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In this paper, the scalings incorporating the Prandtl number (Pr) dependence have been obtained by a scaling
analysis for the unsteady natural convection boundary layer of an initially quiescent isothermal Newtonian
fluid of Pr>1 produced by the sudden imposition of a higher temperature on a vertical plate. It is shown that
the transient flow behavior of the resulting boundary layer can be described by a three-region structure and at
the start-up stage the boundary layer development is one dimensional and independent of height due to the
dominance of pure conduction; however, at steady state it becomes two dimensional and height dependent as
the flow becomes dominated by convection. Numerical results demonstrate that the scalings representing the
thermal boundary layer development accurately represent their Pr dependence over the whole stage of flow
development. The scalings representing the viscous boundary layer development are generally in good agree-
ment with the numerical results with the Pr variation over the whole stage of flow development, although there
are small deviations from the numerical results with the Pr variation that are within acceptable limits for

scaling.
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I. INTRODUCTION

Natural convection boundary layer flow has been a classic
problem in fluid mechanics and heat transfer due to its fun-
damental and practical significance. It has attracted extensive
experimental, analytical, and numerical studies. The majority
of the earlier studies have focused on the experimental and
analytical explorations of the steady-state behavior of the
flow, particularly that in a rectangular cavity with differen-
tially heated sidewalls, as reviewed by Catton [1], Ostrach
[2], Gebhart et al. [3], and Hyun [4], and more recently as
summarized regularly in the literature reviews on heat trans-
fer (see, e.g., Goldstein et al. [5]).

The transient flow behavior of unsteady natural convec-
tion boundary layers is also of fundamental interest and prac-
tical importance. Patterson and Imberger [6] conducted the
pioneering scaling analysis on the transient behavior of flow
when the opposing two vertical sidewalls of a two-
dimensional rectangular cavity are impulsively heated and
cooled by an equal amount. They devised a classification of
the flow development through several transient flow regimes
to one of three steady-state types of flow based on the rela-
tive values of the Rayleigh number Ra, the Prandtl number
Pr, and the aspect ratio of cavity A. Since then, extensive
investigations have been made for many aspects of unsteady
natural convection boundary layer flow under various flow
configurations through scaling analysis, numerical simula-
tion, and experiments, as recently reviewed by Lin et al. [7].

Although the scalings obtained from scaling analysis have
been shown to correctly predict their Ra and A dependence
under various flow configurations (see, e.g., [6-11]), it has
also been shown that some of the scalings do not perform
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satisfactorily with Pr variation. This prompts us to develop
improved scalings by taking into account the Pr variation in
the scaling analysis. In this study, improved scalings with Pr
variation will be developed from the scaling analysis for the
unsteady natural convection boundary layers of Pr>1 fluids
under isothermal heating conditions. Companion studies
have also been made for the unsteady natural convection
boundary layers of Pr>1 fluids under ramp heating condi-
tions [12] and for the steady-state natural convection bound-
ary layers of Pr>1 fluids under isoflux heating conditions
[13].

The remainder of this paper is organized as follows. The
scaling analysis is carried out in Sec. II to develop improved
scalings with Pr variation. These scalings and the governing
equations are made dimensionless in Sec. III and then vali-
dated and analyzed with a series of direct numerical simula-
tion results with Pr variation in Sec. IV. Finally, conclusions
are made in Sec. V.

II. SCALING ANALYSIS

Under consideration is the transient flow behavior result-
ing from heating a quiescent isothermal Newtonian fluid
with Pr> 1 by imposing a fixed higher temperature, 7, on a
vertical plate of length H. The fluid is initially at rest and at
a uniform temperature Ty(Ty<T,). It is assumed that the
flow is laminar.

The governing equations of motion are the Navier-Stokes
equations with the Boussinesq approximation for buoyancy,
which together with the temperature equation can be written
in the following two-dimensional forms:

oUu oV
o, (1)
X dY
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FIG. 1. Numerically simulated horizontal profiles of tempera-
ture and vertical velocity at dimensionless height y=Y/H=0.5
within a natural convection boundary layer: (a) at the start-up stage
(at dimensionless time 7=0.5) and (b) at steady state (at dimension-
less time 7=10) for Pr=10 and Ra=10%, where 7 and y are defined
by Eq. (33).
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where U and V are the horizontal (X direction) and vertical
(Y direction) velocity components, ¢ is time, P is pressure, T
is temperature, g is the acceleration due to gravity, and B, v,
and « are the thermal expansion coefficient, kinematic vis-
cosity, and thermal diffusivity of the fluid at the temperature
T,, respectively. Gravity acts in the negative Y direction.
For the unsteady natural convection boundary layer flow
considered here, the major governing parameters are the
Rayleigh number Ra and the Prandtl number Pr defined as

3
Ra:w’ PI‘=Z, (5)
VK K
where AT=Ty—T,.

The basic procedure described in [6] is followed here
modified appropriately to include the dependence on Pr cor-
rectly by examining in more detail the various balances in
the governing equations. With the initiation of the flow, a
vertical boundary layer will be developed adjacent to the
vertical plate which will experience a start-up stage domi-
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FIG. 2. Numerically simulated horizontal profiles of dimension-
less temperature 6 and dimensionless vertical velocity v at dimen-
sionless height y=0.5 for Ra=10% and Pr=50 with four different
meshes. Meshes 1-3 are for the 2X 1 computational domain and
mesh 4 is for the 4 X 1 computational domain.

nated by one-dimensional conduction followed by a short
transitional stage at which traveling waves due to the leading
edge effect are present and the one-dimensional conduction
transits to two-dimensional convection before reaching
steady state [7,14,15].

The forcing for the vertical boundary layer is from con-
duction of heat through the wall. The ratio of the unsteady
term (AT/1) to the convection term (VAT/H) in the tempera-
ture Eq. (4) is O(H/ Vi), and for sufficiently small ¢ this is
much larger than 1, so the initial balance is between the heat
conducted in through the wall (i.e., the term «AT/ A%) and
the unsteady term, which leads to the following scaling for
the thermal boundary layer thickness Ay at the start-up stage:

Ap~ 12412 (6)

Hence, a gradient in temperature exists from the vertical
sidewall to a distance A.

The buoyancy forces resulting from this heating act to
accelerate the flow over the thickness Az only. In this region,
the ratio of the inertial term to the viscous term in the verti-
cal momentum Eq. (3) is O[(V/ t)/(vV/A%)]~0(A%/ 123)
~O(1/Pr) as Ap~«'?t"2 as shown in Eq. (6), which is
much smaller than 1 for Pr> 1, so that the balance over Ay is
between the viscous term (vé*V/dX?) and the buoyancy term
(gBAT).

The peak velocity V,, must occur within A7. Suppose V,,
is at a distance A,; from the wall. Also for Pr>1 there will
be a region of flow outside A, where there is flow that is not
directly forced by buoyancy but is the result of diffusion of
momentum as the result of viscosity. Suppose this is A, from
the wall. Hence a three-region structure as shown in Fig. 1
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FIG. 3. Horizontal profiles of dimensionless temperature 6 at
dimensionless heights y=0.5 and y=0.7 for different Pr at the
start-up stage: (a) raw data and (b) @ plotted against x/7'2
(dimensionless).

can be depicted for the natural convection boundary layers of
Pr>1 fluids.

In regions I and II, the balance is between viscosity and
buoyancy, i.e.,

>V
0~ v + gBAT. (7)

However, in region III the balance is between viscosity and
inertia, since there is no buoyancy there.
In region I, balance (7) gives

Vi
VA—Z ~ gBAT, (8)
ie.,
AL L ©)
14

In region II, the forcing is over the distance (A;y—A,;) but
the gradient of V is over (A,—A,;). The best way to look at
this is to integrate the vertical momentum equation over re-
gion II, giving

(av>AT f i

0~ + TdX. 10
"\ ox 8B (10)
Since (dV/ r?X)A =0 (that is where the maximum is) and ap-

proximating (&V/ X)ar~ V! (A,=A,) and [ "Tdx
~AT(A;—A,,), this gives
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FIG. 4. Horizontal profiles of dimensionless temperature 6 at
dimensionless heights y=0.5 and y=0.7 for different Pr at steady
state: (a) raw data and (b) 6 plotted against x/[(1+Pr="/2)1/2y1/4]
(dimensionless).

Vv
—— ~ gBAT(A7=A,). 11
VAU—AW' 8,3 ( T vz) ( )
Hence,
AT
Vi~ L6008, -8, (12)

Matching this with Eq. (9) obtained above for V,, gives

(AT Al)l)(A AUI) Up (13)
so that
—(Ar+ A)A,; + A2~ A2, (14)
which leads to
ATA
A, 15
A A (15)

In region III, as there is no buoyancy force, the flow is
driven solely by diffusion of momentum, meaning that the
unsteady term balances the viscous term, giving

\% \%
— ~v—. 16
TS (16)
This leads to
Av — Vl/Ztl/Z — Prl/2 AT’ (17)

which is the scaling for A, at the start-up stage. Hence, scal-
ing (15) becomes
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L Pr'”? Ao~ 1 _ 1 12,172
R S e L
(18)
This is the scaling for A; at the start-up stage.
So scaling (9) for V,, becomes
2
Since Ay~ k22, this leads to
. ~ﬂ( 1 )2 N RaK2< 1 >2t
" v \1+Pr'? H \1+pr'?)
(20)

which is the scaling for V,, at the start-up stage.

The boundary layer will continue to grow until convection
of heat carried away by the flow balances the conduction of
heat transferred in through the wall and the development of
the boundary layer reaches steady state. At a height Y, this
happens at

V,AT AT
~ K5, (21)
Y A7
i.e.,
Raxz( 1 )Zt 1 22)
HY \1+Pr'? et
This leads to
HY
~——(1+Pr'?)? (23)
aK

which gives the following scaling for the time when the
boundary layer reaches steady state:

H2 1/2
t,~ m(g) (1 +Pr_1/2). (24)

The corresponding scaling for the steady-state maximum
velocity from Eq. (20) is

V RaKz( 1 )2t Ral/ZK(Z)l/Z 1
"o/ \1+pr?2) H \H/ (1+pPr'?)’

(25)
The scaling for the steady-state thermal boundary layer

thickness from Eq. (6) is

A2 H (Y " —1/2y1/2
Ap ~ k7t Ra"\ 5 (1+Pr /)", (26)
a

The scaling for the steady-state inner viscous boundary layer
thickness from Eq. (18) is

A 1 A H ( Z)M 1
vis 1+Pr_”2 Ts Ra4\ g (l+Pr‘”2)”2'
(27)

The scaling for the steady-state whole viscous boundary
layer thickness from Eq. (17) is
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H Y 1/4
A~ Pr'/? Apg ~ W(;}) Pr”z(l + Pr—1/2)1/2. (28)

II1I. NONDIMENSIONAL FORMULATION

To facilitate the numerical validation of the scalings ob-
tained above, the dimensionless forms of the governing
equations and the scalings are used. For the natural convec-
tion boundary layer flows considered here, it is natural to
choose H, the height of the plate, as the characteristic length
scale. From Eq. (25), it is also natural to choose V|
=«Ra'?/H as the characteristic velocity scale. Hence, the
characteristic time scale for the flows is apparently (H/V,)
and the characteristic pressure scale is pV%. It is also apparent
that AT=T,,—T, is the characteristic temperature difference
scale.

With these characteristic scales, governing equations
(1)~(4) can be written in the following nondimensional
forms:

du dv
—+—=0, (29)
ox dy
du  J(uu) I(vu) dp  Pr (Pu Fu
—t——+—— ==+l 2+ (30)
aT ox dy dx Ra'“\dgx* dy
v d(uv) d(vv) dgp  Pr (Pv Fu
—+ + =-—+-al T3+ 73 ) +Pro,
ar dx dy dy Ra'“\dx~ dy
(31)
30 dub) I(vh) 1 (&0 &0
—+ + =—m\l 3+t (32)
ar ox ady Ra"“\ox* dy

where x, y, u, v, 7, p, and 6 are, respectively, the dimension-
less forms of X, Y, U, V, ¢, P, and T,which are made dimen-
sionless by their respective characteristic scales, i.e.,

X Y U \% t
X=—, y=—, u=—, v=—-, T=T——,
H H v, Vo (HIV,)
P T-T,
p=— b= (33)
pVO Tw_ TO

The origin of the coordinate system is located at the leading
edge of the heated plate, at x=0, y=0.

The scalings obtained above are made dimensionless as
follows. At the start-up stage, scalings (6), (17), (18), and
(20) can be written in dimensionless form as

5 AT K”2t”2 K1/2[(H/V0)7_]1/2
T= ", -~

H H H
12 12
K i T
~ ~ 34
<V0H> T T Ra (34
A, 2 ) prl/2 A2
5U=E ~ T ~Pr'’" 6~ Ral (35)
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FIG. 5. Time series of dimensionless &7 at dimensionless
heights y=0.5 and y=0.7 for different Pr: (a) raw data and (b)
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A 1 K1/2t1/2 1
8yi=—r ~ —12 - 17301
H 1+Pr H 1+Pr
1 A2
T PR (o)
_V, Rak 1 i
Yy T H (4P,
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The dimensionless form of scaling (24) for ¢, is
" H 12
= ~ 3 (—) (1+Pr'?)
(HIVy)  (H/Vy)Rak\ H
~ (1 +Pr 2yl (38)

At steady state, scalings (26), (28), (27), and (25) are
written in the following dimensionless forms:

Ay Yl
Or= " ~ gara(1 P, (39)
A 1/4
8=~ P AL PR, (40)
A s yl/4 1
Ois = I-UI ~ Ra““(l +Pr‘“2)“2’ (41)

PHYSICAL REVIEW E 79, 066313 (2009)

0.4
Pr=5, y=0.5, 1=0.8

Pr=5, y=0.7, 1=0.6
Pr=10, y=0.5, 1=0.5
Pr=10, y=0.7, 1=0.4
Pr=20, y=0.5, 1=0.6
Pr=20, y=0.7, 1=0.6
Pr=50, y=0.5,t=0.4
Pr=50, y=0.7, 1=0.4
Pr=100, y=0.5,71=0.3
Pr=100, y=0.7,7=0.5

0.3

~ 02

0.1

\
0 0.02 0.04 0.06

x(14Pr?y!?

FIG. 6. Horizontal profiles of dimensionless vertical velocity v
at dimensionless heights y=0.5 and y=0.7 for different Pr at the
start-up stage: (a) raw data and (b) v(1+Pr !/?)%/ 7 (dimensionless)

plotted against x(1+Pr~?)/ 712 (dimensionless).

V

ms 1

Vo (1+Pr?)”

Upms =

2. (42)

Scalings (34)—(37) clearly show that at the start-up stage,
the boundary layer development on the vertical plate is one
dimensional and independent of y due to the dominance of
pure conduction. However, at steady state, as shown by scal-
ings (39)-(42), the boundary layer is two dimensional and y
dependent as the flow is now dominated by convection.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the scalings obtained above will be vali-
dated and analyzed by comparison to direct numerical simu-
lation results. These simulations are conducted using the
same code as used in [7,11,16,17]. As the numerical meth-
ods, the construction of the computational meshes and the
benchmarking of the code with known theoretical results
were detailed in [16,17], these will not be repeated here.

As the Ra dependence of the scalings for natural convec-
tion boundary layers has been firmly confirmed by numerous
numerical results (see, e.g., [6-11,16]), this study will focus
on the Pr and y dependence of the scalings obtained above.
To do so, five direct numerical simulations with varying Pr
(specifically Pr=5, 10, 20, 50, and 100, respectively) have
been chosen, all at the same Rayleigh number (Ra=108).

All the simulations have been conducted in a 2 X 1 com-
putational domain with 493 X 397 nodes. To ensure the simu-
lation results are mesh independent, a mesh dependence test
has been conducted for the Pr=50 case with three meshes
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(493 X397, 323 X263, and 209 X 165) for the 2 X 1 compu-
tational domain and one mesh (499 X 397) for the 4 X 1 com-
putational domain, and the results are shown in Fig. 2, which
clearly demonstrates that the numerical simulation results
with finer meshes are mesh independent and domain size
independent. Hence, the 493 X 397 mesh has been chosen for
all the simulations conducted in the 2 X 1 computational do-
main in this study.

As shown by scaling (34), the dimensionless thermal
boundary layer thickness, &y, grows as &y~ 7% at the
start-up stage, and shows no dependence on Pr or y. This is
clearly confirmed by the numerical results, as depicted in
Fig. 3, where the horizontal temperature profiles for different
Pr at y=0.5 and y=0.7 during the start-up stage are pre-
sented. Figure 3(b), where x is scaled by 72, which is the
scale for Oy at the start-up stage, shows that this scale brings
all ten scaled temperature profiles with the Pr and y varia-
tions at different times into a single profile, indicating that
8y~ 72 is the correct scaling for &7 at the start-up stage.

When the boundary layer development attains its steady
state, scaling (39) shows that the boundary layer becomes
two dimensional and the dimensionless thermal boundary
layer thickness, Jr,, becomes both Pr and y dependent. This
scaling is also confirmed by the numerical results, as shown
in Fig. 4, where the horizontal temperature profiles for dif-
ferent Pr at y=0.5 and y=0.7 at steady state are presented.
Figure 4(b), where x is scaled by y"#(1+Pr~"2)12 which is
the scale for o, at steady state, shows that this scale brings
all ten scaled temperature profiles with the Pr and y varia-
tions at steady state essentially onto a single line, confirming
that scaling (39) is the correct scaling for &y, at steady state.

To more explicitly validate scalings (34), (38), and (39),
the time series of &; for different Pr at y=0.5 and y=0.7 have
been obtained from the numerical simulations and are pre-
sented in Fig. 5. &7 at a specific height is determined in the
simulations as the distance from the vertical sidewall to the
location where 6, the dimensionless temperature of the fluid,
becomes 0.01. Figure 5(b) presents the same ten time series
as those presented in Fig. 5(a), but &, and 7 are scaled by
(14Pr12)12y14 and (1+Pr~Y2)12y12 which are the scales
for &r, and 7 at steady state, respectively, as shown in Egs.
(38) and (39). At the start-up stage (before each series attains
its individual peak), it is seen that all ten scaled time series,
with Pr and y variations, fall onto the same straight line,
confirming that 8~ 7'2/Ra'/* is the correct scaling for & at
the start-up stage. At steady state, these scaled series fall
approximately onto the same horizontal straight line, which
clearly confirms that &z~ (1+Pr~1/2)12y14/Ral’* is the cor-
rect scaling for &y at steady state. Additionally, Fig. 5(b)
shows that all ten scaled time series attain their respective
peaks at approximately the same scaled time, which also
validates scaling (38).

Scalings (36) and (37) predict that the inner viscous
boundary layer thickness J,; and the maximum vertical ve-
locity v,, are Pr dependent but y independent at the start-up
stage. These scalings have been validated with the numerical
results shown in Fig. 6, where the horizontal profiles of ver-
tical velocity at y=0.5 and y=0.7 for five Pr values during
the start-up stage are presented. From Fig. 6(b), where v and
x are scaled, respectively, by 7/(1+Pr™"?)? and 7"2/(1
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FIG. 7. Horizontal profiles of dimensionless vertical velocity v
at dimensionless heights y=0.5 and y=0.7 for different Pr at steady
state: (a) raw data and (b) v(1+Pr~""2)/y"? (dimensionless) plotted
against x/[Pr'2(1+Pr~1"2)12y14] (dimensionless).

+Pr'2), which are the scales for v,, and &,; at the start-up
stage, as shown in Egs. (37) and (36), it is seen that these
two scales bring all ten scaled profiles within the inner vis-
cous boundary layers onto a single line at the start-up stage
in region L.

At steady state, the viscous boundary layer also becomes
two dimensional and Pr and y dependent, as indicated by
scalings (41), (42), and (38). These scalings are also vali-
dated by the numerical results, as demonstrated in Fig. 7,
where the horizontal profiles of vertical velocity at y=0.5
and y=0.7 for different Pr at steady state are presented. From
Fig. 7(b), where the scaled profiles are presented with v and
x scaled, respectively, by y"2/(1+Pr™"?) and y"4/(1
+Pr=2)V2 which are the scales for v,,, and &,; at steady
state, it is clearly seen that these two scales essentially bring
all ten scaled profiles within the inner viscous boundary lay-
ers onto a single line at steady state, confirming scalings (41)
and (42).

Figure 8 presents further numerical results to validate
scalings (37), (42), and (38), where the time series of v,, for
different Pr at y=0.5 and y=0.7 are presented. Figure 8(b)
presents the same ten time series as those present in Fig.
8(a), but v, and 7 are scaled, respectively, by y!?/(1
+Pr712) and (1+Pr V2)V2y12 which are the scales for v,
and 7 at steady state respectively, as shown by scalings (38)
and (42). It is found that all ten scaled time series fall ap-
proximately onto the same straight line at the start-up stage,
which confirms that v,,~ 7/(1+Pr~"2)? is the correct scaling
for v, at the start-up stage. At steady state, it is seen that all
scaled time series fall essentially onto the same horizontal
straight line, which clearly confirms that v~ y"?/(1
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FIG. 8. Time series of dimensionless v,, at dimensionless
heights y=0.5 and y=0.7 for different Pr: (a) raw data and (b)
v, (1+Pr7Y2)/yV2 (dimensionless) ~ plotted  against  7/[(1

+Pr~12)y!2] (dimensionless).

+Pr=12) is the correct scaling for v, at steady state. Addi-
tionally, Fig. 8(b) shows that all ten scaled time series attain
their respective peaks at approximately the same scaled time,
which also validates scaling (38).

From the above numerical validation, it is clear that the
scalings representing the thermal boundary layer develop-
ment agree very well with the numerical results with Pr
variation over the whole stage of development demonstrating
that the Pr dependence of this flow is quite accurately repre-
sented. The scalings representing the viscous boundary layer
development are generally in good agreement with numerical
results with Pr variation over the whole stage of develop-
ment, although there are small deviations from the numerical
results that are within acceptable limits for scaling. As all
scalings were obtained under a series of assumptions regard-
ing the relative magnitudes of various terms in the tempera-
ture and momentum equations, it will be justifiable to have
an examination of these assumptions using numerical results.

To do so, the numerical results obtained for Ra=10% and
Pr=10 at the specific height of y=0.5 are present in Figs. 9
and 10, which present the snapshots of the horizontal profiles
of various terms in the dimensionless temperature Eq. (32)
and dimensionless y momentum Eq. (31). For this specific
case, the numerical results show that the start-up stage com-
pletes at around 7=1.3, and after around 7=2, the flow
reaches its steady state.

In the scaling analysis, it is assumed that, at the early
start-up stage, the temperature Eq. (4), or more appropriately
here, its dimensionless counterpart [Eq. (32)], is dominated
by the unsteady term and the heat conduction term for Pr
> 1 fluids and all other terms in the equation are negligible.

FIG. 9. Snapshots of horizontal profiles of various terms (di-
mensionless) in the temperature equation at dimensionless height
y=0.5 for Pr=10 and Ra=10%. —@— 96/dr, -~ - Nub)/ox, ———
dwh)/dy, -O— Ra~'24%6/ x>, — (bold) 6, —A— 1.5v. Note that
Ra~'24%6/ 9y? is negligible so it is not present. Also note that the
velocity profiles (—A—) at 7=0.1 and 7=0.5 are for 15v and 3v,
respectively.

The numerical results in Fig. 9(a) exactly demonstrate this
behavior. When 7 continues to increase, as shown in Fig.
9(b), these two terms still dominate the temperature Eq. (4),
although their magnitudes decrease dramatically, and all
other terms are again negligible. In fact, the numerical re-
sults, as shown in Fig. 9(c), demonstrate that these two terms
continue to dominate the temperature Eq. (32) until the end
of the start-up stage, when other terms, such as d(u6)/dx and
(v 6)/dy, begin to become significant. This well maintained
dominance of the unsteady-conduction balance over the
whole start-up stage ensures the accuracy of scaling (6) and
its dimensionless counterpart [Eq. (34)], as observed above.
At steady state, as shown in Fig. 9(d), the unsteady term
disappears, which is expected. Nevertheless, the numerical
results show that although the two terms that become domi-
nant in the temperature Eq. (32) are d(v6)/dy and
Ra~"2¢26/ dy?, which is exactly what is assumed in the scal-
ing analysis, the magnitude of the term d(u#6)/dx is not neg-
ligible. However, its contribution is small, as clearly demon-
strated by the numerical results presented in Figs. 3-5.

As observed above, there are small deviations associated
with the Pr variation for the scalings representing the viscous
boundary layer development, although these deviations are
within acceptable limits for scaling. In the scaling analysis, it
was assumed that over the whole stage of flow development,
the y momentum Eq. (3), or more appropriately here, its
dimensionless counterpart [Eq. (31)], is dominated by the
viscous term and the buoyancy term for Pr>1 fluids, both in
region I (inner viscous boundary layer) and in region II (the
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FIG. 10. Snapshots of horizontal profiles of various terms (di-
mensionless) in the vertical momentum equation at dimensionless
height y=0.5 for Pr=10 and Ra=108. — qv/dr, -+ Auv)/ dx, — —
- d(vv)/dy, — = PrRa~"25%v/ ax?, — (bold) Pr 6, —A— 15v. Note
that both dp/dy and Pr Ra™"?¢?v/ dy? are negligible so they are not
present. Also note that the velocity profiles (—A—) at 7=0.1 and
7=0.5 are for 100v and 20v, respectively.

remaining viscous boundary layer within the corresponding
thermal boundary layer). This is confirmed by the numerical
results presented in Fig. 10, where it is seen that the viscous
term Pr Ra™"24%v/dx> and the buoyancy term Pr @ are the
only dominating terms in Eq. (31) at all the times considered,
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and all other terms are negligible. Hence, this viscosity-
buoyancy balance assumption in regions I and II is valid and
accurate.

V. CONCLUSIONS

A three-region scaling has been developed to account for
the Prandtl number dependency of the developing and fully
developed structure of the natural convection boundary layer
in a Pr>1 fluid adjacent to an impulsively heated isothermal
semi-infinite vertical plate. This scaling shows a strong
Prandtl number dependency in the characteristic quantities
for the velocity in both the start-up y-independent conductive
phase and in the fully developed y-dependent convective
phase. However, when Pr approaches infinity, the Pr depen-
dency shown in the scalings will disappear.

The scalings have been validated by comparison to full
numerical solutions of the governing equations and have
been shown to provide an accurate description of the start-up
flow, the transition times, and the structure of the fully de-
veloped flow over the Prandtl number range considered. In
particular the multiple region scaling accurately predicts the
Prandtl number dependency of the inner velocity length
scale, J,;, and the velocity maximum v,,, quantities that are
poorly predicted using a single region scaling.
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