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Sequential Bayesian filters, such as particle filters, are often presented as an ideal means of tracking the state
of nonlinear systems. Here shadowing filters are demonstrated to perform better than sequential filters at
tracking under specific circumstances. The success of shadowing filters is attributed to avoiding both well-
known deficiencies of particle filters, and some newly identified problems.
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State identification is ubiquitous in science and engineer-
ing, with a wide range of applications from machine and
process control, to navigation and guidance, to tracking mov-
ing objects, to weather forecasting. Various procedures called
state estimation, filtering, tracking, and data assimilation
are, from a mathematical point of view, aiming to solve the
same problem, perhaps with some differences in emphasis
and terminology. In each case there are noisy observations of
a nonlinear system, which may involve random processes,
and a model of the system, which may be a perfect represen-
tation of the system, although in practice never is. If the
model were perfect, then the aim is to estimate the true state
of the system. If the model is imperfect, then it is less clear
what is to be achieved because there is no longer a true state
of the model; the aim is perhaps better described as tracking
the system state with an appropriate model state. If the goal
is forecasting, then the model state ought to be one that ob-
tains useful, or even optimal, forecasts by some criterion; the
model need not be perfect to obtain useful forecasts. The
term state estimation tends to imply there is a true state to
estimate, so we prefer the term state tracking or filtering
because they apply equally well in perfect and imperfect
model scenarios.

The tracking problem can be formulated for systems
evolving in continuous or discrete time �1�. When the obser-
vations are made at discrete equally spaced times, then it is
sufficient for our purposes to consider only the discrete time
case. Let

zt+1 = f�zt� + �t, �1�

st = g�zt� + �t, �2�

where zt�Rd is the system state at time t, with f defining the
change in state between observations, that is, the dynamics;
�t are independent random variables introducing a random
element to the change of state, referred to as dynamical
noise; st�Rk is an observation of the system state at time t,
which is a function g of the state plus noise �t; �t are inde-
pendent random variables, referred to as observational noise.
If �t=0 for all t, then the system is deterministic, otherwise it
is nondeterministic or stochastic. Independent in the above
means each realization of a random variable at each time is
independent of all other variables at any time.

In the perfect model scenario, state tracking requires pro-
viding an estimate of the true state zt given a sequence of
past observations s�, �� t. For stochastic systems the true
state cannot be identified: the best that can be achieved is a
probability density of states p�zt �s� ,�� t�, regardless of how
many observations are provided �1�. For deterministic sys-
tems the situation is more subtle. For a finite sequence of
observations there is at best a probability density p�zt �s� , t0
��� t� of states �1�, but an infinite sequence of observations
can lead to convergence �as t0→−�� of the probability den-
sities to the true state �2,3�. For deterministic systems that
display sensitivity to initial conditions, then the theory of
indistinguishable states �2� shows that the best that can be
achieved is a probability density of states, even with an in-
finite sequence of observations. We will refer to procedures
that obtain state estimates from observations as filters.

In the imperfect model scenario, where the dynamics f
and the distribution of the stochastic forcing �t may be in-
correctly specified in the model, then it is unclear what filters
provide. Often it is assumed that model errors can be sub-
sumed into dynamical noise terms, which may be appropriate
in some applications. We will return to these difficulties later
in Sec. IV, and in the meantime we focus on the perfect
model scenario.

In many practical applications of filtering, such as process
control and target tracking, a full probability density of states
is not required or essential; all that is required is a single
state, perhaps the maximum-likelihood state or some other
best state by a specified criterion. For linear systems the
Kalman filter can be optimal at obtaining the maximum-
likelihood state �4�, and the extended Kalman filter �or one of
its many variants� may be adequate when nonlinearity is
small relative to observational noise �5�.

For general nonlinear systems a theoretically optimal fil-
ter for obtaining the state density p�zt �s� ,�� t� exists �1�: it
requires complete knowledge of the previous state density
p�zt−1 �s� ,�� t�, the change in state density p�zt+1 �zt�, and the
observation density p�st �zt�. This filter employs Bayes rule
and the Chapman-Kolmogorov equations to obtain the se-
quential update equations,

p�zt�s�,� � t� =
p�st�zt�p�zt�s�,� � t�

p�st�s�,� � t�
, �3�

where
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p�zt�s�,� � t� =� p�zt�zt−1�p�zt−1�s�,� � t�dzt−1. �4�

Despite the optimality of this filter, there are practical diffi-
culties in implementing integral �4�, except in special cases,
such as linear systems with Gaussian noise, for which the
Kalman filter is obtained. If the dimension of the system d is
greater than one, then there are significant difficulties in just
adequately representing the probability densities p�zt �s� ,�
� t�. A common approach is to use particle filters, which
approximate the densities by an ensemble, or weighted en-
semble, of representative states �6–9�. These filters can be
very effective, but they have known failings, for example,
instabilities that lead to collapse of the filter �10�. Filter col-
lapse through degeneracy of the ensemble is well docu-
mented �6,8,10�, but later we discuss a more subtle problem
that persists even when the usual degeneracy modes of filter
collapse are avoided; put simply, sequential filters lack the
ability to backtrack and correct past errors.

The first principle point of this paper is that there are
other kinds of filters that are not sequential filters, for ex-
ample, the shadowing filters we discuss later. These nonse-
quential filters can also be optimal, but they optimize differ-
ent criteria to sequential filters, and these other criteria may
be more appropriate in certain applications. A second point
of this paper is these nonsequential filters are easily imple-
mented �even in high-dimensional systems� and avoid diffi-
culties inherent in particle-based filters. A third point is that
the shadowing filters we discuss generally apply equally well
to stochastic and deterministic systems. We present evidence
that a significant contribution to a shadowing filter’s strength
is its focus on dynamical aspects, rather than stochastic as-
pects, of the tracking problem. Historically, shadowing filters
is a descendant of Laplace’s, and subsequent other, work, on
least-squares methods, which went out of favor in the 1970s
with the introduction of probabilistic methods �1�.

I. METHODS

To demonstrate our arguments we conduct numerical ex-
periments where the tracking ability of a particular imple-
mentation of a sequential Bayesian filter �a particle filter� is
compared with the tracking ability of two shadowing filters:
one designed for deterministic systems, the other modified
for stochastic systems. In order to ensure our results are as
generic as possible, we organize tests so that the particle
filter is given every reasonable advantage, whereas, the shad-
owing filters are not optimized and given only the absolute
minimum of information required to obtain state estimates.

The numerical experiments were conducted on an Ikeda
system �11�. Let zt= �ut ,vt��R2 and

f�u,v� = �1 + ��u cos��� − v sin����
��u sin��� + v cos���� ,

�
� = a − b/�1 + u2 + v2� , �5�

for a=0.4, b=0.6, �=0.83, and g�z�=z, so d=k=2 in the
formulation of Eqs. �1� and �2�. For noise sources we use

isotropic multivariate Gaussians so that if I is the 2	2 iden-
tity matrix, then �t	N�0,
2I� and 0.01�
�0.1, and �t
	N�0,�2I� and 0.02���0.4.

A. Particle filter

The particle filter used in the experiments is a general
sequential importance sampling �SIS� filter �6–9� using a
Monte Carlo-Markov chain �MCMC� approach �12�. A par-
ticle filter can represent the density p�zt �s� ,�� t� either as an
ensemble of states that are draws from this density, or as a
weighted ensemble to reflect the probability density at each
member of an ensemble of states. The latter can provide a
significantly more efficient filter than the former, but the fil-
ter can be more prone to collapse if not implemented well
�6,8,10�.

In order to avoid issues of whether or not our particle
filter is well implemented, we use an MCMC approach so
that our ensemble should be draws of states from p�zt �s� ,�
� t�. Our first goal will be to test the tracking ability of the
filter by comparing the maximum-likelihood state to the true
state. Therefore, we also compute the density p�zt �s� ,�� t�
for each state, to enable easy identification of the maximum-
likelihood state; this density weight is not used in updating
the ensemble.

Hence, our particle filter computes a weighted ensemble
of states Et= 
�zt

i ,wt
i��i=1

N , where each state zt
i has its corre-

sponding weight 0�wt
i�1. Given the ensemble Et−1 and ob-

servation st, then Et is obtained as follows. Define ��z�
=e−z2/2�2

.
�1� Generate Ft= 
�f�zt−1

i � ,wt−1
i ��i=1

N .
�2� Select uniformly �
 ,���Ft.
�3� Generate z	N�
 ,
2I�.
�4� Compute p=���st−z��.
�5� Generate uniformly r� �0,1�.
�6� If p�r, then include �z , ŵ� in Et, calculating a provi-

sional weight ŵ=�p.
�7� Repeat steps 2 to 6 M times or until �Et�=N.
�8� If �Et��N, then repeats steps 2 to 6, skipping step 5

and accepting all �r=0� in step 6.
�9� Normalize the weights: wt

i= ŵt
i /
 j=1

N ŵt
j.

The maximum-likelihood state can be approximated by
the state with largest weight. An initial ensemble E0 is con-
structed with draws from N�s0 ,�2I�. With M =� and N suf-
ficiently large, this algorithm should obtain samples from
p�zt �s� ,�� t� after sufficient iteration. SIS filter algorithms
often employ an auxiliary distribution, called a proposal dis-
tribution. The above algorithm does not use a proposal dis-
tribution because it directly samples the posterior density,
provided the forecast ensemble Ft is sufficiently dense. Us-
ing a proposal distribution can significantly improve the ef-
ficiency of a SIS filter, but the performance depends crucially
on the choice of proposal distribution. A poor choice of pro-
posal distribution could degrade performance, especially in
causing degeneracy problems �6,8,10�. In order to avoid
questions of an appropriate proposal density, we use a brute
force MCMC evaluation. Our experiments used N=1000 and
M =5	106. Step 8 is introduced to limit computation time.
For each experiment with different � and 
, on a sequence of
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2000 observations, step 8 was employed for no more than
three states, and in 50% of experiments step 8 was not in-
voked. We conclude, therefore, that Ft was nearly always
sufficiently dense to achieve adequate sampling of the pos-
terior density to avoid the commonly identified causes of
particle filter collapse.

B. Two shadowing filters

Shadowing filters for deterministic systems attempt to
find a trajectory of the system that shadows, that is, remains
in close proximity to, a sequence of observations of the sys-
tem state �5,13–15�. For stochastic systems one looks for a
shadowing pseudo-orbit, rather than a trajectory �15,16�. A
straightforward way to achieve shadowing is gradient de-
scent of the indeterminism �2,14,17�. Let S= �s1 , . . . ,sn� be
a sequence of observations of the system state, X
= �x1 , . . . ,xn��Rnd be a sequence of states, and Y
= �y1 , . . . ,yn−1��R�n−1�d be a sequence of quantities to be
called mismatches. Given model dynamics f , the generalized
indeterminism of �X ,Y� is defined by

I�X,Y� =
1

2

i=1

n−1

�xi+1 − f�xi� − yi�2. �6�

If I�X ,0�=0, then X is a trajectory of f , and for deterministic
systems, I�X ,0� is a measure of how far the sequence of
states X is from being a trajectory. Consequently, starting
from X=S, and moving down the gradient of I�X ,0� until I is
zero, is a means of finding a trajectory of f in close proxim-
ity to S; this is the essence of the shadowing filter for deter-
ministic systems �2,14�. This idea can be generalized to a
shadowing filter for nondeterministic systems, by starting
from X=S and Y =0, then moving down the gradient of
I�X ,Y� until I is zero �15–17�. Gradient descent of I can be
approximated by an iterative procedure as follows.

Define sequences �X= ��x1 , . . . ,�xn� and �Y
= ��y1 , . . . ,�yn−1� by

�yi = xi+1 − f�xi� − yi,

�xi = �− A�xi��yi, i = 1

�yi−1 − A�xi��yi, 1 � i � n

�yi−1, i = n ,
� �7�

where A�x� is the adjoint �transpose of Jacobian� of f at x.
For a nondeterministic system, one step of size � down the
gradient of I is �X ,Y�� �X−��X ,Y −��Y�. �For a determin-
istic system, X�X−��X with Y =0 for all steps.� The itera-
tion can be continued until convergence is achieved, and the
final X provides an estimate of a shadowing trajectory, or
shadowing pseudo-orbit. In our experiments the shadowing
filters we applied used a fixed 300 iterations, with �=0.1 and
n=16.

II. TRACKING EXPERIMENTS

One aim of the numerical experiments is to compare the
performance of the stated particle filter and shadowing filters
in the task of tracking the state of a stochastic nonlinear

system. Our first aim is to estimate the true state. The particle
filter provides an estimate of a probability density for the
system state, and hence for the purposes of tracking we can
use the maximum-likelihood state as the state estimate,
which can be approximated by the ensemble member with
largest weight. For the shadowing filters we can use the last
state xn of the shadowing trajectory, or shadowing pseudo-
orbit, as the state estimate. Although the test system is sto-
chastic, we applied both the nondeterministic and determin-
istic forms of the shadowing filter.

Tests were conducted for all combinations of noise pa-
rameters �� 
0.02,0.04,0.06,0.08,0.1,0.2,0.3,0.4� and 

� 
0.01,0.02,0.04,0.06,0.08,0.1�, where �=0.4 is a signal-
to-noise ratio of �1 �0 dB�. In each case 16 observations
were used to initialize the shadowing filters and particle fil-
ter, with E0 for the particle filter draws from N�s0 ,�I�. Then
for the next 2000 observations the Euclidean distance be-
tween the state estimates and the true state were computed.
Figure 1 plots the mean difference between shadowing filter
errors and the particle filter errors so that negative values
mean the shadowing filter performed better than the particle
filter on average. The results of these experiments can be
summarized as follows:

�i� If ��
, then the deterministic shadowing filter per-
formed better than the particle filter.

�ii� If ��2
, then the deterministic shadowing filter out-
performed the nondeterministic shadowing filter.

�iii� If � is sufficiently small relative to 
, certainly for
��2
, then the nondeterministic shadowing filter generally
performed better than particle filter.

III. COMMENTS

In these experiments the particle filter is given knowledge
of the � and 
. In practical tracking problems � may be
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FIG. 1. �Color online� Mean, over 2000 states, of the difference
in the distance between state estimate and true state for each shad-
owing filter and particle filter, plotted against � and one line for
each 
 value. Solid �red� line deterministic shadowing filter, dashed
�green� line for nondeterministic shadowing filter. The standard de-
viation of the means is on the order of ���2+�2� /2000, which is
about the vertical tick mark spacing for �=0.4, and hence, the
differences are significant.
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known because it is a property of the measurement instru-
ments, but 
 is usually unknown. Although, in principle, �
and 
 can be estimated from data, incorrect values of these
will degrade the performance of the filter. On the other hand,
the shadowing filters we implemented do not require this
information; these shadowing filters exploit only knowledge
of the dynamics f of the system, not knowledge of the ran-
domness �t and �t.

For all test cases at least one of the two shadowing filters
performed better than the particle filter, except for two cases
where �=0.02 and 
�0.06. In these exceptional cases the
dynamics of f are essentially irrelevant because the raw ob-
servation st gives an almost perfect state estimate. Further-
more, the dynamical noise �t effectively dominates, so that
the dynamics f provides no useful additional information be-
yond that obtained from st.

Possibly the most surprising result of this experiment is
that the deterministic shadowing filter performs best of all
the filters, except for when 
��, that is, treating the system
as though it were a deterministic system gives the best track-
ing performance, except for when the dynamic noise exceeds
the observational noise. The conclusion we draw from this is
that if the observational noise exceeds the dynamical noise,
then the nondeterministic effects are irrelevant and exploit-
ing the dynamics f returns the greatest reward in terms of
tracking performance. Knowledge of the dynamics f is there-
fore making its greatest contribution in its removal of the
effects of observational noise �t.

Part of the reason for the different performance of the
particle filter and shadowing filters is that they approximate
different maximum-likelihood states. It can be shown that
the shadowing filter is an approximation of the maximum-
likelihood trajectory given the observations �2,15,17�, that is,
finds �x0 , . . . ,xn� that maximizes

p�x0, . . . ,xn�s�,� � n� = ��
i=1

n

p�si�xi�p�xi�xi−1��p�x0�s0� .

�8�

On the other hand, from Eqs. �3� and �4�,

p�xt�s�,� � t� =� �i=1

t
p�si�xi�p�xi�xi−1�

� j=1

t
p�sj�s�,� � j�

p�x0�s0�dx0 . . . dxt−1.

�9�

Hence, the shadowing filter estimates xt by maximizing the
joint density of �xt−n , . . . ,xt�, whereas a sequential Bayesian
filter maximizes the marginal density of xt. For linear sys-
tems with Gaussian noise sources, the joint and marginal
densities are Gaussian with identical means, and hence both
methods return the same maximum-likelihood state, which is
a classical result on the equivalence of Kalman filters and
variational methods �18�. For non-Gaussian densities the
joint and marginal densities need not have the same
maximum-likelihood state, and generally maximizing the
joint density is better �19�. The maximization of joint density
�8�, rather than marginal density �9�, may provide an expla-
nation for the better performance of the shadowing filter ob-

served in the experiments and displayed in Fig. 1.
It is well known that in general the performance of a

particle filter is strongly dependent on the choice of proposal
densities, and that any particle filter algorithm will fail if the
ensemble size is not sufficiently large �6,8�. A subtle aspect
to this failure is illustrated in Fig. 2 using data from our
experiments. Here a sequence of observations is such that the
forecast ensemble Fn assigns very low probability to the true
state zn. Consequently, very few ensemble members are close
to the observation sn, in this case, so few that the algorithm
realizes less than 150 candidate states in M =5	106 trials.
This kind of problem occurred for around 1 in 30 states. If
the ensemble size is smaller, the failure is more marked and
frequent. The essential mechanism of failure is endemic to
ensemble-based sequential Bayesian filters, and can be sum-
marized as follows. Any filter may obtain a poor estimate of
a current state because the arrangement of errors in recent
observations gives a misleading picture of where the true
state lies. Sequential filters can then find themselves in an
untenable situation, in that they are unable to propagate any
ensemble members forward to high probability posterior
states.

Also displayed on Fig. 2 is the final part of the shadowing
trajectory estimate obtained at time t=n. Observe how this
shadowing trajectory accurately estimates each true state at
this time, including the final state. Figure 3, on the other
hand, shows with large crosshairs the state estimates valid at
each previous time, that is, the final states of the shadowing
pseudo-orbits using data only up to that time. It can be seen
that at times t=n−2 and t=n−1 that the shadowing filter was
as equally mislead by the observations as the particle filter.
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FIG. 2. �Color online� State estimates for test system with �
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tions st ���, particle filter ensembles Et � · �, and forward iterate Fn

of En−1. Also shown are the last five states xt �	 � of the determin-
istic shadowing filter trajectory valid at t=n.
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However, on obtaining the observation sn the shadowing fil-
ter is able to recognize that the recent sequence of states is no
longer tenable, and then recovers accurate estimates of each
state, as seen in Fig. 2.

Moving beyond the tracking problem, there are situations
where a probability density for the true states is useful, for
example, in forecasting. The theory of indistinguishable
states provides means to equip shadowing trajectories with
probability densities of states �2,17�. Comparing the perfor-
mance of probability density estimates is difficult. Figure 3
also shows the corresponding indistinguishable state en-
sembles valid at each time, that is, this is a random selection
of the indistinguishable states based upon their indistinguish-
ability density Q �2,17�. We observe that these ensembles are
essentially equivalent to the particle filter ensembles in this
case, although more compact on the attractor. It is important
to note that these ensembles are generated from the shadow-
ing trajectory, and hence can be of arbitrary size without
affecting the performance of the shadowing filter. In contrast,
particle filters require a sufficiently large ensemble to
achieve reliable results.

IV. CONCLUSIONS

We have compared the tracking ability of a sequential
Bayesian filter, implemented as a particle filter, with that of
deterministic and nondeterministic shadowing filters. We
found that the shadowing filters perform better than the par-
ticle filter, except when the observational noise � is very

much smaller than the dynamical noise 
, which is a situa-
tion where the dynamical noise is the dominant source of
uncertainty. We conclude that the principle value the dynam-
ics f is limiting the uncertainty due to observational noise;
hence, if the observational noise �t is larger than the dynami-
cal noise �t, then the nonlinear dynamics f of a model is
more important to the tracking of the system than the sto-
chastic element �t of the model.

We have also discussed how particle filters have an en-
demic problem in ensemble collapse, not only in the tradi-
tionally recognized problem of degeneracy, but also in a
subtle newly recognized form resulting from the inability to
backtrack and correct past mistakes. These kind of problems
do not affect shadowing filters. Furthermore, indistinguish-
able states of shadowing trajectories appear to provide en-
semble estimates of state probabilities at least as good as
those obtained from particle filters.

This paper has only identified specific problems with par-
ticle filters; it has not attempted to investigate the precise
circumstances when one filter performs better the others. Fu-
ture research ought to address performance for both the
maximum-likelihood state estimation and probabilistic fore-
casting based on ensembles. There are many features of a
system that can affect performance of the filters, for ex-
ample, the magnitude of noise sources relative to each other
and relative to the diameter of the attractor, the signal-to-
noise ratio, the strength of the nonlinearity of the system, and
the largest Lyapunov exponent. Each of these factors plays a
role in limiting performance, and these factors are not all
independent. There are additional issues of computation re-
sources required to achieve a prescribed level of reliability of
filters. At this stage no clear indication can be given of what
features affect performance most in any circumstance. It is
certainly known that Bayesian methods fail in the limit of
deterministic systems �20�. The authors are preparing guides
to the successful implementation of shadowing filters �21�
and ensembles of indistinguishable states �22�.

The results of this paper should also be viewed within the
context of appropriate application of Bayesian methods to
deterministic nonlinear systems �20�, and fundamental limi-
tations to likelihood methods in trajectory estimation �23�. A
more important issue, touched on earlier, is the fact that in
practice models are imperfect, whereas Bayesian methods
are usually applied within an implicitly perfect model sce-
nario. Although shadowing techniques have been applied in
imperfect model scenarios �15,17�, there is still only a basic
level of theoretical understanding of the effects of model
error on filters and the interpretation of their forecasts
�15,16,24�.
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