have used the fact that the intervals 0���� /2
and � /2���� are physically equivalent for the calculation
of the kinetic energy. The last integral is better decomposed
as

A2D = A2D
l + A2D

s + A2D
ac , �184�

where, expressing each term as integrals over �0, we can
write

A2D
l =

4

�ṽ1k
2 


0

1 T̃2D
rotM1

3R3/2�M1
2 − 1

�RM1
2 + �M1

2 − 1��0
2�2d�0,

FIG. 29. �Color online� Downstream vorticity anisotropy param-
eter �� �see Eq. �176�� for different values of � and M1.
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A2D
s =

4

�ṽ1k
2 


1

� T̃2D
rotM1

3R3/2�M1
2 − 1

�RM1
2 + �M1

2 − 1��0
2�2d�0,

A2D
ac =

4

�ṽ1k
2 


1

� T̃2D
ac M1

3R3/2�M1
2 − 1

�RM1
2 + �M1

2 − 1��0
2�2d�0. �185�

in which A2D
l stands for the integral of the rotational veloci-

ties over the long-wavelength interval 0��0�1, A2D
s stands

for the rotational integral over the short-wavelength interval
1��0��, and A2D

ac refers to the integral of the sonic contri-
bution in the interval 1��0��. It is clear that A2D will
be only a function of � and M1. The integrals corresponding
to Eq. �185� does not pose difficulties for its numerical
evaluation for arbitrary values of the governing parameters
� and M1. We show a two-dimensional map of A2D in the
plane �� ,M1� for the ranges 1���20 and 1�M1�1000
in Fig. 30.

Numerical values of the 2D kinetic-energy amplification
factors �long/short wavelengths, acoustic contribution and to-
tal� are shown for three different gases, at different shock
Mach numbers in the attached file to this work in �57�, Table
IV.

In Fig. 31 the amplification factor for a shock moving into
air as a function of M1 is shown. We compare with the re-
sults obtained in �19� for this case. We see a very good agree-
ment between the prediction of our model and the results of
the LES shown in that reference for a weakly turbulent vor-
ticity field ahead of the shock. The amplification factor can
be integrated analytically in different important limits which
we show below. We separate the contributions from the long/
short-wavelength intervals and the contribution from the
acoustic field.

Contribution to the amplification of the kinetic energy due
to the vorticity produced by shock interaction with the long-
wavelength preshock perturbation modes �0��0�1� is

A2D
l ��,M1 � 1� � −

2�� − 1

��� + 1�3/2 +
�4�3 + �2 − 4� + 1�

��� + 1�2 tan−1���2 − 1� +
4

�
���� − 1��2 − ��

� + 1
ln�1 + ���2 − ��

� − 1
	 , �186�

and the short-wavelength interval �1��0��� gives

A2D
s ��,M1 � 1� �

4��2 − 1�
�2� − 1�2 +

2�8�3 − 6�2 − 10� + 1��� − 1

��2� − 1��� + 1�3/2 − 2�4�3 − 9�2 + 3� + 1��� − 1

� + 1

+
2�32�7 − 72�6 − 16�5 + 104�4 − 40�3 − 23�2 + 16� + 1�

��2� − 1�2�� + 1�2 tan−1��� + 1

� − 1
�

−
4�8�4 − 18�3 + 12�2 − 2� − 1�

��2� − 1�2 ���� − 1��2 − ��
� + 1

ln�1 + ���2 − ��
� − 1

	 . �187�

The acoustic contribution is

FIG. 30. �Color online� Kinetic-energy amplification factor for a
shock interacting with a random 2D vorticity field, as a function of
� and M1 �Eq. �184��.
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FIG. 31. 2D kinetic-energy amplification factor for a shock
moving into air ��=7 /5�, as a function of M1. Also shown are the
LES results from �19�.
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A2D
ac ��,M1 � 1� � −

4

�
�4�2 − 3��� − 1

� + 1
�3/2

+
4��2� − 1��2� − 3��� − 1�3/2

�� + 1

−
8�� − 1��4�5 − 4�4 − 7�3 + 5�2 + 2� − 1�

��� + 1�2 tan−1��� + 1

� − 1
�

−
4

�
�4�2 − 8� + 1��� − 1�5/2� �

�� + 1��2 − ��
ln�1 + ���2 − ��

� − 1
	 . �188�

Collecting similar terms, and after some algebra, we present the final strong-shock limit asymptotic formula for the 2D
turbulent kinetic-energy amplification coefficient,

A2D��,M1 � 1� �
16�5 − 8�4 − 8�3 + 21�2 − 16� − 3

�2� − 1�2�� + 1�2 −
4�8�4 − 16�3 + �2 + 15� − 4��� − 1

��2� − 1��� + 1�3/2 + 2�8�4 − 28�3 + 31�2 − 9� − 1�

��� − 1

� + 1
−

8�� − 1�
��2� − 1�2�� + 1�2 �16�7 − 40�6 + 2�5 + 62�4 − 30�3 − 12�2 + 12� − 1�tan−1��� + 1

� − 1
�

−
4�16�6 − 88�5 + 186�4 − 184�3 + 79�2 − 8� − 3�

��2� − 1�2 � ��� − 1�
�� + 1��2 − ��

ln�1 + ���2 − ��
� − 1

	 . �189�

In Fig. 32 we plot the total strong-shock amplification factor
�Eq. �189�� as a function of � together with the exact value
for other very strong, but finite strength, shocks. In the 2D
situation, the amplification factor reaches its maximum,
equal to 2.111 16, at ��1.2298. Furthermore, for very low
compressibility ��→��, the amplification coefficient tends
to unity, as it should,

A2D�� � 1,M1 � 1� � 1 +
2

�
−

4

3��2 + O� 1

�3� . �190�

In the opposite limit of very high compressibility ��−1
�1�, the amplification factor passes through unity at �
�1.00161, and tends asymptotically to 1/2,

A2D�� − 1 � 1,M1 � 1� �
1

2
+

1

�
�4 ln� 2

� − 1
� + � − 4	

��2�� − 1� + O�� − 1� . �191�

The physical reason for this limit can be easily understood,
as in the 3D problem. A very strong shock in the limit
�→1 suppresses any longitudinal motion in the x direction,
leaving the lateral velocity unchanged �this can be confirmed
by looking at the expressions for ṽx downstream and for the
shock ripple amplitude �s�. Hence, only 1/2 of the total ki-
netic energy per unit mass passes unchanged across the
shock. As has been discussed in the full 3D case, we have
two sources of vorticity in this problem: an amplification of
the upstream vorticity, represented by the term �1 in Eq.
�64�, and an intrinsic vorticity generated by the shock ripple
oscillation, given by the term proportional to �2 in that same
equation. In fact, both terms are out of phase in the 2D prob-
lem too. That is, the vorticity added by the shock corrugation
interferes destructively with the amplified vorticity upstream.
This interference is maximum in the limit of very strong
shock and highly compressible fluid, giving rise to the ob-
served reduction. We present the high compressibility limit
��→1� formulas as a function of M1. The different contri-
butions are
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FIG. 32. Strong-shock limit �M1�1� of the 2D kinetic-energy
amplification factor �Eq. �189��, together with other curves for large
but finite shock Mach numbers.
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A2D
l �� = 1,M1� � −

�M1
2 − 1�7/2

�M1
2�M1

2 + 1��M1
4 + M1

2 − 1�
+

8M1�M1
2 − 1�

��M1
2 + 1�2 ln�M1 + �M1

2 − 1�

+
�M1

8 + 14M1
6 − 6M1

4 − 2M1
2 + 1�

�M1
4�M1

2 + 1�2 tan−1��M1
2 − 1

M1
2 � , �192�

A2D
s �� = 1,M1� � −

�M1
2 − 1�3/2�7M1

8 − 8M1
6 − 22M1

4 + 16M1
2 − 1�

�M1
2�M1

2 + 1�3�M1
4 + M1

2 − 1�
+

2�M1
10 + 2M1

8 − 12M1
6 − 8M1

4 + 19M1
2 − 6�

M1�M1
2 + 1�4�M1

4 + M1
2 − 1

+
8�M1

2 − 1��M1
6 − 3M1

4 − 5M1
2 + 3�

�M1�M1
2 + 1�4 ln�M1 + �M1

2 − 1�

+
�M1

12 − 8M1
10 + 15M1

8 + 48M1
6 − 49M1

4 + 8M1
2 + 1�

�M1
4�M1

2 + 1�4 tan−1� M1
2

�M1
2 − 1

�
+

32M1
6

��M1
2 + 1�4 tan−1��M1 + 1

M1 − 1� , �193�

A2D
ac �� = 1,M1� � −

4�M1
8 + 16M1

6 + 14M1
4 − 16M1

2 + 1�
��M1

2 − 1�3/2�M1
2 + 1�2�M1

4 + M1
2 − 1�

−
8M1�M1

4 + 3M1
2 − 2��M1

4 − 3�

�M1
2 − 1�2�M1
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4 + M1

2 − 1

+
4�M1

10 + 9M1
8 − 2M1

6 − 34M1
4 + 9M1

2 + 1�
�M1

2�M1
2 − 1�2�M1

2 + 1�3 tan−1� M1
2

�M1
2 − 1

�
+

32M1�2M1
4 + 3M1

2 − 3�
��M1

2 − 1�2�M1
2 + 1�3 ln�M1 + �M1

2 − 1� . �194�

Collecting and rearranging the above formulas, we get for the total amplification coefficient in the limit of highly compressible
gases,

A2D�� = 1,M1� � −
4�2M1

12 − 7M1
10 + 23M1

8 + 44M1
6 − 30M1

4 + 3M1
2 − 3�

��M1
2 − 1�3/2�M1

2 + 1�3�M1
4 + M1

2 − 1�

+
2�M1

14 − 4M1
12 − 31M1

10 + 26M1
8 + 79M1

6 − 40M1
4 + 7M1

2 − 6�

M1�M1
2 − 1�2�M1

2 + 1�4�M1
4 + M1

2 − 1
−

M1
8 + 14M1

6 − 6M1
4 − 2M1

2 + 1

2M1
4�M1

2 + 1�2

+
32M1

6

��M1
2 + 1�4 tan−1��M1 + 1

M1 − 1� +
4�5M1

12 − 20M1
10 − 17M1

8 + 72M1
6 − 9M1

4 + 4M1
2 − 3�

�M1
2�M1

2 − 1�2�M1
2 + 1�4 tan−1� M1

2

�M1
2 − 1

�
+

8�2M1
12 − 7M1

10 + 13M1
8 + 30M1

6 − 20M1
4 + M1

2 − 3�
�M1�M1

2 − 1�2�M1
2 + 1�4 ln�M1 + �M1

2 − 1� . �195�

In Fig. 33 we show a plot of the limiting curve for highly compressible gases as a function of M1 together with other � values,
near unity. Finally, we show the weak-shock limit for arbitrary �,

A2D��,M1 − 1 � 1� � 1 +
32�2

15��� + 1�2
�M1 − 1 + O�M1 − 1� . �196�
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IV. SUMMARY

A linear theory analytical model has been presented that
studies the interaction of a planar shock wave with a random
vorticity field. The turbulent spectrum is assumed to be iso-
tropic and full account of the gas compressibility is taken. At
first, the much simpler problem of the interaction with a
single-mode 2D perturbation upstream is considered. It
serves as a natural building block with which to construct
later on the more complex 3D model. The wave equation in
the compressed fluid is linearized and is exactly solved for
the case in which the shock travels isolated into the turbulent
fluid. The Rankine-Hugoniot equations are linearized and
closed-form exact analytical expressions are derived for the
quantities of interest: the shock pressure perturbations, the
shock ripple corrugation, and the downstream rotational ve-
locity components, as well as the vorticity in the compressed
fluid. The sound waves emitted by the corrugated shock front
are analyzed in detail. It has been found that the boundary
that separates the initially quiescent fluid with the turbulent
half-space is subject to RMI instability growth, once the
shock enters the turbulent region. The detailed evolution of
that instability is given together with the asymptotic value of
its rate of growth. The interaction with a full spectrum of 3D
modes is considered, assuming that the shock interacts inde-
pendently with each single mode. The best way to character-
ize the upstream spectrum consists in decomposing it as a
superposition of shear waves. Each shear wave defines a
plane on which rotational/incompressible velocity perturba-
tions are prescribed, with a given wave-number vector k�. The
shear wave plane can be described in space in terms of the
angles that specify the orientation of the vector k� in front of
the shock. By properly rotating the coordinate axis, to exploit
the isotropy of the upstream perturbations, all the important
statistical averages can be easily calculated integrating over
the solid angle defined by k�. In this way, explicit analytic
expressions in terms of elementary functions of � and M1 are
derived. The results of the model presented here compare
very well with the experimental/numerical data available in
the published literature �30,35,40�. It is found that in some
limiting regions of the parameter space ��→1,M1→��, the
turbulent kinetic energy is actually reduced. This apparently
paradoxical result is understood with the tools developed in
the 2D model: the more compressible the fluid and the stron-
ger the shock, the more shock ripple amplitude decreases,
decaying to zero, which means that the longitudinal motion
�normal to the shock� is suppressed downstream. Hence,
only 2/3 of the initial kinetic energy is passed as kinetic
translational energy into the compressed fluid. The sound
energy radiated by the shock is fully discussed in both the
shock and compressed fluid reference frames. The predic-
tions of the model for the sonic strength emitted downstream
are compared quite well with previous results obtained by
Ribner �17�. A detailed discussion of the dependence of the
sonic flux on the shock strength in the very weak-shock limit

for is presented, highlighting the partial agreement and/or
disagreement with the previous estimates of Lighthill and
Ribner �13,17�. The amplification of the transverse vorticity
is calculated, and its behavior as a function of � and M1 is
studied. Good agreement with previous direct numerical
simulations �30� is observed. The exact analytic asymptotic
expressions for the vorticity amplification factor are derived
in the strong/weak-shock limits, and for highly compressible
fluids. An anisotropy parameter is defined, in order to see
how much the shock alters the upstream isotropy of the ve-
locity perturbations. It is found that for some regions in the
parameter space the velocity field may remain isotropic after
shock/turbulence interaction. However, the compressed vor-
ticity perturbations are always laterally anisotropic, with
their vectors pointing essentially parallel to the shock sur-
face. This is because the shock/turbulence interaction short-
ens, by a factor 1 /R, the characteristic length of the upstream
eddies in the direction normal to the shock surface. This
effect is stronger for stronger shocks and highly compress-
ible gases. Finally, the same model is applied to a much
simpler spectrum, consisting of isotropic random perturba-
tions in 2D. The agreement with existing numerical simula-
tions �19� is also very good. All the statistical averages
shown in this work can be calculated with exact analytical
functions of the governing parameters �gas compressibility
and shock strength�. Exact asymptotic formulas can be de-
rived to study those quantities in the physical limits of weak
shock, strong shock, and highly compressible gases.

It is clear that the calculations shown here can be used to
deal with other types of interaction �which have also been
studied previously in the published literature�: such as the
interaction with an isotropic spectrum of density/entropy per-
turbations ahead of the shock, or with a random field of
acoustic waves. The potential of the model developed here is
the possibility of getting exact analytical scaling laws. This
fact is quite important, as it may be certainly useful to the
scientific community working on similar problems which use
sophisticated hydrodynamic simulation codes. The model
may also be extended to deal with more complicated bound-
ary conditions downstream, such as the presence of a true
piston, reflecting the sound waves from behind toward the
shock. Besides, it might also be possible to apply this for-
malism to study the effect of a second shock launched into
the compressed turbulent spectrum.
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