
Exact relation between Eulerian and Lagrangian velocity increment statistics

O. Kamps,1 R. Friedrich,1 and R. Grauer2

1Theoretische Physik, Universität Münster, 48149 Münster, Germany
2Theoretische Physik I, Ruhr-Universität Bochum, 44780 Bochum, Germany

�Received 10 June 2008; revised manuscript received 5 January 2009; published 3 June 2009�

We present a formal connection between Lagrangian and Eulerian velocity increment distributions which is
applicable to a wide range of turbulent systems ranging from turbulence in incompressible fluids to magneto-
hydrodynamic turbulence. For the case of the inverse cascade regime of two-dimensional turbulence we
numerically estimate the transition probabilities involved in this connection. In this context we are able to
directly identify the processes leading to strongly non-Gaussian statistics for the Lagrangian velocity
increments.
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I. INTRODUCTION

The relation between Eulerian and Lagrangian statistical
quantities is a fundamental question in turbulence research. It
is of crucial interest for the understanding and modeling of
transport and mixing processes in a broad range of research
fields spanning from cloud formation in atmospheric physics
over the dispersion of microorganisms in oceans to research
on combustion processes and the understanding of heat
transport in fusion plasmas. The recent possibility to assess
the statistics of Lagrangian velocity increments by experi-
mental means �1,2� has stimulated investigations of relations
between the Eulerian and the Lagrangian two-point velocity
statistics. Especially, the emergence of intermittency �i.e., the
anomalous scaling of the moments of the velocity increment
distributions �3�� in both descriptions and its inter-
relationship is of great importance for our understanding of
the spatiotemporal patterns underlying turbulence. A first at-
tempt to relate Eulerian and Lagrangian statistics has been
undertaken by Corrsin �4�, who investigated Eulerian and
Lagrangian velocity correlation functions. Recently, the
Corrsin approximation has been reconsidered in �5�, where it
has become evident that it is a too crude approximation and
cannot deal with the question of the connection between Eu-
lerian and Lagrangian intermittencies. Further approaches to
characterize Lagrangian velocity increment statistics are
based on multifractal models �6,7� which also have been ex-
tended to the dissipation range �8�. In �7� a direct translation
of the Eulerian multifractal statistics to the Lagrangian pic-
ture is presented. In this approach a nonintermittent Eulerian
velocity field cannot lead to Lagrangian intermittency. This
statement is in contrast with the experimental results of Riv-
era and Ecke �9�, as well as numerical calculations per-
formed for two-dimensional turbulence �10�. Motivated by
this fact we have derived an exact relation between the Eu-
lerian and the Lagrangian velocity increment distributions,
which allows us to study the emergence of Lagrangian inter-
mittency from a statistical point of view.

II. CONNECTING THE INCREMENT PROBABILITY
DENSITY FUNCTIONS

The quantities of interest are the Eulerian velocity incre-
ments

ue = v�y + x,t� − v�y,t� , �1�

where the velocity difference is measured at the time t be-
tween two points that are separated by the distance x, and the
Lagrangian velocity increment

ul = v„y + x̃�y,�,t�,t… − v�y,t − �� . �2�

In the latter case the velocity difference is measured between
two points connected by the distance x̃�y ,� , t� traveled by a
tracer particle during the time interval �. In both cases v is
defined as the projection v · êi of the velocity vector on one of
the axes �i=x ,y ,z in three dimensions and i=x ,y in two
dimensions� of the coordinate system �see, e.g., �11,12��. In
the case of an isotropic flow the results do not depend on the
chosen axis; however, we do not have to make this assump-
tion yet. Additionally, we define the velocity increment

uel = v„y + x̃�y,�,t�,t… − v�y,t� , �3�

which is a mixed Eulerian-Lagrangian quantity because the
points are separated by x̃ but the velocities are measured at
the same time. The properties of this quantity have been
investigated in �13�. Finally, we introduce

up = v�y,t� − v�y,t − �� , �4�

measuring the velocity difference over the time � at the start-
ing point of the tracer. Following �14,15� we define the so-
called fine-grained probability density function �PDF� for ue
as

f̂ e�ve;x,y,t� = ��ue − ve� , �5�

where ue is the random variable and ve is the independent
sample-space variable. The fine-grained PDF describes the
elementary event of finding the value ve given the measured
ue=v�y+x , t�−v�y , t�. The relation to the PDF is determined
by

fe�ve;x,y,t� = � f̂ e�ve;x,y,t�� , �6�

where the angular brackets denote ensemble averaging. The
quantity fe is a function with respect to the variables x ,y , t
and a PDF with respect to the variable ve. In analogy to Eq.
�5� we can define fine-grained PDFs for all other quantities.
Now we want to derive an exact relation between the fine-
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grained PDFs f̂ e and f̂ l. This task can be split up into two
steps. First we have to replace the distance x with the trajec-
tory x̃�y ,� , t� of a tracer in order to translate from ue to uel.
This is done by

f̂ el�ve;y,�,t� =� dx �„x̃�y,�,t� − x… f̂ e�ve;x,y,t� . �7�

We see that during this operation the sample-space variable

is not affected. The subscript in f̂ el denotes the fact that we
now have ve=uel instead of ve=ue. In the second step we

have to connect f̂ l and f̂ el. From the definitions of increments
�2�–�4� we see that ul=uel+up and therefore the fine-grained
PDF for ul is given by the fine-grained distribution of the
sum of uel and up. To that end we have to multiply

f̂ el�ve ;y ,� , t� with f̂ el�ve ;y ,� , t�=��up−vp� to get the fine-
grained joint probability of finding uel and up at the same
time. Subsequent application of �dve�dvp ��vl− �ve+vp��
leads to

f̂ l�vl;y,�,t� =� dve f̂ p�vl − ve;y,�,t� f̂ el�ve;y,�,t� . �8�

To derive the corresponding PDFs we have to perform the
ensemble average. In the case of Eq. �8� we obtain

f l�vl;y,�,t� = 	� dve f̂ p�vl − ve;y,�,t� f̂ el�ve;y,�,t�

=� dve fp�vl − ve�ve;y,�,t�fel�ve;y,�,t� . �9�

In the last line we used the general relation p�a ,b�
= p�a �b�p�b� valid for two random variables in order to ex-
tract fel from the average. We can treat Eq. �7� in a similar
manner. This leads us to

fel�ve;y,�,t� = 	� dx �„x̃�y,�,t� − x… f̂ e�ve;x,y,t�

=� dx��„x̃�y,�,t� − x…�ve� f̂ e�ve;x,y,t� .

�10�

Inserting Eq. �9� into Eq. �10� shows that the Eulerian and
the Lagrangian velocity increment PDFs are connected via
the transition probabilities pa= ��(x̃�y ,� , t�−x) �ve� and pb
= fp�vl−ve �ve ;y ,� , t�= fp�vp �ve ;y ,� , t�. Before we connect
both equations we introduce some simplifications. In most
experiments and numerical simulations dealing with La-
grangian statistics, the flow is assumed to be stationary and
homogeneous. In this case we may average with respect to y
and t and hence the dependence on this parameter in Eqs. �9�
and �10� drops. Under the assumption of isotropy fel depends
only on r= �x�. Therefore, we can introduce spherical coordi-
nates in Eq. �10� and integrate with respect to the angles. As
mentioned before, in the case of isotropy the statistical quan-
tities do not depend on the chosen axis. Finally, we arrive at

f l�vl;�� =� dve pb�vl − ve�ve;���
0

�

dr pa�r�ve;��fe�ve;r�

fel�ve;��

.

�11�
For convenience, we included the integrated functional

determinant �2�r in two and 4�r2 in three dimensions� in pa.
In this case pa�r �ve ;�� is a measure for the turbulent trans-
port and gives the probability of finding a tracer traveling the
absolute distance r within the time interval �. Multiplication
by fe�ve ;r� and subsequent integration over the whole r
range mix the Eulerian statistics from different length scales
r weighted by pa to form the PDF fel�ve ;�� for a fixed time
delay �. The occurrence of the condition in pa shows that this
weighing depends on ue. The transition probability pb incor-
porates the fact that during the motion of the tracer particle
the velocity at the starting point changes by up. Multiplying
fel�ve ;�� with pb and integrating over ve sort all events where
uel+up=ul into the corresponding bin of the histogram for ul.
We want to stress that Eqs. �9� and �10� and except from
symmetry considerations also Eq. �11� are of a purely statis-
tical nature and, as a consequence, hold for quite different
turbulent fields. They are valid for two-dimensional as well
as three-dimensional incompressible turbulence but can also
be applied to magnetohydrodynamic turbulence. The differ-
ences in the details of these turbulent systems, which are
connected to the presence of different types of coherent
structures like localized vortices in the case of incompress-
ible fluid turbulence or sheetlike structures in magnetohydro-
dynamic turbulence, are therefore closely related to the func-
tional form of pa and pb.

III. TWO-DIMENSIONAL TURBULENCE

In this section we want to estimate numerically the two
transition PDFs in Eq. �11� for the case of the inverse energy
cascade of two-dimensional turbulence. The data are taken
from a pseudospectral simulation of the inverse energy cas-
cade in a periodic box with box length of 2� �10�. Recapitu-
lating the derivation of Eq. �11� we see that we need the
velocity at the start and the end points of a tracer trajectory at
the same time to estimate the transition PDFs. Therefore we
have to record the velocity at the starting points of the tracers
additionally to their current position and their current veloc-
ity. In Fig. 1 the transition probabilities pa and pb are de-
picted for �=0.09TI, where TI denotes the Lagrangian inte-
gral time scale �16�. We have chosen this rather small time
lag as an example because in this case the deviation of the
Lagrangian increment PDF from a Gaussian is significant.
The transition probability pa can be approximated by

pa�r�ve;�� = N�ve,��r exp�− �r − m�ve,���2/�2�ve,��
 .

�12�

For small ve we have m�ve ,��������ve� and �2�ve ,��
�����. From the functional form of pa one can see that the
transport of the tracer particles is of probabilistic nature. For
any fixed ve the tracers travel different distances during the
same time �. We also see a strong dependence on the condi-
tion ve which can be interpreted as the deterministic part of
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the turbulent transport. This distinguishes it from pure diffu-
sion and directly shows that the widely used Corrsin approxi-
mation is violated. In the case of deterministic transport pa
would be proportional to �(r−m�ve ,��). A good approxima-
tion for pb is given by

pb�vp�ve;�� = N�ve,��exp�− �up − m�ve,���2/�2�ve,��

�13�

with m�ve ,��=����tanh�����ve� and �2�ve ,��=����
	�1+�����ve��. For small ve we see a strong negative corre-
lation between ve and vp �here tanh�ve��ve�. Both quantities
tend to cancel in this case. This negative correlation between
the sample-space variables in pb is connected with the
sweeping effect. For a tracer starting with v1 traveling at the
time � without changing its velocity, we have uel=v1−v2
when the velocity at the starting point changes during � from
v1 to v2. In this case we have up=v2−v1=−uel. This corre-

sponds to an idealized situation but it gives a hint at the
cause of the negative correlations in pb. For larger ve the
correlation decreases. This is captured by the fact that
tanh�����ve��const for large ve. For both transition PDFs
we observe that for increasing � the dependence on their
conditions vanishes.

Now we want to turn to the question of how the transition
PDFs transform the Eulerian PDF fe�ve ;r� into the Lagrang-
ian PDF f l�ul ;��. This process is depicted in Fig. 2. The left
part of the figure shows several examples of fe�ve ;r�. Apply-
ing �dr pa�r �ve ;�� �see Eq. �11�� superposes different Eule-
rian PDFs fe�ve ;r� with different variances leading to the
triangular shape in the semilogarithmic plot of the new PDF
fel�ve ;�� �middle of Fig. 2�. During the transition from
fel�ve ;�� to f l�vl ;�� the variables vp and ve are added to form
vl. The previously described observation that vp and ve tend
to cancel each other for small ve leads to a stronger weight-
ing of very small vl, so that the new PDF f l�vl ;�� is strongly
peaked around zero �right part of Fig. 2�. In contrast to the
center of the distribution the tails seem not to be influenced
significantly by pb�vp �ve ;��. This is in agreement with the
fact that for large ve the correlation between ve and vl de-
creases.

IV. THREE-DIMENSIONAL TURBULENCE

To get an impression of the transition probabilities in
three-dimensional turbulence we used the data provided by
�7,17� to calculate the PDF pa�r ;�� for different �. The result
is depicted in Fig. 3. We see that, as in the two-dimensional
case, the Lagrangian time scale � is related to the Eulerian
length scales by a PDF. This well-known result shows that in
principle it is not possible to connect them by a
Kolmogorov-type relation such as ��r /�ur �7�. In this rela-
tion � is a typical eddy turnover time connected to eddies of
length scale r.

In our example we have chosen three different values of
the time delay � taken from the inertial range. Even when the
maximum of pa is at a distance r, which lies in the Eulerian
inertial range, there are significant contributions from very
small and very large r. From this observation we can con-
clude that due to the turbulent transport the Lagrangian sta-
tistics is influenced by contributions from the Eulerian inte-
gral and dissipative length scales.

FIG. 1. �Color online� The plot shows pa�r �ve ;�� �top� and
pa�vp �ve ;�� �bottom� for �=0.09TI.
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FIG. 2. The figure shows the impact of the transition probabilities on the Eulerian PDF. The left part of the figure shows fe�ve ;r� for
r=0.06,0.12,0.3. These PDFs are transformed into f�ve ;�� �middle� by the transition PDF presented in the upper half of Fig. 1. Subse-
quently f�ve ;�� is converted into f l�vl ;�� �right picture� by the second transition PDF from Fig. 1. In both cases �=0.09TI. In plots II and III
the points denote the reconstructed PDFs based on Eqs. �9� and �10�, and the lines denote the PDFs directly computed from the Lagrangian
data.
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V. RELATION TO THE MULTIFRACTAL APPROACH

The characterization of the relation between Eulerian and
Lagrangian PDFs with the help of the conditional probabili-
ties pa�r �ve ;�� �Eulerian to semi-Lagrangian transition� and
pb�vp �ve ;�� �semi-Lagrangian to Lagrangian transition� al-
lows one to recover a well-known multifractal approach for
relating Eulerian and Lagrangian structure function expo-
nents �7�. As a side product, a simpler formula for the La-
grangian structure function exponents of this multifractal ap-
proach will be obtained. Regarding the translation rule in �7�
we would have a fixed relationship �x̃��ve� ��ur corresponds
to ue in our notation� between the time lag � and the distance
traveled by a tracer particle during this time. This would
correspond to choosing pa���r−ve�� in Eq. �11�. The addi-
tional assumption �7� �v���ur �ul�ue in our notation� that
the velocity fluctuations on the time scale � are proportional
to the fluctuations on the length scale r could be incorporated
in our framework by choosing pb���vl−ve� leading to

f l�vl;�� =� dve ��vl − ve��
0




dr ��r − ve��fe�ve;r�

= fe�vl;vl�� . �14�

The exponents for the Lagrangian structure function expo-
nents can now be obtained by making use of the Mellin
transform

fe�ve,r� =
1

ve
�

−i


i


dn Se�n�ve
−n �15�

with Se�n�=Ae�n�r�e�n�. Here, we use the same notation as in
�18�. Please note that it will not be necessary to know the
amplitudes Ae�n� but only the Eulerian scaling exponents
�e�n�. Using Eq. �14� and the Mellin transform we obtain

f l�vl;�� =
1

vl
�

−i


i


dn Ae�n���e�n�vl
�e�n�−n. �16�

This Lagrangian PDF is now inserted into the inverse Mellin
transform to obtain the Lagrangian structure functions

Sl�n� = �
0




dvl vl
nf l�vl;��

= �
0




dvl
1

vl
vl

n�
−i


i


dj Ae�j���e�j�vl
�e�j�−j . �17�

Now we substitute j��j�= j−�e�j�, dj�= �1−� j�e�j��dj, and
denote the inverse function by j= j�j��. Thus we have

Sl�n� = �
0




dvl
1

�vl
vl

n�
−i


i


dj� Sl�j����vl�−j� �18�

with Sl�j��=
Ae�j�

1−� j�e�j��
�e�j� and j�= j−�e�j�, and we obtain for

the exponents

�l�n − �E�n�� = �e�n� �19�

It remains to show that this relation �19� is identical to the
formulas derived by Biferale et al. �7�. To see this, we
shortly repeat the multrifractal approach which starts with
the Eulerian structure function exponents

�e�p� = inf
h

�ph + 3 − De�h�� = phe
� + 3 − De�he

�� �20�

and p=De��he
��. Here De�h� is the Eulerian singularity spec-

trum and he
� is the value where the infimum is achieved. The

assumption r=ve� appears now in the denominator of the
expression of the Lagrangian structure function exponents

�l�p� = inf
h
� ph + 3 − De�h�

1 − h
� . �21�

From this it follows

�l�p − �e�p�� = inf
h
� �p − phe

� − 3 + De�he
���h + 3 − De�h�

1 − h
� .

�22�

In order to find the infimum we differentiate with respect to
h,

De��he
�� − De��h� + De�he

�� − De�h� − De��he
��he

� + De��h�h=! 0.

�23�

From this it follows that hL
� =hE

� and

�L„p − �e�p�… = phe
� + 3 − De�he

�� = �e�p� , �24�

which recovers Eq. �19�. A consequence of Eqs. �14� and
�19� is that for a self-similar Eulerian velocity field �as we
can find it in the two-dimensional inverse energy cascade�
we should find self-similar Lagrangian PDFs. As mentioned
above this is in contradiction to recent experiments �9� and
our own numerical simulations �10�.

VI. CONCLUSION AND OUTLOOK

We presented a straightforward derivation of an exact re-
lationship between Eulerian and Lagrangian velocity incre-
ment PDFs. For the example of two-dimensional forced tur-
bulence we were able to explain how it is possible to observe
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FIG. 3. The figure shows pa�r ;�� for �=3.5�� ,14�� ,28�� for
three-dimensional turbulence. In the inset pa is depicted for the
two-dimensional case with �=0.22TI ,0.44TI ,0.9TI.
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strongly non-Gaussian intermittent distributions for the La-
grangian velocity increments. The two mechanisms in this
context are the turbulent transport of the tracers leading to
the mixing of statistics from different length scales and the
velocity change at the starting point of the tracers leading to
a further deformation of the increment PDF. In comparison
we analyzed data from simulations of three-dimensional tur-
bulence. Similar to the two-dimensional case we demon-
strated that Lagrangian time and Eulerian length scales are
connected via a transition PDF that varies with the time
scale. We were also able to show that the well-known mul-
tifractal model for the Lagrangian structure functions is a
limiting case of the presented translation rule. The next step
is to estimate the transition probabilities for three-
dimensional turbulence as well as magnetohydrodynamic
turbulence in order to get a deeper understanding of the in-

fluence of the underlying physical mechanisms, especially
the presence of coherent structures on the translation process.
In this context the question of why intermittency in the La-
grangian picture is stronger in magnetohydrodynamics than
in fluid turbulence �19�, although the situation is reversed in
the Eulerian picture, will be addressed.
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