PHYSICAL REVIEW E 79, 066202 (2009)

Persistent patterns and multifractality in fluid mixing

Bala Sundaram,' Andrew C. Poje,2 and Arjendu K. Pattanayak3
lDepatrtment of Physics, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125, USA
2Department of Mathematics and Graduate Faculty in Physics, City University of New York-CSI, Staten Island, New York 10314, USA
3Department of Physics and Astronomy, Carleton College, Northfield, Minnesota 55057, USA
(Received 23 December 2008; revised manuscript received 12 May 2009; published 5 June 2009)

Persistent patterns in periodically driven dynamics have been reported in a wide variety of contexts ranging
from table-top and ocean-scale fluid mixing systems to the weak quantum-classical transition in open Hamil-
tonian systems. We illustrate a common framework for the emergence of these patterns by considering a simple
measure of structure maintenance provided by the average radius of the scalar distribution in transform space.
Within this framework, scaling laws related to both the formation and persistence of patterns in phase space are
presented. Further, preliminary results linking the scaling exponents associated with the persistent patterns to
the multifractal nature of the advective phase-space geometry are shown.
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I. INTRODUCTION

The role of chaotic dynamics in assisting the mixing of a
passive scalar is of broad interest with applications ranging
from micromixers to chemical reactors to geophysical tracer
transport. These dynamics are a stirring mechanism, which
conventional wisdom suggests facilitates the mixing process
[1]. The evolution of a passive scalar field is described by the
advection-diffusion equation

£+ﬁ~ VC=DVC, (1)

at
where C(X,1) is the concentration, D is the (constant) diffu-
sivity, and # is the prescribed Eulerian velocity. The two
processes of advective mixing and diffusion work very dif-
ferently: stretching and folding by the chaotic velocity field
rapidly sharpens concentration gradients, while diffusion acts
to smooth these gradients. As a result, the competition be-
tween the two can lead to counterintuitive results. In particu-
lar, a number of experimental and numerical investigations
[2-7] has shown that the long-time dynamics of the scalar
field under the action of time-periodic chaotic advection is
itself time periodic (after appropriate rescaling of the vari-
ance) and is completely determined by the slowest decaying
Floquet mode of the corresponding single period advection-
diffusion (Poincaré) operator. This “strange eigenmode” [2]
is characterized by exponential decay of the scalar variance
and self-similar evolution of both the scalar spectrum and
probability distribution. Studies of these patterns show that
regions of high concentration gradients of the passive scalar
are associated with features of the underlying chaos in the
Lagrangian dynamics, specifically the unstable manifolds of
the fixed points of associated Poincaré maps [4] and the
boundaries of integrable regions of the flow produced by the
presence of Kolmogorov-Arnold-Moser tori [7].

Interest in the nature of such persistent patterns, extends
beyond fluid dynamics and mixing. Specifically, Eq. (1) in
even dimensions corresponds to the dynamics of a classical
probability density in the presence of noise. The dynamics of
the relaxation of such densities to equilibrium is of relevance
to the foundations of statistical mechanics. Further, the rate
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of decay of gradients in classical probabilities strongly influ-
ences the difference between quantum and classical evolu-
tions, thus making these patterns of interest in quantum-
classical correspondence [8] as well.

Specific questions concerning what sets the overall decay
rate of the persistent pattern and how this decay rate scales
with both the diffusivity and parameters in the velocity field
have been addressed in a number of flows, typically those
representable by discrete two-dimensional (2D) maps. The
range of validity of local theories based on the distribution of
stretching rates in the chaotic field [9,10] has been investi-
gated for homogeneous or nearly homogeneous maps
[5,11-13]. Direct calculation of the spectral properties of the
Poincaré operator of the advection-diffusion equation for
maps with mixed phase-space dynamics has shown that the
degree of spatial localization of eigensolutions, the scaling of
the spectrum with diffusivity and the existence of degenerate
states are intimately connected with fine-scale details of the
underlying phase-space geometry [7,14].

In this paper we examine the connection between measur-
able statistical properties of the geometry of the advective
dynamics and the scaling of a previously proposed, easily
computed, measure of pattern strength [15]. This measure,
defined by the Dirichlet quotient of the scalar energy, L,(r)
=[|C(%,1)|*d%, and enstrophy, C,(f)=[|VC(¥,1)|*dx,

o [ e opae
bl J |C(k.1)|Pdk

explicitly tracks the competition between advective and dif-
fusive effects. Physically, x*(f) measures the mean-square
radius of the scalar distribution in k space, reflecting the
distance between the largest stirring scales and the smallest
length scales at which advection can produce structure in the
presence of smoothing. Previous analysis [15] concentrated
on uniformly hyperbolic chaotic systems, where it was
shown that x*(f) initially grows as the dynamics produces
structure, reaches a plateau (which scales as D™!) due to a
balance between the dynamics and diffusion, and then

X (1) , (2)
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abruptly decays to zero as diffusion overtakes the spatially
homogeneous dynamics. This latter behavior is peculiar to
uniform hyperbolicity and explains why no persistent pat-
terns are possible in that case.

Similar analyses are extended here to study the balance
between chaos and diffusion in non-uniformly-hyperbolic
systems including those with mixed phase-space dynamics.
As we show in the next section, for spatially inhomogeneous
advecting fields, x> goes through distinct dynamical stages
before approaching a nonzero saturation value Xc%o‘ This satu-
rated value of x? is a clear indicator of the emergence of
persistent patterns with self-similar evolution of the scalar
spectrum and identical decay rates for both the scalar vari-
ance and the gradient norm.

In the third section, we examine how the time-asymptotic
value of this measure scales with both the diffusivity and the
chaoticity parameter for dynamics driven by the standard
map. Unlike fully mixing, uniformly hyperbolic flows where
semianalytic arguments lead to D™! scaling of x? on interme-
diate time scales, typical chaotic dynamics produce structure
on multiple space scales. The multiscale distribution of
stretching rates is found to result in the power-law scaling,
X>=D". The scaling exponent vy exhibits both a sensitive
dependence on geometric details of the chaotic transport as
measured by the multifractality of the chaotic partition of the
phase space [16], as well as diffusivity dependence shown to
be related to the size of integrable islands in the flow. This
behavior is arguably universal and is confirmed by similar
analysis of a continuous-in-time flow field. We also explore
variations seen in the exponent vy, under certain conditions,
suggesting the role of local phase-space structures in influ-
encing the pattern formation over different ranges of the dif-
fusivity.

Finally, we briefly touch on the issue of relating 7y to
phase-space measures which account for the presence of dif-
fusion (or noise in a dynamical sense) by considering a
finite-time version of the Hausdorff measure [17], Hp(z). The
time at which this measure is computed is set by an estimate
of the time, ¢*, when the diffusive term terminates advective
structure formation on finer scales. This characteristic time
scale is well short of saturation but ultimately affects varia-
tion in stretching rates and, hence, the persistent patterns
seen. Though we are not able to extract a definitive relation-
ship, our results show indications of a relationship of the
type y=Hp(t")—1. We conclude with a summary, including
prospects for future research.

II. DYNAMICAL STAGES IN THE FORMATION
OF PERSISTENT PATTERNS

To illustrate our arguments, we consider the dynamics as-
sociated with the standard or Chirikov-Taylor map described
by the Hamiltonian

2
H(p.q.1) = ”3 +K cos g, 8t —n), (3)

with unit temporal spacing between the 6 kicks. The dynam-
ics in this case are defined on a toroidal geometry (periodic
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boundary conditions in both p,q). This system exhibits ge-
neric mixed phase-space dynamics for a wide range of K,
which controls the variation in hyperbolicity. A classical
probability or Liouville density evolves in a Fourier basis
exp[2mi(np+mq)] as

Pf;b = 2 Jm—k(nK)p;c,k+n eXp[— D(m2 + ”2)] s (4)
k

where J is the Bessel function of sth order, and the role of
the diffusion is captured in the term-by-term decay of the
Fourier elements. We reiterate that the dynamics of this
phase-space Liouville density maps precisely to the real-
space behavior of a two-dimensional fluid.

We begin from the integrable free-particle limit, corre-
sponding to K=0. One reason for considering an integrable
case is that it corresponds to a subset of initial conditions in
the situation of mixed phase-space dynamics, and as such it
is important to be able to show that any proposed diagnostic
for persistent patterns can pick these regions out. A second
reason will become clear shortly, when we show that the
decay in the L2 norm can deceptively signal the presence of
persistent patterns.

For K=0 the Fourier space propagator reduces to a delta
function J,,_;=6,,,. With the initial condition p?n’n= pgm,_”
=06,,.10,.-1, which has gradients in both p and ¢, the dynami-
cal evolution is completely determined by

1+1

Por s = Phymen €XP[— D(m* + n?)], (5)

leading to the solution

t+1
pin,n = [eXp - D<t + 2 I’l2> :| [5m,15n,—f—1 + 5m,—1 5n,t+]]

n=2
(6)

with norms L,()=2 exp{—2D#[ 1+ B(t)]} and C,(1)=[(t+1)?
+1]L,(¢), where B(1)=(82+15¢+19)/6. This implies that
X>(t)=*+2t+2, independent of the diffusion coefficient D.

Note that this integrable solution has superexponential de-
cay of L,, which is usually associated with the absence of
persistent patterns. However, as we now see, the choice of a
different initial condition can change this. This is due to the
fact that K=0 corresponds to a simple shear flow in q.
Choosing an initial condition pgun:pgm’_n: 00,1 With gra-
dients only in the p direction, it is easy to show that

pltn,n = exp[— D(mz + nz)t][(sm,()&n,l + 5m,05n,—1] . (7)

In this instance, we get the simpler (and intuitively obvious)
result that L,(f)=C,(t)=2 exp[-2Dt] and therefore y*(t)=1.
It should now be noted that, based on initial conditions, both
exponential and superexponential decays of the L, norm
were obtained although neither situation results in the forma-
tion of persistent patterns.

Moving away from the integrable limit, that is, for the
parameter range 0 <K <1, shown in Fig. 1 along with the
K=0 case, we see that x* initially follows the quadratic
growth associated with integrable dynamics followed by an
abrupt fall-off to a lower value which slowly decays. This
sharp decline is similar to that for uniformly hyperbolic dy-
namics (K> 1) where diffusion effectively homogenizes the
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FIG. 1. The two extremes of near-integrable behavior where K
=10"* (solid line) and near uniform hyperbolicity for K=100
(dashed line) are contrasted. D=10"* in both cases. Analytic, K
=0 shown in dotted line.

concentration once the spacing between high-density regions
falls within the single period diffusive length scale. By con-
trast, as we now see, in the near-integrable case, the spacing
remains nonuniform resulting in the slow (linear) removal of
residual gradients.
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For intermediate values of K we note that while the phase
space of the standard map is “mixed” for all finite values of
K, the size of the integrable island structures vanishes rapidly
as K—oo. Since the diffusivity effectively homogenizes dy-
namics on scales [~ \/B, there exist values of D, for large
values of K, where the scalar dynamics is essentially charac-
terized by the non-uniformities in the hyperbolic partition of
the phase space and not on the dynamics in integrable re-
gions or the details of the boundary layers surrounding such
structures.

Figure 2(a) shows the behavior of y?(¢) for several values
of K for a single initial condition which extends over the
entire phase space. In each case, four distinct regions are
seen: (A) where the dynamics dominate and structure is pro-
duced on ever finer scales (y increasing rapidly), followed
by (B) the onset of the diffusive counterthrust which
smoothes gradients and removes structure starting from the
smallest scales (x> stops growing), and then (C) a regime of
decreasing x> where diffusion has now overtaken the dynam-
ics until (D) a balance is reached between the influences of
dynamics and diffusion where x?(¢) attains a “saturation”
value. As shown in Figs. 2(b) and 2(c), this last plateau re-
gion for x*(#) corresponds to a quasistationary, persistent pat-
tern in the concentration field where L, and C, decay at
identical rates. These patterns clearly display both the stable
island regions, if any exist, as well as the features of the
unstable manifold. Both the maximum of x? curve as well as

0.1

-0.05

FIG. 2. (a) x*(r) for mixed phase-space dynamics. K=2.1 (solid), K=3.5 (dashed), K=7 (dotted), and K=8 (dot-dashed). D=10* in each
case. Note that all the curves go through the stages (a) rapid increase, (b) turnover, (c) decrease, and (d) steady state. Inset: saturation value
of x? as a function of D for K=7. (b) Persistent pattern for K=2.1 and =30. (c) Persistent pattern for K=7 at ¢=30.
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TABLE 1. Scaling exponent 7y for a range of K. Note that in
computing 7, the same range of D values was used for all K values.

K 5 6 7 8 9 11 12 15 25

vy 052 076 080 098 096 095 0.86 090 0091

its saturation value clearly depend on the value of the diffu-
sivity D.

These four stages have been universal to our investiga-
tions of persistent patterns, in maps as well as flows, and
across the board for initial conditions and parameters. We
argue that this constancy of x? arising through these prelimi-
nary stages, and corresponding explicitly to the physical
mechanism of the competition between chaos and diffusion,
is the unambiguous dynamical signature for persistent pat-
terns.

We now turn to the relationship between the scaling of the
constant or asymptotic value of y with diffusion strength; as
we argue, this serves as a probe of the phase-space structures
of the diffusion-free chaotic advection.

III. MULTIFRACTALITY IN PERSISTENT PATTERNS

As shown in the inset in Fig. 2(a), the saturation value
scales as D™ over several decades for a range of D values.
This is, in itself, remarkable. That is, while it is intuitive that
there is a balance between chaos and diffusion in the produc-
tion of persistent patterns, a scaling relationship is not en-
tirely obvious. Since larger values of D probe finer scales in
phase space, the existence of this scaling means that there
must be a specific self-similarity between distributions of
phase-space structures at different scales.

As we know, the phase-space structure is a measure of the
chaoticity of the problem, and Table I clearly shows that the
relevant value of y depends on the nature of the phase space.
Specifically, (i) y— 0.5 when the dynamics is dominated by
large stable structures or boundary layers associated with
them as in the K=5 regime, (ii) y— 1 as one approaches the
uniformly hyperbolic case, K=50, and (iii) 1/2<y<1ina
nonmonotonic manner for intermediate values of K.

To understand this, we first need to identify the time
scales on which the steady state arises. We start with a con-
sideration of the transition between regions (A) and (B),
namely, the time beyond which new structure formed by the
dynamics is eliminated by diffusion. The details of this
analysis are in Ref. [8]. The basic idea is to consider the
evolution of noisy trajectories, specifically the changes in
orientation of unstable and stable directions due to the noise.
Instantaneous averages over realizations of these trajectories
results in a transverse smoothing over widths /=~ yDr. In a
compact phase space, this implies that noise will homogenize
structures on scales finer than /;. The time associated with
this can be estimated by considering an initially small com-
pact region of phase-space area u(z). If the trajectory is
bounded within a phase-space area A, the typical separation
of neighboring folds of the trajectory is estimated by &(¢)
~A/(upe™), where \ is the Lyapunov exponent. The time
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FIG. 3. x? scaled by the D=7 and time scaled by In 1/D plotted
for K=2.1 and values of D from 5 X 107~ 107*. The higher values
of scaled y* correspond to smaller D.

beyond which any new structures will be smoothed over is
given by setting I;=48(r). An approximate solution to this
transcendental equation gives

- X0 {1 In(x,) } (8)

ZX _1+XO

where x0=1n[2)\A2/(Du%)]. The leading behavior In(1/D)
scaling of the time to peak x’(7) is clearly seen in Fig. 3
where, for fixed K and varying D, both the time for termina-
tion of structure (peak of the x> curve) and x2 scale as ex-
pected.

Beyond this time, nonuniformity in the dynamics lead to
secondary peaks and, ultimately, the saturation value of x? at
which point the production and elimination of structure (over
a period of the periodic forcing) counterbalance. Thus, the
scaling exponent 7 is expected to be a function of the non-
uniformity in the phase space. This is clearly supported by
the limiting case of the uniformly hyperbolic Arnold Cat map
where the unstable manifold (wrapped around the torus) con-
sists of straight lines which, after a few iterations, become
equally spaced. Thus, diffusion (which acts along strong gra-
dients, hence effectively transverse to the manifolds) can
smooth out all the structure simultaneously once \Drt is
greater than the dynamically imposed spacing. For a more
general situation such as that considered here, the spacing is
strongly nonuniform. Specifically, given that the nonunifor-
mity is what prevents the diffusive term from effectively
homogenizing the concentration field, it is sensible to at-
tempt to relate y to measures reflecting this heterogeneity in
phase space.

The multifractal formalism provides an effective way to
gauge “clumping” on a range of scales [16,18]. To obtain a
measure of this clumping, we need to consider the so-called
f(a@) spectrum of singularities for the dynamics. To do this,
we begin by generating 10° points [pairs of (g,p)] in phase
space by iterating the standard map. The singularity strength
«; is then defined by P;(I) ~I%, where the set of points is
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FIG. 4. Singularity spectrum with error bars for K=7 (circles,
solid line), K=9 (triangles, dotted line), and K=12 (crosses, dashed
line). The values of y are 0.8, 0.96, and 0.86, respectively.

covered by boxes of size [ and P,(I) is the probability to be in
the ith boxes. ¢; can take on a range of values depending on
the scale of regions being explored. The number of boxes
N(a) which have singularity strengths (a,a+da) scale as
N(a)~179. f(a) is related to generalized dimensions D
defined by [16,18]

q

1n[2 P;f(z)]

D, = lim—— ,
T (g=1)1=0  In()

9)

where D,_o=H), the usual Hausdorff dimension. f(a)=0
corresponds to the limiting cases of D.... The above defini-
tion of D, is constructive [18] and is what we use to compute
the f(a) spectrum.

Figure 4 shows the singularity spectra for three cases cho-
sen from Table I to highlight the nonmonotonic variation in
the exponent y with K. In terms of the f(a) curve, the dif-
ference in « values corresponding to D, reflects the non-
uniformity in the way map iterates fill phase space. The fig-
ure clearly illustrates that smaller 7y correlates with a wider
range of singularity strengths, which means nonuniformity
on multiple scales. This is consistent with the fact that
smaller values of vy are indicative of the diminished ability of
diffusion in homogenizing the scalar field. By contrast, the
K=9 case, with the largest value of v, is significantly nar-
rower. Differences in the singularity spectra are confined to
the finer scales. We thus see that multifractality is reflected
directly in 7.

The width in the f(«) curves reflects the fact that there are
structures in phase space on multiple scales. In the case of
the standard map, it is well known that, even for very large
values of the stochasticity parameter K, islands of stability
exist which, in turn, generate nonuniformity in the otherwise
hyperbolic map dynamics. Of course, the value of the diffu-
sivity effectively sets a lower bound on dynamically relevant
length scales.

In an effort to understand the role played by smaller local
structures with changing diffusive length scales, we further
probed the scaling of x2 over a wider range of D as shown in
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FIG. 5. Saturation value x> over a wider range of diffusivity D,
exhibiting different scaling over ranges of diffusivity. Parameter
values shown are K=4.5 (squares), K=5.5 (diamonds), K=6
(circles), and K=7 (asterisks).

Fig. 5. For the specific case of K=6 (solid line), there are
clearly two regimes where lower D values are less effective
in eliminating scalar gradients as reflected in a change in
slope to a significantly smaller value of . By contrast, we
note that both larger and smaller values of K are character-
ized by a single slope in Fig. 5.

We first present preliminary results exploring the origins
of the two-slope behavior. Figure 6 shows a magnified por-
tion of the classical phase space corresponding to K=6 cen-
tered on one of two small stable regions. Our results suggest
that, for values of D small enough to resolve this structure,
the persistent patterns are linked to local, rather than global,
aspects of the phase space. In this case, the stable region is
less susceptible to the effects of diffusion. This explanation
is further supported by the case of K=5.5 shown in Fig. 5.
Here, too, the islands seen for K=6 exist but now occupy a
slightly larger fraction of phase space—thus suggesting two-
slope behavior with the break at a larger D value, which is
precisely what is seen. However, on decreasing to K=4.5,

0.25 T

0.15F ‘ 1
p/n

0.1} : - 4 1

0.05-

9.3 135 1.4 1.45 15 155 16 1.65 1.7
x/n

FIG. 6. Part of the classical phase space for K=6 showing the
presence of a small stable region. Note that a symmetric partner
also exists elsewhere.
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FIG. 7. (Color online) (a) x*(z) for the advection diffusion equa-
tion for the sin-sin flow; w=0.25, £=0.35. D=2.5X10"* (solid),
D=1073 (dot-dashed), and D=107? (dashed). Time measured in pe-
riods of the velocity field. Inset: saturation value of y? as a function
of D; (b) persistent patterns for the three diffusivities (diffusivity
decreasing from the top) at three different periods: 7=22 (left), T
=23 (middle), and T=24 (right).

where the scale of the stable regions is comparable to those
associated with the unstable one (e.g., lobe areas), we return
to a single scaling exponent across a wide range of D.

It should be noted here that by picking appropriate initial
conditions, i.e., those that have no projection onto the stable
regions, one can return to a single scaling exponent. The
initial condition used, in our case, extends over the entire
allowed region and the range of D values used in construct-
ing Table I straddled both regions seen in Fig. 5. We believe
that the smaller value of vy seen is a direct consequence of
mixed phase-space effects. The general validity of this rela-
tionship as well as the transition from global to local in phase
space clearly merits more detailed exploration.

To explicitly verify that these results carry over to time-
continuous vector fields, we have examined the behavior of
X>(t) for a number of time-periodic flow fields, including
those produced by dynamically consistent solutions of the
2D Navier-Stokes equation. In complete correspondence to
the mixed phase-space solutions of the standard map, the
dynamics of x*(z) for all flows considered show the same
stages of evolution as well as power-law scaling of the satu-

PHYSICAL REVIEW E 79, 066202 (2009)

0.9

0.8

0.7

0.6

0?.6 1.7 1.8 1.9 2

FIG. 8. Scaling exponent y plotted against the corresponding
finite-time Hausdorff dimension, Hp. The straight line is a fit drawn
primarily to guide the eyes.

ration value with diffusivity for the range of diffusivities
amenable to numerical investigation.

The top panel of Fig. 7 shows x? behavior for the
stream function ¢Ax,y,1)=—c,y+sin(k,x)sin(l,y)+e sin(k,x
+27wt)sin(l,y). For the parameters considered, the corre-
sponding Poincaré map of the conservative dynamics shows
two small pairs of period-2 islands embedded in a large cha-
otic sea. While there is very strong evidence of power-law
scaling for x2, for all values of D considered, the inset indi-
cates that the scaling exponent is quite different for small
diffusivities compared to that obtained for intermediate val-
ues. As the plots of the scalar field show, the difference be-
tween these two regimes is directly linked to the periodicity
of the corresponding eigenstate (persistent pattern). For
larger diffusivities [see top row of Fig. 7(b)], the diffusive
transport between the islands homogenizes the structure pro-
ducing an eigenstate with period 1. For small enough values
of the diffusivity, however, island pairs are preserved in the
phase space, and eigenstates with period-2 result as seen in
the bottom row of Fig. 7(b). These states are apparently
much less sensitive to the level of diffusivity with the expo-
nent vy flattening from —0.53 to —0.30. The middle row of
concentration patterns is for the transition value, D=2.5
X 1073, and indicates a weak period-2 signal in the persistent
state.

Our analysis thus far has concentrated on relating conser-
vative phase-space measures computed in the absence of dif-
fusion to the scaling of diffusive scalars. We have yet to
account for the diffusivity imposed time scale estimated ear-
lier from considering average spacings between manifold
segments. In a more speculative vein, we now extend this
analysis to consider the finite-time Hausdortf dimension, H,
computed from a finite time-time trace of the unstable mani-
fold which provides the spatial skeleton for observed persis-
tent patterns. An estimate of the time over which this trace
needs to be considered is provided by ¢* and is approximately
8—11 kicks for parameters considered. Explicitly, what is
done is that the exceptional set corresponding to the unstable
manifold is calculated for a finite number of iterations up to
time ¢* [17]. The Hausdorff dimension of this set is then
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computed. We note that in the limiting case of D—0, this
would lead to the usual long time “fat fractal” limit of uni-
form filling [19].

Figure 8 plots the exponent 7, taken from Table I, against
the corresponding values (based on K) of H, computed as
described above. We note that the limits of uniformly hyper-
bolic, Hp=2, y=1, and fully integrable dynamics, Hp
=1, y=0, would be consistent with a linear relationship of
the form y=Hp—1. The fit shown in the figure does not
match this well but suggests the need for a more detailed
study involving (a) a wider range of stochasticity values, (b)
an estimation of error in both vy and H), and, perhaps most
critically, (c) an assessment of the dependence of the finite
time Hj, to the choice of 1.

IV. CONCLUDING REMARKS

In conclusion, we have demonstrated using a simple mea-
sure, x*(1), that competition between non-uniformly-
hyperbolic structure-producing dynamics and the homog-
enizing diffusion is necessary for the formation of persistent
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patterns. There are distinct and universal characteristic dy-
namical stages through which x> progresses before entering
the persistent pattern regime. Further, scaling arguments sug-
gest a relationship between nonuniformity in phase space
and the efficacy of diffusion in eliminating density gradients.
Preliminary results shown suggest that this may be explicitly
demonstrated using measures reflecting the multifractal na-
ture of the dynamics. Though our results were obtained by
using a dynamical map, we have verified that all our findings
apply equally well to continuous flows. We note that the
above emphasizes that even for the simplest flows the subtle
interplay between phase-space geometry and diffusive
smoothing makes the analysis of the asymptotics of vanish-
ing diffusivity very difficult [12].
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