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We study the transport properties of passive inertial particles in two-dimensional (2D) incompressible flows.
Here, the particle dynamics is represented by the four-dimensional dissipative embedding map of the 2D
area-preserving standard map which models the incompressible flow. The system is a model for impurity
dynamics in a fluid and is characterized by two parameters, the inertia parameter « and the dissipation
parameter y. The aerosol regime, where the particles are denser than the fluid, and the bubble regime, where
they are less dense than the fluid, correspond to the parameter regimes a>1 and a<<1, respectively. Earlier
studies of this system show a rich phase diagram with dynamical regimes corresponding to periodic orbits,
chaotic structures, and mixed regimes. We obtain the statistical characterizers of transport for this system in
these dynamical regimes. These are the recurrence time statistics, the diffusion exponent, and the distribution
of jump lengths. The recurrence time distribution shows a power-law tail in the dynamical regimes, where there
is preferential concentration of particles in sticky regions of the phase space, and an exponential decay in
mixing regimes. The diffusion exponent shows behavior of three types—normal, subdiffusive, and superdif-
fusive, depending on the parameter regimes. Phase diagrams of the system are constructed to differentiate
different types of diffusion behavior, as well as the behavior of the absolute drift. We correlate the dynamical
regimes seen for the system at different parameter values with the transport properties observed at these
regimes and in the behavior of the transients. This system also shows the existence of a crisis and unstable
dimension variability at certain parameter values. The signature of the unstable dimension variability is seen in

the statistical characterizers of transport. We discuss the implications of our results for realistic systems.
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I. INTRODUCTION

The study of transport properties of impurities in fluid
flows is a problem of important practical interest. These
properties can have serious implications for pollution in the
atmosphere, plankton populations in the ocean, and diverse
engineering applications. There is evidence that transport
processes occurring in nature, e.g., the atmosphere [1], are
quasi-two-dimensional (quasi-2D) [2,3]. The chaotic advec-
tion [4,5] of impurities which are modeled by inertial par-
ticles of finite size in flows of different types has been stud-
ied both in the case of passive particles [6—8] and in the case
of active particles that can react with the surroundings [9,10].
Impurity dynamics in such two-dimensional fluid flows can
be effectively modeled by the bailout embedding maps of 2D
area-preserving maps [11,12]. We attempt to understand the
dynamical and statistical properties of impurity transport in
2D incompressible flows by studying such embedding maps.

The Lagrangian dynamics of small spherical tracers in
two-dimensional incompressible fluid flows is described by
the Maxey-Riley equations. These are further simplified un-
der various approximations to give a set of minimal equa-
tions called the embedding equations where the fluid flow
dynamics is embedded in a larger set of equations which
includes the difference between the particle and fluid veloci-
ties [11-19]. Although the Lagrangian dynamics of the un-
derlying fluid flow is incompressible, the particle motion is
compressible [14] and has regions of contraction and expan-
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sion. The density grows in the former giving rise to clusters
and falls in the latter giving rise to voids. The properties of
the base flow have important consequences for the transport
and mixing of particles. Map analogs of the embedding
equations have also been constructed for cases where the
fluid dynamics is modeled by area-preserving maps which
essentially retain the qualitative features of the flow [15].
The embedded dynamics in both cases is dissipative in na-
ture. Here, we study the embedded standard map.

We study several statistical characterizers of transport
properties in different dynamical regimes of the system.
These are the recurrence time statistics, diffusion and drift
quantifiers, and the distribution of jump lengths. The first of
these, viz., the recurrence time statistics, show signatures of
the dynamical regime of the system. The cumulative prob-
ability distribution of the recurrence times (sometimes called
the complementary cumulative distribution [16]), in the re-
gime where chaotic structures are seen, shows the power-law
tail characteristic of dynamics in an inhomogeneous phase
space with sticky regions. In contrast, in the regimes where
full mixing is seen, the recurrence time distribution (RTD)
shows exponential decay characteristic of rapid mixing. Ear-
lier studies of the connection between the recurrence time
statistics and the transport of particles had established that
normal transport occurs for cases where the recurrence time
distribution shows exponential behavior, while anomalous
transport occurs if there is a power-law recurrence time dis-
tribution [20,21]. In the embedding map studied here, we
observe that there is a crossover from exponential behavior
to power-law behavior in the recurrence time distribution in
different dynamical regimes implying that there are some
dynamical regimes which are characterized by anomalous
transport. The diffusion properties corresponding to these
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cases are further explored. We also comment on the differ-
ences between the behavior of aerosols and that of bubbles.

The diffusion studies show that the system can show a
variety of regimes corresponding to generalized diffusive be-
havior. Three types of diffusion, viz., normal or Brownian
diffusion, superdiffusion, and subdiffusive behavior, are
identified. A phase diagram is constructed to classify and
demarcate the regions of diffusion in the «@-7y parameter
space. Apart from the usually observed normal and superdif-
fiusive cases, the embedding map has two subclasses of
subdiffusion—one associated with trapping with stationary
states and the other with trapping with nonstationary states.
The regions where ballistic diffusion is observed in the phase
space are identified in the a-vy phase diagram. Similarly, the
areas where the average drift is zero are also likewise iden-
tified in the phase diagram. The diffusive behavior of the
system is compared with the dynamical regimes. Our infer-
ences can have implication for the transport of pollutants in
the atmosphere or other real application contexts.

The signature of the different dynamical regimes can also
be seen in the transient behavior of the system. The jump
length distributions, where the jump length is defined as the
Euclidean distance between successive iterates, have enve-
lopes which can be fitted by a heavy tailed Levy distribution
in the chaotic structure regime, which are characterized by
sticky regions in the inhomogeneous phase space, and by a
Gaussian envelope in the mixing regimes. The cumulated
jump length distributions here show power-law behavior for
the sticky regimes and cumulated Gaussians for the mixing
regimes.

In the aerosol regime of the embedding map, the plot of
the largest Lyapunov exponent shows signatures of unstable
dimension variability (UDV) at certain parameter values.
The recurrence time statistics shows the signature of the
UDV, as does the diffusion exponent. We discuss the conse-
quences of this UDV for the transport properties of the sys-
tem. We summarize the implications of our results.

II. DYNAMICAL REGIMES AND PHASE DIAGRAM

The dynamics of inertial particles in a flow has been
shown to be modeled by the bailout embedding equation

[11],
—-a—=-yv-u). (1)

Here, the velocity of the particle is v=dx/dt and the velocity
field of the fluid flow is u(x,y,) for a 2D fluid. The inertial
parameter « is related to the particle and fluid densities, p,
and p;, by the equation a=3ps/(p+2p,). Thus, the a<1
regime corresponds to the aerosols, and the a>1 regime
corresponds to the bubbles. The dissipation parameter vy is
defined by y=2a/3St, where St is the Stokes number, and
provides a measure of the contraction or expansion in the
phase space of the particle. The particle dynamics is dissipa-
tive in nature. A map analog of Eq. (1) has been constructed
[11,13]. This has the form

Xp+1 = M(Xn) + 6n’
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5n+l =e_y[axn+l _M(Xn)]~ (2)

Here, the area-preserving map M(x) represents the incom-
pressible fluid acting as the base flow. The vector x repre-
sents the position of the particle and the vector & defines the
detachment of the particle from the fluid velocities [11]. In
our study, the dynamics of the base fluid flow has been rep-
resented by the 2D standard map, as it is a prototypical area-
preserving system [22], and is widely used as a test bed in a
variety of transport problems [23]. The evolution equations
of the standard map are

K .
Xpi1 =X, + —sin(2my,),
2T

Ynr1 =Yt Xpt1s (3)

with periodic boundary conditions such that x,y e [-1,1].
We fix the parameter K=2 in our study. The phase space of
the standard map contains both regular and chaotic regions
for this value. Substituting the form of the standard map as
M in the embedding map equation above, we get a four-
dimensional (4D) embedding map,

K
Xpp1 =X, + _Sin(z’”}’n) + 5);,7
21

K i
Yne1 =Xty t sm(2nyn)+5;,
2

8:t+1 = e_y[a’xiﬁl - (xn+l - 8;)],

5:;+1 = e_y[aynﬂ - (yn+l - 5:;)] (4)

This map is invertible and dissipative. We study the be-
havior of the map in the parameter regimes 0 <a<<3 and
0<y<1. Thus, our study encompasses both the aerosol re-
gime, i.e., <1, and the bubble regime, > 1. The dynami-
cal regimes of the system have been cataloged in the phase
diagram in Ref. [12] for the same range of parameters. A
variety of dynamical behaviors can be seen at different val-
ues of @ and 7. These include periodic behavior, chaotic
structures [Fig. 3(a)], and fully mixing regimes Fig. 5(a). A
detailed phase diagram of the system can be found in Fig. 1
(see Ref. [12] for a detailed description of the method of
construction of the phase diagram) [24].

Since the map represents the Lagrangian dynamics of par-
ticles, the chaotic structures seen due to the stickiness of the
phase space correspond to the preferential concentration of
particles. On the other hand, a uniform distribution of par-
ticles can be seen in the well mixed regimes of phase space.
Thus, the phase diagram of the system has important impli-
cations for the transport properties of the system. In Sec. III,
we examine these transport properties via statistical charac-
terizers. We start with the recurrence time statistics.

III. RECURRENCE TIME STATISTICS

The statistics of recurrence times are of fundamental im-
portance in the study of chaotic systems [25-27]. These in-
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FIG. 1. (Color online) The phase diagram showing the three
dynamical regimes in the embedding map in the a-7y parameter
space. The regions marked by red (“M”) show mixing and the re-
gions marked by blue (“P") have periodic orbits. Chaotic structures
are seen in the regions marked by green and yellow (“C") in the
aerosol and bubble regions, respectively. There are some regions
marked by light blue (labeled by “ *”) which have chaotic structure
over a mixing background in phase space.

volve the study of recurrences of a given dynamical state of
the system in finite time. The first recurrence time of a tra-
jectory of a system can be defined to be the time 7; taken for
a trajectory, which starts from a small subset ¢ of the phase
space of the system to return to the same subset ¢ in the limit
where the volume of the subset £—0 (see Fig. 2). The tra-
jectory may return to the subset at subsequent times
Ty, T3, ..., Ty, With 7, being called the nth recurrence time. A
set of the time intervals 7; can be obtained in the long time
limit to give the recurrence time distribution of that trajec-
tory. The average recurrence time of the subset ¢ is calcu-
lated by averaging over the recurrence times of the trajecto-
ries starting in the subset &, and the average recurrence time
of the entire phase space can be obtained by averaging over
the recurrence times of all the partitions in the phase space
(see Refs. [21,28] for more rigorous definitions).

Extensive studies of the mean recurrence times have been
carried out in the case of chaotic Hamiltonian systems [29].
Generally, Hamiltonian systems are not fully hyperbolic, and
the phase space of such Hamiltonian, as well as that of area-
preserving systems, contains regular islands and chaotic mix-

£ )

FIG. 2. The schematic illustration of the recurrence phenomena
in an invariant set I'. A trajectory starting in a small partition ¢ is
revisiting the partition in finite time. Here only the first and the
second recurrences are shown.
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ing regions in the phase space. A trajectory that originates in
the chaotic region can stick to the neighborhood of the regu-
lar islands intermittently and, as a result, influence long time
properties such as the recurrence times giving rise to power-
law decays in the recurrence time distribution [30]. The cu-
mulative recurrence time distribution shows exponential de-
cay for uniformly hyperbolic system, where mixing is strong.
In contrast, power-law decay is observed for the recurrence
time distributions of systems that have inhomogeneous phase
space [16].

In the case of area-preserving maps, such as the standard
map, the Poincaré recurrence time statistics shows two lim-
iting cases. First, for the chaotic strong coupling limit (high
values of the nonlinearity parameter K), where mixing is
prominent in the phase space, the recurrence time distribu-
tions show exponential decay as functions of time. Second,
for the near integrable weak coupling limit (small values of
K, K<K_ica=0.971 635 406 31), the distributions show in-
verse power-law behavior [31]. At K=K_,;..; the distribution
shows a power-law decay [29].

The base flow of our embedding map is the area-
preserving standard map, with the recurrence time statistics
described above. However, the dynamics of the inertial par-
ticles, as described by the embedding map, is dissipative in
nature. It is therefore interesting to study the recurrence time
statistics of the embedding map, see how the statistics of the
inertial particles differs from the statistics of the base flow,
and also see the effects of different dynamical regimes. We
do this in the current section.

We study the recurrence time statistics in the two-
dimensional phase space spanned by the configuration space
coordinates x-y and compare this with the recurrence time
statistics in the four-dimensional phase space (x, y,éx,5y).
For the 2D statistics, the two-dimensional configuration
space x,y with xe[-1,1] and y e[-1,1] is divided into a
grid of 50 X 50 boxes and 200 uniform random initial condi-
tions are evolved for 1 X 10° time steps, with 5000 iterations
as transients. Each trajectory is associated with the box it
visits immediately after the transients. The average recur-
rence time associated with any box is the recurrence time
averaged over the initial conditions that are associated with
that box [32]. We compare the general features of the recur-
rence time distributions for the two aperiodic dynamical re-
gimes, viz., the chaotic structure regime and the mixing re-
gime (see Fig. 1).

First, let us consider the chaotic structure regime with the
parameters a=0.4 and y=0.4. We first discuss the 2D recur-
rences. It is clear from the x-y phase space plot of Fig. 3(a)
that the phase space in the chaotic structure regime is inho-
mogeneous. If the region available to all the trajectories for
motion is called I', there are some special regions S con-
tained in I" where the trajectory visits more often than others.
Hence, in the phase space plots, the region S is darker than
the background I' [see Fig. 3(a)]. These darker regions are
identified as the sticky regions and have an important effect
on the recurrence time statistics. The invariant density p sup-
ported by the x-y space is plotted in Fig. 3(b). To obtain the
invariant density, random initial conditions were uniformly
spread in the phase space covered by a grid, and the total
number of times that trajectories visit a particular box in its
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FIG. 3. (a) The phase space plot with chaotic structures (e=0.4 and y=0.4). The darker regions are visited more often and the recurrence
times in these areas are longer. (b) The three-dimensional invariant density plot of the attractor in the x-y plane shows larger values of the
invariant density p where the region is sticky. (c) The histogram is plotted to show the distribution of the normalized invariant density p.

itinerary was counted [33]. It is clear that the value of the
invariant density in the sticky regions is much higher than
that in the background. The histogram of the normalized in-
variant density is plotted in Fig. 3(c) and clearly shows that
the major part of the phase space (the background) supports
very small values of the invariant density and the large val-
ues of the invariant density are concentrated on a small sub-
set of the phase space, the sticky regions, or the regions
where the chaotic structure is seen [34]. Such sticky regions
have also been found in area-preserving maps and experi-
ments in fluids [6,35].

The cumulative recurrence time statistics in the chaotic
structure case show a power-law decay for large times [see
Fig. 4(a)],

P(7) ~ 7. (5)

Here, the exponent of the cumulative probability distribution
{' and the exponent { of the probability distribution are re-
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lated by {={'—1, as both the distributions show power-law
behavior at large times. In contrast, at short times, the cumu-
lative RTD shows an exponential decay [see Fig. 4(b)],

P(7) ~ e (6)

We compare the 2D recurrences seen here with the 4D
recurrences in the full x-y, 6,-9, space. The four-dimensional
recurrence time distribution corresponding to the chaotic
structure case is plotted along with the two-dimensional re-
currence time distribution in Figs. 4(a) and 4(b). Since the
2D space is a projection of the 4D space on the x-y plane,
recurrences to the 4D space are expected to be longer than
the recurrences to the 2D space; hence the distribution in
four dimensions has shifted to higher 7 values. The character
of the graph is unaltered, namely, it shows a power-law de-
cay though the exponent is {,=—2.6, while the 2D exponent
is {o,p=-2.9. In the short time limit, the distribution is expo-
nential for both cases and the constant b takes the values
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FIG. 4. (a) The complementary cumulative distribution of recurrence times at this parameter value shows a power-law decay in the long
time limit, with the exponent {,p={3—1=-2.9 for the 2D recurrence and {4;p={},—1=-2.6 for the 4D recurrence. (b) The log-linear plot
in the short time limit shows an exponential decay, with the slope=—0.001 34 for the 2D case and slope=-0.0005 for the 4D case.
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FIG. 5. (Color online) (a) The phase space plot in a mixing regime (@=2.8 and y=0.4). We can see that there is no preferential
concentration of particles in any region of the phase space. (b) The histograms of the distribution of recurrence times in the four-dimensional
case (top) and the two-dimensional case (bottom). The log-linear plots of the complementary cumulative distribution of recurrence times in
(c) two dimensions with slope of —0.000 175 and (d) four dimensions with slope of —0.000 001 1.

b,p=-0.001 34 and b,p=-0.0005 for the two-dimensional
and the four-dimensional recurrences, respectively. We note
that the values of { and b are not universal and change with
the parameter values of « and y. However, the qualitative
behavior of the recurrence time distribution remains the
same at other parameter values in the chaotic structure re-
gime [36].

In the case of the area-preserving maps, the power-law
scaling indicates that the phase space is inhomogeneous. In
the case of the dissipative map discussed here, a similar ef-
fect is seen due to the existence of the chaotic structure or
sticky regions in the phase space. The examination of the
residence times of trajectories starting from arbitrary initial
conditions shows that the trajectories spend 80% of their
time in the sticky regions regardless of the initial conditions.
Trajectories which start in the nonsticky regions of the phase
space wander into the sticky regions and spend a long time
there before emerging outside. This leads to long recurrence
times. Other trajectories have short recurrence times. The
exponential decay seen in the early part of the RTD corre-
sponds to the short recurrences. On the other hand, the
power-law scaling regime is due to the recurrences to the
nonsticky regions. This accounts for the crossover from ex-
ponential to power-law behavior seen in the recurrence time
distribution. Thus, the chaotic structures play the same role
in the phase space for the embedding map as the islands seen
in the area-preserving maps. However, there is no hierarchy
in the chaotic structures unlike that in the case of the hierar-
chical islands of the area-preserving maps.

The behavior of the recurrence time distribution in the
mixing regimes of the phase diagram is quite different. Here,
unlike the chaotic structure case, the mixing is very strong

and there are no preferential regions in the phase space
which the particles visit more frequently or stick to for
longer times. The phase space plot of a typical mixing re-
gime can be seen in Fig. 5(a). The recurrence time distribu-
tions show exponential decay both in the 2D and the 4D
cases, as is expected for the strongly mixing case. In Figs.
5(c) and 5(d) the log-linear plots of the RTD show the expo-
nential decays with the slopes for the two-dimensional and
four-dimensional cases to be —0.000 175 and —0.000 001 1,
respectively. The histograms of the recurrence times for the
two-dimensional and the four-dimensional cases are shown
in Fig. 5(b). It is clear that the four-dimensional recurrence
times are longer than the two-dimensional recurrence times.
Also it is evident that the frequency of occurrence of the 4D
recurrences is much smaller than the frequency of occurrence
of the 2D recurrences [compare the values of f(7) in both the
ordinates of Fig. 5(b)].

In the chaotic structure case we saw a crossover from the
exponential decay behavior at short times to power-law be-
havior at asymptotic times. This crossover behavior seen in
the recurrence statistics signals a transition in the transport
properties of the system [20]. We examine the transport
properties using detailed diffusion studies and correlate them
with the recurrence times and the dynamical regimes.

IV. DIFFUSION

The transport of passive inertial particles in flows can be
described statistically by examining the dispersion as a func-
tion of parameters o and y. We consider an ensemble of N
initial particles distributed uniformly randomly in the phase
space and evolve them in time. As the initial conditions
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FIG. 6. The plot showing the variance of the particle cloud as it evolves in time. (a) Superdiffusive behavior is observed for parameters
a=1.2 and y=0.2 with exponent 7=2.0135. (b) Normal diffusion is seen for the parameters @«=2.8 and y=0.1 with the exponent 7
=1.006 11 (error bars). Trapping regimes show the plateauing of the variance (c) with nonstationary states (@=0.5 and y=0.5) and (d)

trapping with stationary states (e=1.5 and y=0.8).

evolve in time, the particle cloud drifts in the two-
dimensional configurational space from the initial position,
as well as the individual particles disperse from the moving
cloud. The dispersion of particles is given by the variance of
the displacement of particles o,

(1) ={(x(1) = (x(1)))*) ~ D1". (7)

Here x(7) is the position of a particle and (x(z)) is the
average position of all the particles at time ¢, both in the
configuration space. The diffusion coefficient D and the ex-
ponent 7 quantify the type of diffusion. The angular brackets
indicate the average over the ensemble. The configuration
space in two dimensions considered here is the cover space,
i.e., without the periodic boundary condition that was used in
Sec. ITI. Generally, when the exponent in Eq. (7) takes values
n> 1, the process is called superdiffusion and the trajectories
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of the particles have long displacements. The transport is
characterized by normal diffusion if the variance grows lin-
early with time, i.e., if »=1. Subdiffusive transport occurs
when the exponent 7 takes values less than 1. The embed-
ding map shows all the three main classes of diffusion pro-
cesses as illustrated in Fig. 6. Subdiffusive behavior in the
embedding map can be further classified into two subclasses,
viz., one associated with the trapping regions with nonsta-
tionary states and the other with the trapping regions with
stationary states. We analyze the behavior of these classes in
detail below.

The phase diagram of Fig. 1 separates out the distinct
dynamical regimes in the a-7y space. Here, we find it useful
to obtain a phase diagram which classifies the main diffusion
regimes as a function of the parameters a-7y. The value of the
exponent 7 can be used for such a classification. For this, the
log-log plot of the variance as a function of time is fitted to
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FIG. 7. The probability distribution of the exponents 7 in the phase diagram, showing three clear peaks. The inset shows the peak
centered in =1 for which the full width at half maximum w,, is in the range 0.835<<%<1.165 that will delimit the normal diffusion
exponents. The peak value at 7=0 is f(7)=6000. (b) The probability distribution of drifts in the phase diagram has three classes, viz., high
drifts (1445, 12), medium drifts (12> 1,,,,>3), and low drifts (3>1,,;,,) (see inset).
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FIG. 8. (Color online) (a) The phase diagrams showing the four diffusion regions in the embedding map in the a-y parameter space:
superdiffusive regime is marked by S (blue), normal diffusive regimes are marked by N (red), subdiffusion with stationary states is marked
by T* (pink), and subdiffusion with nonstationary states is marked by T (green). (b) The phase diagram shows the drifts of particles in the
-y parameter space. The regions marked in “blue” have large average drifts, /,,;,> 12 (labeled by “C”), regions in “red” have medium
average drifts, 12>1,,,;,>3 (labeled by “B”), and regions in “green” have low drifts, /;.;;,<<3 (labeled by “A”). This is for 3000 time steps
averaged over 100 random initial conditions uniformly distributed in phase space.

a straight line after the initial transients. We used a linear
square fit for finding the value of 7 for each data point in the
a-7y parameter space.

Theoretically, the normal diffusion regions in the phase
diagram can be distinguished from the anomalous diffusion
regions if the values of the exponent 7>1 and 7#<<1. When
dealing with numerical data, the normal diffusion regions
cannot be identified by selecting the ones with the exponent
n=1. The distribution of the values of # in the entire phase
diagram is shown in Fig. 7(a) and shows three peaks cen-
tered at 7~0, #~1, and n~2. The inset shows the distri-
bution centered at n~ 1 that can be fitted with a Gaussian.
The standard deviation of the Gaussian is 0g,,,=0.14, and
the full width at half maximum (w,,) for this Gaussian, ex-
pressed as @, =20 Gauss\2 102(2)=2.35480 ;4,55 turns out to
be 0.33 [see the inset of Fig. 7(a)]. This w,, centered at 7
=1 can therefore be taken as a good practical bound on the 7
to demarcate normal and anomalous diffusion regimes. The
upper and lower bounds on the normal diffusion region are
Niower=1—w,,/2 and 7,,,,,.=1+v,,/2, respectively. The ex-
ponent values that demarcate the regions of the normal dif-
fusion are therefore 7,041 € [ Mower> Mupper)- The  cases
which have values less than the lower bound 7,,,,,, are iden-
tified as subdiffusive and the ones which have values higher
than the upper bound 7, are identified as superdiffusive.

We note that in generating the phase diagram for diffusion
regimes we have used 3000 time steps with 100 initial con-
ditions distributed uniformly randomly in the phase space.
For the phase diagrams in Fig. 8 a resolution of 0.01 in both

the directions was used.

The diffusive phase diagram indicates the following trans-
port properties. The phase diagram shown in Fig. 8(a) has
normal diffusion regions in the regions that are labeled “N”
(colored red), which are predominantly seen in the areas
where the mixing is seen in the phase space (see Fig. 1). The
superdiffusive regions labeled “S” (colored blue), as men-
tioned above, are identified where 7> 1.165. On comparing
these regions with the phase diagram of the dynamical re-
gimes, it is clear that the superdiffusive regions coincide
largely with the periodic regime.

The subdiffusive region is delimited by the criterion #
<0.835. It is easy to see that these regions mostly coincide
with the chaotic structure regimes seen in Fig. 1. Further,
there are two types of subdiffusion occurring here, viz., those
associated with trapping in stationary states and trapping in
nonstationary states. On the aerosol side of the phase dia-
gram (colored green and labeled “T”), particles behave as
though they are trapped in an attractor, but their dispersion
grows sublinearly with time [Fig. 6(c)]. The cover phase
space for such a typical case is seen in Fig. 9(a). On the other
hand, in the bubble region (colored pink and labeled “T*”),
particle trajectories get trapped forever and become station-
ary. Figure 9(b) shows the cover phase space for, the case,
trapping into stationary states. As a result of the motion tend-
ing to fixed points, the variance tends to a constant value
without any fluctuation after the transient time as seen in Fig.
6(d).

There are certain parameter regimes at which the particles
do not diffuse beyond a given region in the phase space and
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FIG. 9. The phase space plots of the subdiffusion regimes: (a) nonstationary states and (b) trapping states with stationary points.
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FIG. 10. (a) The phase diagram shows the regions characterized by ballistic diffusion. Here the diffusion exponent takes values 7=2. (b)
The phase diagram with points marked showing regions where the average drift /;,;;,~0.

we saw that they belong to the subdiffusive regions. The
average drift of the particles can be used to quantify the
overall drift of the particle cloud from the initial position it
started with. The drift is defined as the mean position of the
cloud of the particles after a time ¢, i.e., [,,;;=1(t)-1(0), i.e.,
where ;. is the difference between the average position /(¢)
of the cloud of the particles in cover space at time ¢ from that
at the time r=0. The distribution of the average drifts of the
particle cloud for the range of values of a-+y discussed in the
phase diagram is plotted in Fig. 7(b). It is clear from Fig.
7(b) that there are three main ranges of drifts. The large drifts
are identified by the criterion /;;,>12, the intermediate
ranges of drift by 3 <[,;;,<12, while the small drifts are
identified to have drift rates /,,;;, <3 [see inset of Fig. 7(b)].

A phase diagram for the drifts in the a-+y space is plotted
in Fig. 8(b). Regions of large drift are colored blue, those of
intermediate drift are colored red, and green regions have
small drift. In comparing the parameter regions T* (pink) in
Fig. 8(a) where particles are trapped and become stationary,
with the corresponding region of Fig. 8(b), it is clear that the
particles here have low values of drift. The regions of high
drifts in Fig. 8(b) overlap with the superdiffusion regions S
(blue) both in the aerosol and the bubble regimes in Fig. 8(a).
Therefore, there is good correlation between the phase dia-
grams constructed from the dispersion and drift criteria.

The phase diagrams obtained in Fig. 8 show no clear con-
tiguous areas defining the three diffusion regimes or the three
drift regimes, and these regions are seen to be interspersed in
some areas of the phase diagrams. This is due to the fact that
the values of the slope 7 and the average drift /;,;, belong to
continuous distributions which are partitioned into three re-
gions. Hence sharp demarcations are not achieved.

We note that the embedding map also shows a region
corresponding to the ballistic superdiffusion regime [21]
which is characterized by a diffusion exponent 7~ 2 and has
been earlier seen in diverse contexts such as the motion of
atoms, molecules and clusters on solid surfaces [37], and in
random walk models with random velocities [38]. This re-
gime is shown in the phase diagram [Fig. 10(a)]. We note
that this regime is seen at the edges of the periodic tongues.
It is also useful to have a phase diagram to locate the regions
where the average drift is zero, l;,;;,~0. Figure 10(b) shows
the regions of near zero drift and in reference to Fig. 8(b), we
can see that it forms a subset of the regimes of the slowest
drifts, marked in green (labeled “A”).

It is important to note that characterization and classifica-
tion of different diffusion and drift regimes are very useful in
real application contexts. We expand on this point in Sec.
VIIL.

V. BEHAVIOR OF THE INITIAL TRANSIENT

The phase diagrams of Sec. IV have been obtained after
the systems have equilibrated after an initial transient. How-
ever, the behavior of the initial transient can itself be quite
different in the case of distinct dynamical regimes. We illus-
trate this for the dynamical regimes of the embedding map.

We examine the probability distribution of the jump
lengths, i.e., the Euclidean distance between successive iter-
ates, for transient times up to 500 iterates in regimes corre-
sponding to periodic, chaotic, and mixing behavior. Here,
1000 initial conditions are spread uniformly randomly in the
phase space for this analysis. Figure 11(a) shows the prob-
ability distributions of the jump lengths of the trajectories in
the regime (a=0.5,y=0.5), where chaotic structures are
seen in the phase space. The distribution is clearly character-
ized by a heavy tail. Similar heavy tails characterize the
jump length distribution of the trajectories seen at other
points in the chaotic structure regime. In the region of the
heavy tail the envelope can be fitted by the function

[ v 1 -V
Srevy(D) = K ;T(l_ 51)3/26Xp(2(l— 51)>’ (8)

where the parameters take the values v=0.42 and §,=0.34
and the scale factor is k=11 for the case shown in Fig. 11(a).
On the other hand, the envelope of the distribution of jump
lengths of trajectories for parameter values in the mixing
regime «=2.8, y=0.1 shows Gaussian behavior. In Fig.

11(b) the envelope of the distribution has been fitted with a

Gaussian function, fcaw(l)z#—exp(—%a%ﬁ), with ©=0.95,

o2
0=0.58.

Thus, in the initial transient in the chaotic structure re-
gime, the distribution of jump lengths peaks at short values
but decays with a power-law tail, characteristic of the sticky
regions. On the other hand, the jump length distribution in
the mixing regime shows normal behavior, indicating rapid
mixing of the initial conditions.

The cumulated jump distributions show this very clearly.
The cumulated jump length distributions in the chaotic struc-

066203-8



TRANSPORT AND DIFFUSION IN THE EMBEDDING MAP

f()

(a) l

PHYSICAL REVIEW E 79, 066203 (2009)

12
10 R
~ 3 gux’az/"n\ i
SN—
~ 6 i
4 i
2 ’ -
0 IININN il £ -
0 0.5 1 1.5 2 2.5
(b) [

FIG. 11. The envelope of the distribution of flight lengths of trajectories in the periodic and chaotic structure regimes is fitted with a
heavy tailed distribution. (a) The periodic regime (a=0.5,y=0.5). (b) In the mixing regime the envelope is fitted by a Gaussian (@
=2.8,y=0.1). In both the plots 8000 bins were used for averaging in the x axis.

ture regime show power-law behavior [see Fig. 12(a)],
whereas the distributions in the mixing regime conform to a
cumulated Gaussian [see Fig. 12(b)]. The same function
Sauss(1) given above is used to obtain the cumulated distri-
bution F(I).

VI. TRANSPORT IN THE UDV REGION

It was reported recently that the embedding map system
studied here experiences a severe form of nonhyperbolicity
in the aerosol regime in the neighborhood of the parameter
values @=0.8, y=0.40 [39]. A crisis is seen in the system at
these parameter values. The nonhyperbolicity in higher di-
mensional systems, in general, manifests itself as UDV with
an accompanying breakdown of the shadowing theorem. The
signatures of the presence of unstable dimension variability
in the embedding map were seen in the fluctuation of the
Lyapunov exponent around zero (see Fig. 13). The presence
of UDV was confirmed from the distribution of the finite
time Lyapunov exponents which showed that the spectrum is
equally distributed in both positive and negative exponents
[39].

The UDV region is found at an interface between two
dynamical regimes, for example, in the above case, it is in
seen at the interface between the periodic and the chaotic
structure regimes. The transport properties of the system are
studied in this region. However, due to the breakdown of
shadowing at long times, computations are carried out for
short times. Since the region where the UDV is seen lies

0 .
S :
foug -0.4
e | -0.8 ]
o~ 2 _12
=~ -16

3t 253 =02 0 1

4 ‘ ‘ ‘ ‘ ‘

3 25 -2 -15 -1 -05 0

log (I
(a) gzo()

between the periodic and chaotic structure regimes, the sta-
tistical properties such as the recurrence time statistics and
the diffusion properties will have contributions from both the
periodic and the chaotic structure regimes.

The cumulative recurrence time statistics for a typical
point in the UDV regime is shown in Fig. 14(a). There is an
exponential decay of recurrence times at intermediate time
scales, as seen for the recurrence time distribution in the
chaotic structure regime. The periodic regime has its signa-
ture at the short and long time scales with the periodic be-
havior showing up as discrete steps in the plot. The plot of
the variance of the particle cloud as a function of time for the
same parameters is seen in Fig. 14(b). This is clearly a sub-
diffusive case with the slope 7~ 0.6, indicating the influence
of the chaotic structures.

VII. CONNECTION BETWEEN THE DYNAMICAL AND
TRANSPORT PROPERTIES

It is clear from the previous discussion that there is an
intimate connection between the dynamical and statistical
properties of the system. We summarize our inferences in
this section.

The phase diagram of the dynamical regimes of the em-
bedding map, a paradigm for the dynamics of inertial par-
ticles in fluid flows, contains three distinct dynamical re-
gimes, viz., periodic orbits, chaotic structure regimes, and
mixing behavior. There is also a clear distinction between the
dynamical behavior in the aerosol regime and the dynamical

ot

F()

-3 F

-4 , , .
-1

log] . (1)

FIG. 12. The log-log plots of the cumulative probability distributions of the normalized jump lengths in (a) a typical trapping region
(@=0.5,y=0.5) showing a power-law tail with slope —2.5 and (b) a typical normal diffusion region (a=2.8,y=0.1) showing the fit with a
cumulative Gaussian distribution. In both the figures, 8000 bins were used for averaging.
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FIG. 13. The plot of \,,,, vs ¥ showing sudden jump at crisis.
The inset shows the fluctuation of \,,,, around zero which is a
signature of presence of UDV (fixed a=0.8).

behavior in the bubble regime. Similar distinctions are seen
in the recurrence time distributions and the diffusive and
drift phase diagrams of the system.

The recurrence time statistics are useful in the regimes
where no regular periodic behavior is seen, i.e., in the re-
gions where the largest Lyapunov exponent is greater than
zero. For the embedding map, these are the chaotic structure
regime and the mixing regime. The cumulative recurrence
time distribution for the chaotic structure regime shows an
exponential decay followed by a power-law tail. The expo-
nential behavior at short times reflects the mixing back-
ground in the inhomogeneous phase space. The power law
seen here is the hallmark of the sticky regions in the phase
space. The diffusion studies reveal that the chaotic structure
regime shows subdiffusive character on the average. The dis-
tribution of jump lengths in the transient regime has an en-
velope that conforms to a Levy distribution, indicating that
while short jumps dominate the distribution, the number of
long jumps is sufficiently large to contribute a power-law
tail.

The mixing regime, as expected, shows the exponential
decay of the recurrence time distribution. The transport in
this regime shows normal or Brownian diffusion, where the
variance grows linearly with time. Normal diffusive behavior
is predominant in the mixing regime on both the aerosol and
bubble sides. The distribution of jump lengths in this regime
has a Gaussian envelope.

Two phase diagrams, viz., the diffusion and the drift
phase diagrams, were constructed in the a-+y parameter space
to compare the nature of diffusion and dynamics in all the

1
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1000

10000
(a) t
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dynamical regimes of the embedding map. It was found that
three main types of diffusion, viz., normal (Brownian type),
subdiffusive, and superdiffusive types, are seen in the sys-
tem. As mentioned above, normal diffusion is the dominant
behavior in the mixing regime on both sides of the phase
diagram. Superdiffusive regions are seen in the periodic re-
gime of the aerosols and in a part of the periodic regime of
the bubbles. However, the periodic regime on the bubble side
also contains a regime where the inertial particles are trapped
and have zero drift. This regime has subdiffusive transport
with stationary states. Here the variance saturates to a con-
stant value after an initial sublinear rise. This regime shows
behavior consistent with early studies of impurity behavior
[40], where it was observed that bubbles were pushed toward
the islands forming regions of preferential concentration.

Subdiffusive transport is also seen in the chaotic structure
regime on the aerosol side of the phase diagram where
trapped states are also seen. However, the trapped states are
nonstationary over here. Here, the variance fluctuates about a
constant value after the initial sublinear rise. On the other
hand, normal diffusion is predominant in the chaotic struc-
ture regime on the bubble side of the phase diagram. Ballistic
diffusion similar to that seen in many natural processes is
also seen in the embedding map. The regions of ballistic
diffusion in the embedding map lie on the boundaries of the
periodic regimes. The embedding map also shows the exis-
tence of unstable dimension variability at the boundary be-
tween the periodic regime and the chaotic structure regime.
Thus, the signatures of both the regimes are seen in the re-
currence time distribution. However, the transport behavior
is clearly subdiffusive.

VIII. CONCLUSIONS

The transport properties of bailout embedding map, a
paradigm to model the dynamics of inertial particles, are
studied in this paper. The base fluid flow is assumed to be
incompressible and modeled by an area-preserving map, the
standard map. The resulting embedding map is dissipative
and captures the qualitative dynamics of both particles that
are heavier than the fluid, the aerosols, and lighter than the
fluid, the bubbles. The main dynamical regimes in the em-
bedding map system are reviewed and the statistical charac-
terizers of transport in each distinct dynamical regime are

0.5 1 1‘.5 2 2.5 3
1 t
(b) %

FIG. 14. (a) The cumulative recurrence time distribution showing an exponential fall in the intermediate time range. The discrete plateaus
like behavior in the small and large time scales are due to the periodic nature. (b) The variance as a function of time in the UDV case shows

subdiffusive behavior. The parameter values are @=0.8, y=0.4062.
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evaluated. These are the recurrence time statistics and the
diffusion and drift properties of system. An intimate connec-
tion is observed between the dynamical and statistical prop-
erties of the system.

The predominant dynamical regimes in the system are the
periodic regime, the chaotic structure regime, and the mixing
regime. These, together with the nature of the inertial par-
ticles, viz., whether aerosol or bubble, influence the diffu-
sion, drift, and recurrence properties of the system. The mix-
ing regimes of the system show normal diffusion and
exponential decay of recurrence times indicating short term
correlations in the system. Chaotic structure regimes possess
inhomogeneous sticky regimes in the phase space, and these
contribute power-law tails to the recurrence time distribu-
tions and jump length distributions. Superdiffusive behavior
is seen in the periodic regimes of both aerosols and bubbles.
However, some trapping regimes are seen in both the aerosol
and bubble cases, and these show subdiffusive behavior and
low drifts, including zero drifts in the case of stationary
states.

Our results may have implications in the context of real-
istic applications. It was found that the average drift is close
to zero in the trapping regions. This may have important
consequences in practical contexts. For example, consider
flows with reacting impurities. Chemical species that have

PHYSICAL REVIEW E 79, 066203 (2009)

low diffusion and low drift rates can get localized and con-
centrated in certain regions. These can then react with other
chemical species and cause their enhancement or depletion,
with further consequences for the environment.

Rapid transport, as in the case of superdiffusive case, can
provide a mechanism by which impurities can easily access
wider regions in the available space. This maybe desirable or
undesirable, depending on the context. For example, smoke
emanating from a chimney containing particulate matter with
fast diffusion and slow drift can spread the pollutants in the
proximity of the source rather than carrying it off to farther
places. On the other hand, this regime may be highly useful
in the context of nutrients spreading through a fluid.

The phase diagrams of the system indicate that a rich
variety of dynamical and statistical regimes is available to
inertial particles in fluids. Specific choices of regime may be
suitable for a specific application. Hence the insights gained
from these diagrams may be useful in varied application con-
texts.

ACKNOWLEDGMENTS

N.N.T. thanks CSIR, India for financial support and N.G.
thanks DST, India for partial financial support under Project
No. SP/S2/HEP/10/2003.

[1] R. E. Newell, V. Thouret, J. Y. N. Cho, P. Stoller, A. Marenco,
and H. G. Smit, Nature (London) 398, 316 (1999).

[2] P. H. Haynes, in Transport, Stirring and Mixing in the Atmo-
sphere: Mixing, Chaos and Turbulence, edited by H. Chate, E.
Villermaux, and J. M. Chomaz (Kluwer, Dordretch, 1999).

[3] R. T. Pierrehumbert, Phys. Fluids A 3, 1250 (1991).

[4] H. Aref, J. Fluid Mech. 143, 1 (1984).

[5] J. M. Ottino, The Kinematics of Mixing: Stretching, Chaos and
Transport (Cambridge University Press, Cambridge, 1989); R.
Sturman, J. M. Ottino, and S. Wiggins, The Mathematical
Foundations of Mixing (Cambridge University Press, Cam-
bridge, 2006).

[6] L. Kuznetsov and G. M. Zaslavsky, Phys. Rev. E 61, 3777
(2000).

[7]1 L J. Benczik, Z. Toroczkai, and T. Tel, Phys. Rev. E 67,
036303 (2003).

[8] R. D. Vilela, T. Tel, A. P. S. de Moura, and C. Grebogi, Phys.
Rev. E 75, 065203(R) (2007).

[9] T. Nishikawa, Z. Toroczkai, C. Grebogi, and T. Tel, Phys. Rev.
E 65, 026216 (2002).

[10] R. Reigada, F. Sagues, and J. M. Sancho, Phys. Rev. E 64,
026307 (2001).

[11] A. E. Motter, Y. C. Lai, and C. Grebogi, Phys. Rev. E 68,
056307 (2003).

[12] N. N. Thyagu and N. Gupte, Phys. Rev. E 76, 046218 (2007).

[13]J. H. E. Cartwright, M. O. Magnasco, and O. Piro, Phys. Rev.
E 65, 045203(R) (2002).

[14] M. R. Maxey, Phys. Fluids 30, 1915 (1987).

[15] R. T. Pierrehumbert, Chaos 10, 61 (2000); D. R. Fereday, P. H.
Haynes, A. Wonhas, and J. C. Vassilicos, Phys. Rev. E 65,

035301(R) (2002).

[16] E. G. Altmann, A. E. Motter, and H. Kantz, Phys. Rev. E 73,
026207 (20006).

[17] M. R. Maxey and J. J. Riley, Phys. Fluids 26, 883 (1983).

[18] A. Babiano, J. H. E. Cartwright, O. Piro, and A. Provenzale,
Phys. Rev. Lett. 84, 5764 (2000).

[19] N. Gupte and N. Nirmal Thyagu, in Nonlinear Dynamics (Pro-
ceedings of the Conference Recent Developments Nonlinear
Dynamics), edited by M. Daniel and S. Rajasekar (Narosa,
New Delhi, 2009).

[20] G. M. Zaslavsky and M. K. Tippett, Phys. Rev. Lett. 67, 3251
(1991).

[21] G. M. Zaslavsky, Phys. Rep. 371, 461 (2002).

[22] B. V. Chirikov, Phys. Rep. 52, 263 (1979).

[23] R. B. White, S. Benkada, S. Kassibrakis, and G. M. Zaslavsky,
Chaos 8, 757 (1998).

[24] In the context of the bailout embedding equation [Eq. (1)], the
regime a>>3 is unphysical as it implies negative particle den-
sities. While the >3 regime cannot be deemed unphysical by
such a direct physical argument in the context of the bailout
standard map, the regimes beyond a>3 turn out to be mixing
regimes for all values of y and hence have not been plotted in
the phase diagram.

[25]J. B. Gao, Phys. Rev. Lett. 83, 3178 (1999).

[26] V. Balakrishnan, G. Nicolis, and C. Nicolis, J. Stat. Phys. 86,
191 (1997).

[27] V. Balakrishnan, G. Nicolis, and C. Nicolis, Phys. Rev. E 61,
2490 (2000).

[28] E. G. Altmann and H. Kantz, Phys. Rev. E 71, 056106 (2005).

[29] B. V. Chirikov and D. L. Shepelyansky, Phys. Rev. Lett. 82,

066203-11



N. NIRMAL THYAGU AND NEELIMA GUPTE

528 (1999).

[30] R. Artuso, L. Cavallasca, and G. Cristadoro, Phys. Rev. E 77,
046206 (2008).

[31] N. Buric, A. Rampioni, G. Turchetti, and S. Vaienti, J. Phys. A
36, 1209 (2003).

[32] The effect of the finite size of the intervals in prototypical
systems such as the logistic map and the Henon map is well
understood [41].

[33] E. Ott, Chaos in Dynamical Systems (Cambridge University
Press, Cambridge, 2002).

[34] The dynamic origin of the chaotic structures lies in an attractor
widening crisis. The details of this crisis are discussed in [12].

[35] T. H. Solomon, Eric R. Weeks, and Harry L. Swinney, Physica
D 76, 70 (1994).

[36] For values of the parameters « and vy that show a power-law

PHYSICAL REVIEW E 79, 066203 (2009)

decay at asymptotic times, the exponent is always found to be
{<-2. This is in conformity with Kac’s lemma that for the
distribution to have finite moments the absolute value of the
exponent should be greater than 2 [21,42].

[37] A. M. Lacasta, J. M. Sancho, A. H. Romero, I. M. Sokolov,
and K. Lindenberg, Phys. Rev. E 70, 051104 (2004).

[38] V. Zaburdaev, M. Schmiedeberg and H. Stark, Phys. Rev. E
78, 011119 (2008).

[39] N. N. Thyagu and N. Gupte, Pramana 70, 1031 (2008).

[40] J. Eaton and J. Fessler, Int. J. Multiph. Flow 20, 169 (1994).

[41] E. G. Altmann, E. C. da Silva, and 1. L. Caldas, Chaos 14, 975
(2004).

[42] G. M. Zaslavsky, The Physics of Hamiltonian Systems (Impe-
rial, London, 2007).

066203-12



