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Expanding holes driven by convectionlike flow in vibrated dense suspensions
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Surface instabilities in vertically vibrated suspensions of various powders dispersed in silicone oil are
investigated in quasi-two-dimensional (2D) and quasi-one-dimensional (1D) systems. As vibration acceleration
exceeded a critical value, the flat surface became unstable against a finite-amplitude perturbation. We found an
expanding hole or viscous fingerlike pattern in the quasi-2D system and segregation between dried and wet
areas in the quasi-1D system. We show that these instabilities are accompanied by convectionlike flow at their
rim and in the quasi-1D system, the height of the convectionlike flow can be scaled by acceleration, vibration
frequency, diameter of the dispersed powder, mean density of the suspension, and viscosity of silicone oil. We

propose a simple model that accounts for the scaling and concentric motion of the convectionlike flow.
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I. INTRODUCTION

A hollow created on the flat surface of a fluid at rest
eventually closes because of hydrodynamic pressure, even
for non-Newtonian fluids such as suspensions. A free fluid
surface that is parallel to the direction of gravity is hard to
maintain using static-force balance and is absolutely unstable
in general. Recently Merkt et al. discovered an interesting
surface instability in vertically vibrated cornstarch or glass
microsphere suspension [1]. They observed that a permanent
hole is created by localized perturbation and persists despite
the hydrodynamic pressure of the surrounding fluid. Here we
report that such holes generally expand rather than just per-
sist when the suspended glass beads are larger than a certain
size. We found that convectionlike flow at the rim of the hole
is responsible for maintaining the hole and thrusts the sur-
rounding fluid out toward the wall against hydrodynamic
pressure.

For a Newtonian fluid or granular medium, various sur-
face instabilities are reported, such as Faraday waves [2],
Rayleigh-Taylor instabilities [3], and oscillons [4]. Vertically
vibrated suspensions also show those instabilities accompa-
nied by features specific to particle-dispersion fluid systems.
Oscillons and solitary waves are observed in clay suspen-
sions [5], suggesting that the shear-thinning character of a
suspension enhances the hysteresis of onset acceleration.
Surface instabilities in the form of heaps accompanied by
convection are documented for vertically vibrated granular
slurries [6] and show that the critical acceleration of heaps
results from a Rayleigh-Taylor instability.

In a vertically vibrated dense suspension of glass beads,
we found that a finite localized perturbation destabilizes the
surface above a certain threshold of acceleration, and a void
created by the perturbation grows from the surface to nearly
the bottom of the fluid layer, then expands from its initial
diameter (~5 mm) to almost the size of the container
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(~30 cm) until it collides with the side wall of the container.
The expanding hole resembles the dewetting of hydrophobic
fluids [7] except that the wall of the expanding hole is sus-
tained by a dynamic fluid process—that is, a convectionlike
flow at the rim—and the height of the hole can reach much
higher than for normal dewetting.

II. EXPERIMENT

For suspensions, we used mainly mixtures of glass beads
and silicone oil. We varied the diameter of the beads r from
50 to 800 wm, the viscosity of the silicone oil # from 30 to
500 mm?/s, and the packing fraction (also called the pack-
ing ratio) ¢ of the system from 45% to 61%. In some ex-
periments, we used copper powder (mean diameter 200 wm)
or polyethylene powder (mean diameter 100 wm) as dis-
persed particles. We used two types of acrylic-resin contain-
ers: a cylindrical container (diameter of 29 cm) for quasi-
two-dimensional (2D) systems and a narrow box (10
X1 cm?) for quasi-one-dimensional (1D) systems. A layer
of suspension (initial depth of 0.5-2.5 cm) was subjected to
vertical ~ sinusoidal vibration [vertical position z(r)
=A sin 27ft] using an electromagnetic vibration system,
where the frequency f was varied from 30 to 70 Hz and the
peak acceleration ['=A(27f)> was varied up to 280 m/s.
This system shows a subcritical bifurcation, giving rise to a
surface instability consisting of a hole.

We created a local perturbation by making a small hole in
the flat surface with a stick and recorded the growth of in-
stability in the system with a charge-coupled-device camera
at 30 frames/s. A nonmatched density of glass beads and
silicone oil can cause local nonuniformity in the packing
fraction. To avoid this effect, the suspension poured in the
container was mixed again within 30 s in prior to each ex-
periment because typical sedimentation time is estimated to
be 70 s for dilute suspensions by using Stoke’s law, while the
drag force is larger, thus it takes longer for dense suspen-
sions. This experimental preparation time was enough to ob-
tain reproducible result [8]. In the quasi-2D system, we
mainly investigated the phase diagram and first-stage insta-
bilities. In the quasi-1D system, we focused on the time evo-
lution of instabilities and the steady state.
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FIG. 1. Sequence of instabilities in a quasi-2D system: [(a)—(d)]
Hole-expanding sequence at different times =0, 2, 4, and 6 s
(where r=0.2 mm, #=500 mm?/s, ¢=0.56, ['=230 m/s? and f
=40 Hz); (e) separated state (where r=0.2 mm, =500 mm?/s,
$=0.56, '=290 m/s?, and f=40 Hz); (f) viscous fingerlike pat-
tern (where r=0.4 mm, =500 mm?/s, ¢=0.60, '=270 m/s?,
and f=60 Hz).

When acceleration is sufficiently high, instability changes
significantly with packing fraction. At lower packing frac-
tions, a small hole [Fig. 1(a)] created by a finite perturbation
grows into a large hole [Figs. 1(b)-1(d)] and finally, upon
collision with the outer wall, into irregular forms. At higher
packing fractions, the initial hole is followed by a front in-
stability, creating many branches [Fig. 1(f)] that resemble
viscous finger patterns in the Hele-Shaw cells [9] or peeling
of adhesive tape [10]. We call the former an expanding hole
and the latter a viscous fingerlike pattern. For a suspension of
0.2 mm glass beads, the threshold packing fraction ¢, is 58%
[Fig. 2(a)]. The instabilities resemble hole growth in thin
liquid films [7,11], and for ¢>58%, sometimes both ex-
panding hole and viscous fingerlike patterns coexist. The co-
existence of two instabilities may be due to the nonunifor-
mity of the packing fraction and is certainly due, in part, to
the difficulty in establishing uniform initial conditions at
very high packing fractions. However, particularly noticeable
is the nonuniformity induced by instability. When the vis-
cous fingerlike pattern appears, silicone oil is pushed out
from the pattern region to the outer region and the uniformity
of the packing fraction breaks spontaneously. At the advanc-
ing front, a granulated lump often tears off from the edge of
the viscous fingerlike pattern [Fig. 1(f)]. When the concen-
trated suspension shears, the same granulation as that caused
by dilatancy is observed [12]. Thus, it suggests that sponta-
neous breaking of uniformity of a packing fraction is due to
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FIG. 2. (Color online) (a) Phase diagram of glass beads (0.2
mm) in silicone oil suspension (500 mm?/s), shown as acceleration
vs packing fraction. The vibration frequency was 40 Hz. An ex-
panding hole is observed in the circle (red) symbol region and a
viscous fingerlike pattern is observed in the triangle (green) symbol
region. At packing fraction ¢=58%, sometimes both expanding
hole and viscous fingerlike pattern are observed simultaneously be-
cause of the nonuniformity of the packing fraction. (b) Phase dia-
gram of glass beads (0.4 mm) in silicone oil suspension
(500 mm?/s), shown as acceleration vs frequency. The packing
fraction ¢=56%. In both figures, the expanding hole region
(circles) indicates that the hole reaches the wall and the shrinking
region (crosses) indicates that the hole starts shrinking. Near the
onset of acceleration in the shrinking region, the hole can expand
but starts shrinking.

dilation and granulation, which cause instability. The transi-
tion from a uniformly expanding hole to a hole with finger-
like patterns was observed for a packing fraction close to the
onset of the hard-sphere glass transition that is found in a
fluidized bed of hard spheres [13] and references therein. In
the phase diagram, onset acceleration decreases monotoni-
cally with increasing packing fraction [Fig. 2(a)] [14]. Mean-
while, the onset acceleration of an expanding hole increases
linearly with increasing frequency [Fig. 2(b)]. Hence, the
onset acceleration is strongly affected by packing fraction
and frequency but is not much affected by the diameter of
the glass beads or the viscosity of the liquid. Even when we
double the diameter of the glass beads, onset acceleration
changes by only ~5%. A mixture of copper beads and sili-
cone oil with ¢=56% also demonstrates an expanding hole.
However, if acceleration is insufficient, the hole expands
slightly but then shrinks and soon disappears. In this study,
we mainly focus on expanding holes. At the rim of all holes,
convectionlike flow resembling a doughnut was found. We
determined that the typical velocity of the flow is ~1 cm/s
and that it increases with increasing I'.
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The flow goes upward along the hole rim and turns down-
ward at some distance from the hole. We observed convec-
tion coupled with changing surface shape under vertical vi-
bration, with rotational direction the reverse of [6] and the
same as [15].

To make an expanding hole, a finite deformation of sur-
face is indispensable. As the initial condition, usually it is
necessary to make a hole penetrating the layer and there is a
critical initial hole size below which a hole always shrinks.
This critical initial hole size decreases with increasing accel-
eration; for example, with 0.1 mm glass beads in 100 mm?/s
silicone oil, the critical hole size is ~2.7 mm for accelera-
tion 175 m/s?> and 1.3 mm for acceleration 182 m/s% In
contrast to the instabilities in [6,15] that show supercritical
bifurcation, the necessity of a finite surface deformation in-
dicates that this instability is subcritical.

For all experimental conditions, the growth of the area of
the hole (S) is nonlinear with time [Fig. 3(a)]. However, the
time-evolution curves collapse into a single growth curve at
an early stage [Fig. 3(b)] when they are scaled.

We employ the functional form for the collapsed curve
S/8y=f(t/ 7), where f(x)=exp(\x), ¢ is the elapsed time from
the beginning of expansion, and 7 is a parameter that is char-
acteristic of the time scale of hole growth [Fig. 3(b)].

We fitted the data in Fig. 3(a) with fitting parameters 7
and S,,. Figure 3(c) shows the relationship between 7 and the
external acceleration of the system, which reveals that 7 di-
verges near the onset of acceleration. In the later stage of
hole growth, the reaction from the wall becomes evident, and
consequently, the scaling relationship is lost. At sufficiently
high acceleration (>220 m/ s at 56%), the hole grows to
roughly the size of the container and the rim of the hole
collides with the container wall. In most cases, the hole
shape is completely destroyed, and the suspension area and
nonsuspension area (that is, the “dried area”) separate [Fig.
1(e)]. We named this final state the “separated state.” In the
expanding hole and the separated state, convectionlike flow
is always observed at the rim of the wall. The separated state
seems strongly coupled with the strength of the convection-
like flow. Therefore, we focus on the dynamics of convec-
tionlike flow and its relationship to the expanding hole in a
quasi-1D system.

To study the detailed dynamics of detachment near the
hole, we performed a quasi-1D experiment (Fig. 4). In a
quasi-1D system, the separated state is observed above a
certain acceleration. After the surface of the suspension is
perturbed, the wall between the dried area and the suspension
area moves toward the suspension area. The dried area be-
gins to expand and the suspension area begins to compress
until it is localized at one side of the wall (Fig. 4). We should
note that since the thickness of a 1D cell is close to the
minimum hole size of a 2D cell, the separated state in a 1D
cell corresponds to that in a 2D cell, and the advancing wall
in a 1D cell is thought to be the expanding hole in a 2D cell.

During the evolution of a system, three noticeable fea-
tures appear only at the edge of the suspension area. One
feature is the periodic breaking off from the bottom plate of
the container with periodic external vibration (at the same
frequency as the external vibration, typically 60 s~!), which
corresponds to the fast dynamics of this phenomenon. The
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FIG. 3. (Color online) (a) Change in area with time for different
accelerations. T' varies from 160 to 240, 260, and 290 m/s2. (b)
Scaling of the first stage of time evolution. We cut the first one
second to eliminate differences in the initial condition. In both (a)
and (b), r=0.2 mm, =500 mm?/s, ¢=0.56, and f=40 Hz. The
thickness of the layer is ~0.6 cm. (¢) Change in the characteristic
time scale 7 with acceleration.

second feature is a rotational motion (on the order of 1
rotation/s), which corresponds to the slow dynamics of this
phenomenon. In fact, in all of the investigated accelerations,
periodic breaking off is completely synchronized with exter-
nal vibration without any phase delay. However, the time
scale of rotational motion, typically ~0.3 s7!, is much
slower than that of the fast dynamics. The third feature is the
dependence of various parameters on the height of the edge,
which corresponds to the height of the convectionlike flow.
We found that the material constant, diameter of the glass
beads, viscosity of silicone oil, energization parameter, fre-
quency, and power of acceleration all affected the height of
the edge. Only the total volume did not affect. Hereafter we
focus on the height of the edge of steady flow.
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FIG. 4. (Color online) Time sequence in a quasi-1D system: (a)
lateral view of the time sequence of separation at, from the top, ¢
=0, 4, 8, 12, and 16 s; (b) frame format of the separated state and
the convectionlike flow. R=convectionlike flow, h,= mean height
of the suspension region, h,= height of the convection, and év
= velocity of circulation of the convectionlike flow.

III. THEORETICAL APPROACH

To explain the dependence of the parameters on the height
of the edge, we derive a force-balance equation for the time
evolution of separation with the following features:

(1) The rotation rate of the convectionlike flow is much
slower than the vibration rate.

(2) The height of the convectionlike flow does not depend
on the volume of the suspension.

(3) The height of the convectionlike flow increases with
increasing viscosity.

(4) Only the rim oscillates by external vibration.

The first feature suggests that we consider only slow dy-
namics, so that all variables stand for time averages over a
vibration cycle. The second and third features suggest that a
balance between viscous stress on the wall and gravitational
pressure determines the height of the convectionlike flow.
Then, we introduce an equation of motion governing the lo-
cation of the convectionlike flow R,

d _ . ; o, ) R 1
EPVR =-7 hpr -7 (26ph, + hpW); + EpghaW,
(1)

where V is the volume of the rim, p is the density, %" is the
viscosity, dv is the typical velocity of circulation of the con-
vectionlike flow, d is the width of boundary layer, 4, is the
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height of the rim, W is the width of the container, and 4, is
the mean height of the suspension. Figure 4(b) shows a sche-
matic picture for this model equation. On the right-hand side,
the first term is a frictional force derived from convectionlike
flow. The second term is a frictional force of concentric mo-
tion of the rim at the side walls and the bottom plate. The
third term is the hydrostatic pressure due to gravity in the
nonconvectional region. We assume that the time-averaged
pressure quickly relaxes to the hydrostatic pressure in the
nonconvectional region. Here, V can be written as V
= 0Dh[2,W, where 6, is a fitting parameter, and we simply use
h,=V,,,/(RW), where V,,, is the total volume of the suspen-
sion. Thus, we neglect the volume of the rim to calculate #,,.
The velocity of the convectionlike flow is estimated by an
energy balance. We assume that viscous dissipation occurs
only at the boundary layer and, thus, obtain

AE , 6v? Sv?

—=agh,—+ 5 h,W—

s 2
At Pd d @

where « is a fitting parameter. Equating this to the energy
input per unit time by vertical vibration of the edge gives

2 2
JR——— V*F_ﬂzi V*F_’ (3)

where V*=6" hlz, is the volume that is vibrated by the external
force.
Then, one arrives at

V'd
v = \/ " T. (4)
47y (ahp +h,W)o
Finally, Eq. (1) becomes
d . Viy*
—pVR=—hpW\/ p r—o
dt 47T(C¥hp +h,W)wd
2 R 1
X(20th + hPW); + EpghaW. (5)

We now introduce three assumptions. First, viscosity %"
obeys the power law and is proportional to the viscosity of
silicone oil 7 by the relationship 7"« 7(w/w.)™. Second, the
thickness of the boundary layer is proportional to the diam-
eter of the glass beads r. Third, the mean height 4, becomes
equal to the height of the rim /4, and ah’s h,W. If we focus
on the steady state, Eq. (5) leads to

Wl T
hyo* \| . (6)
pro'*" g

This model does not describe the mechanism of convection-
like flow. Consequently, the model can be applied only for
the motion of the edge and does not explain the onset of
convectionlike flow. Figure 5(a) shows the time evolution of
the rim location R and the fitting curve calculated by Eq. (5),
and uses three fitting parameters: «, 6, and 6p!. In con-
trast to the time evolution of the expanding hole in a
quasi-2D system [Fig. 3(a)], the motion of the separation
process in a quasi-1D system is very slow, probably because
of frictional force from the walls. [Note that the curve in Fig.
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FIG. 5. (Color online) Time evolution of front propagation and
scaling in a quasi-1D cell: (a) time evolution of the front propaga-
tion. The vertical axis is the length of the suspension area R. The
diameter of the glass beads is 0.2 mm; the viscosity of the silicone
oil is 100 mm?/s; the dashed line is a fitting curve using Eq. (5).
(b) Scaling of the height of the convectionlike flow. The large black
bullet represents a stable hole in cornstarch and CsClaq suspension
from [1]. For all data except cornstarch suspension, the packing
fraction ¢ is 56%. The total volume of suspension in each data is
different. However, at a sufficient total volume, the height of the
suspension becomes almost independent of total volume: + (60 Hz,
100 mm?/s, 0.2 mm, 1.83 g/cm?); O (60 Hz, 100 mm?/s, 0.1
mm, 1.83 g/cm?); * (60 Hz, 100 mm?/s, 0.05 mm, 1.83 g/cm?); *
(blue/gray) (60 Hz, 236 mm?/s, 0.2 mm, 1.83 g/cm’); X (60 Hz,
358 mm?/s, 0.2 mm, 1.83 g/cm’); O (60 Hz, 500 mm?/s, 0.2
mm, 1.83 g/cm?); ¢ (70 Hz, 100 mm?/s, 0.2 mm, 1.83 g/cm?);
A (50 Hz, 100 mm?/s, 0.2 mm, 1.83 g/cm’); V (40 Hz,
100 mm?/s, 0.2 mm, 1.83 g/cm?); I> (30 Hz, 100 mm?/s, 0.2
mm, 1.83 g/cm?); < (20 Hz, 100 mm?/s, 0.2 mm, 1.83 g/cm?);
B (60 Hz, 30 mm?/s, 0. mm, 0957 g/cm’); A (50 Hz,
30 mm?/s, 0.1 mm, 0.957 g/cm?); ¥ (40 Hz, 30 mm?/s, 0.1 mm,
0.957 g/cm?); » (30 Hz, 30 mm?/s, 0.1 mm, 0.957 g/cm?); €
(60 Hz, 500 mm?/s, 0.2 mm, 5.46 g/cm?).

3(a) shows the time evolution of the hole region, while the
curve in Fig. 5(a) shows the time evolution of the suspension
region.] As shown in Fig. 5(b), the experimental data were
fitted as

(7

The scaling exponents are consistent with Eq. (6), suggesting
that glass beads and silicone oil suspension show shear thin-

hp o 770.5'0—0.5’.—0.5(0—1(1" _ Fc)
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ning with the exponent n=1. This frequency dependence
agrees with the result in the oscillatory experiments [5,16].
However, those experiments deal with less concentrated sus-
pensions (¢p=0.4 and ¢=0.155-0.185), so we need to check
the exponent with a dense suspension at ¢»=0.56. In addition,
the scaling of the experimental data in Fig. 5(b) has onset
acceleration I'... A conceivable cause for this is excess energy
dissipation by a convectionlike flow for I'>=I".. We exam-
ined this fitting for the stable hole in a cornstarch suspension
in [1]. The large black bullet in Fig. 5(b) represents the data
from [1]. I',=0 is chosen for the cornstarch suspension, and
the diameter of the hole is chosen for W. Although the data
of [1] is obtained in a quasi-2D system and the packing frac-
tion differs from ours, this fitting seems to be consistent with
the height of the stable hole in a cornstarch suspension. We
did a supplemental experiment with cornstarch and CsClaq
suspension in a quasi-2D system and found convectionlike
flow around the stable hole. We also examined a non-
density-matched cornstarch suspension and a hollow glass
bead (13 um in diameter) suspension, and found a stable
hole that was, however, slightly less stable than the density-
matched cornstarch suspension. Thus, the supplemental ex-
periment and the fitting imply that a stable hole in a corn-
starch suspension and an expanding hole or separated state in
other suspensions have similar mechanisms. Finally, Egs. (5)
and (6) enable us to explain the motion of the edge and
height of the edge in a steady state and indicate that viscous

stress plays an important role in the separate state and the
hole.

IV. DISCUSSION AND CONCLUSION

To conclude, we found the following types of surface in-
stability in vertically vibrated dense suspensions: an expand-
ing hole, a viscous fingerlike pattern, and a separated state.
At the rim of the expanding hole and the separated state,
there exists convectionlike flow. We observed a transition
from the expanding hole to a viscous fingerlike pattern with
increasing packing fraction. We propose that these instabili-
ties enhance the nonuniformity of the packing fraction and
that the occurrence of nonuniformities in suspensions causes
the coexistence of different states. This conjecture should be
tested by a controlled experiment to elucidate the connection
among this transition, dilation, and particle flux [17]. In a
quasi-1D system, we found scaling for the height of the
edge, suggesting that convectionlike flow and its viscous
stress expands or sustains the hole. Rheological measure-
ment is still needed to confirm the model and to clarify
whether glass beads in silicone oil suspension show shear
thinning with varying frequency. A critical remaining prob-
lem is how convectionlike flow at the rim emerges. Shiba et
al. [15] found convection in vertically vibrated viscoplastic
fluids and showed that the magnitude of the critical inertial
stress coincides with the yield stress of viscoplastic fluids.
Meanwhile, experiments with cornstarch suspension [1] in-
dicate that a stable hole appears at a shear-thickening region.
The mechanism of the onset of convectionlike flow or a
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stable hole in [1] is not elucidated, and the relationship be-
tween the dynamics of suspension and rheology is not yet
resolved. Exploration of the dynamics of dense suspensions
began recently, with many groups investigating the rheology
of suspensions both theoretically and experimentally
[18—23]. There still remains a need for further research into
the dynamics of dense suspensions and into the connection
between dynamics and rheological properties of dense
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suspensions. Further experiments are now in progress to elu-
cidate the mechanism of convectionlike flow.
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