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In the last few years we have witnessed the emergence, primarily in online communities, of new types of
social networks that require for their representation more complex graph structures than have been employed
in the past. One example is the folksonomy, a tripartite structure of users, resources, and tags—labels collabo-
ratively applied by the users to the resources in order to impart meaningful structure on an otherwise undif-
ferentiated database. Here we propose a mathematical model of such tripartite structures that represents them
as random hypergraphs. We show that it is possible to calculate many properties of this model exactly in the
limit of large network size and we compare the results against observations of a real folksonomy, that of the
online photography website Flickr. We show that in some cases the model matches the properties of the
observed network well, while in others there are significant differences, which we find to be attributable to the
practice of multiple tagging, i.e., the application by a single user of many tags to one resource or one tag to
many resources.
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I. INTRODUCTION

Networks are a versatile mathematical tool for represent-
ing the structure of complex systems and have been the sub-
ject of a large volume of work in the last few years �1–5�. In
its simplest form a network consists of a set of nodes or
vertices, connected by lines or edges, but many extensions
and generalizations have also been studied, including net-
works with directed edges, networks with labeled or
weighted edges or vertices, and bipartite networks, which
have two types of vertices and edges running only between
unlike types.

Recently, however, new and more complex types of net-
work data have become available, especially associated with
online social and professional communities, which cannot
adequately be described by existing network formats. One
example is the folksonomy. Folksonomy is the name given to
the common online �and sometimes offline� process by
which a group of individuals collaboratively annotates a data
set to create semantic structure. Typically markup is per-
formed by labeling pieces of data with tags. A good example
is provided by the online photography resource Flickr, a
website to which users upload photographs that can then be
viewed by other users. Flickr allows any user to give a short
description of any photo they see, usually just a single word
or a few words. These are the tags. In principle, tags can
allow users to do many things, such as searching for photos
with particular subjects or clustering photos into topical
groups. There are also many other websites and online re-
sources with similar tagging capabilities but dealing with
different resources. On the website CiteUlike, for example,
users upload academic papers as opposed to photographs and
label them with descriptive tags.

Researchers have taken a variety of approaches to the
representation of folksonomy data using network methods,

including modeling them as simple unipartite graphs and bi-
partite graphs as well as limited forms of tripartite graph
�6–9�. Each of these approaches, however, fails to capture
some elements of the structure of the data and hence limits
the conclusions that can be drawn from subsequent network
analysis.

The fundamental building block in a folksonomy is a
triple consisting of a resource, such as a photograph, a tag,
usually a short text phrase, and a user, who applies the tag to
the resource. Any full network representation of folksonomy
data needs to capture this three-way relationship between
resource, tag, and user, and this leads us to the consideration
of hypergraphs.

A hypergraph is a generalization of an ordinary graph in
which an edge �or hyperedge� can connect more than two
vertices together. To represent our folksonomy we make use
of a tripartite hypergraph, a generalization of the more fa-
miliar bipartite graph, in which there are three types of ver-
tices representing resources, tags, and users, and three-way
hyperedges joining them in such a way that each hyperedge
links together exactly one resource, one tag, and one user.
Each hyperedge corresponds to the act of a user applying a
tag to a resource and hence the tripartite hypergraph pre-
serves the full structure of the folksonomy—see Fig. 1.

In this paper, we study the theory of such tripartite graphs,
starting with basic network properties such as degree distri-
butions and then developing a random graph model that al-
lows us to make analytic predictions of a variety of network
properties. We test our predictions by comparing them with
data from the Flickr folksonomy and find good agreement in
some, but not all, cases.

II. TRIPARTITE GRAPHS

We begin our study of tripartite hypergraphs by outlining
some of the basic properties of such networks. Our tripartite
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graphs have three different types of vertices, which, to pre-
serve generality, we will refer to as red, green, and blue
vertices. �In this paper, when discussing applications of the
theory to folksonomies, red will represent resources, green
will represent tags, and blue will represent users, but the
theory itself is entirely agnostic about what the colors repre-
sent.� Let us suppose that there are nr red vertices, ng green
ones, and nb blue ones.

The edges in our network are three-way hyperedges that
each connect one red, one green, and one blue vertex. �We
might say that the hyperedges are “colorless” or “white”
since red, green, and blue make white when combined in the
human visual system.� Let us suppose there to be m hyper-
edges in total.

There are a number of ways in which vertex degree can
be defined for a hypergraph. Some authors, for instance, have
defined degree as the total number of other vertices to which
a given vertex is connected by hyperedges. This corresponds
to the definition of degree in an ordinary graph �at least when
there are no multiedges or self-edges�, but in failing to dis-
tinguish between the different types of vertices to which hy-
peredges are connected, it can lead to confusion in the hy-
pergraph case. The best, and also simplest, definition of
degree for a vertex in a hypergraph is simply the number of
hyperedges attached to that vertex. Thus a red vertex partici-
pating in four hyperedges has degree four. This might mean
that it has four green and four blue neighbors in the network,
but it is also possible that some neighboring vertices are
common to more than one hyperedge, in which case the
number of neighboring vertices of a given color may be
smaller than four.

The mean degree cr of a red vertex in our network is
given by the number of hyperedges in the network divided
by the number of red vertices and similarly for green and
blue,

cr =
m

nr
, cg =

m

ng
, cb =

m

nb
. �1�

Rearranging these equations to give three separate expres-
sions for m, we also have

nrcr = ngcg = nbcb = m . �2�

Thus the mean degrees of the different vertex types cannot
be chosen independently but are linked via the fact that the
same hyperedges connect to the red, green, and blue vertices.

One of the most important parameters of a network is its
degree distribution. Just as bipartite networks have two dis-
tinct degree distributions, our tripartite ones have three: we
define pr�k� to be the fraction of red vertices in the network
that have degree k, and pg�k� and pb�k� to be the correspond-
ing quantities for green and blue vertices. These distributions
satisfy the sum rules

�
k=0

�

pr�k� = �
k=0

�

pg�k� = �
k=0

�

pb�k� = 1 �3�

and

�
k=0

�

kpr�k� = cr, �
k=0

�

kpg�k� = cg, �
k=0

�

kpb�k� = cb. �4�

As with bipartite graphs, it is sometimes convenient to
form “projections” of tripartite graphs onto a subset of their
vertices. In a bipartite graph of red and green vertices, for
instance, one forms a projection onto the red vertices alone
by constructing the network of red vertices in which vertices
are connected by an edge if they share a common green
neighbor in the original bipartite graph �10�.

While for bipartite graphs there is essentially only one
way of performing projections, there are several distinct pos-
sibilities for tripartite graphs—see Fig. 2. One can again join
two red vertices if they share a green neighbor—in our Flickr

FIG. 1. �Color online� Vertices in our networks come in three
types, which are represented here by the red circles, green dia-
monds, and blue squares and are connected by three-way hyper-
edges that each joins together exactly one circle, one diamond, and
one square. In the language of folksonomies, the circles represent,
say, the resources, the diamonds represent the tags, and the squares
represent the users.

FIG. 2. �Color online� Ways of projecting a tripartite graph onto
one of its vertex types �red circles in this case�. Red vertices in the
projected graph can be connected if they share a green diamond
neighbor �green edges in the projected graph�, a blue square neigh-
bor �blue edges�, or a neighbor of either kind �all edges together�.
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example in Sec. I, two photos would be connected if they
have a tag in common. Or one can join two red vertices that
share a common blue neighbor—two photos that were
tagged by the same user. Or one could join vertices that share
either a green or a blue neighbor. And, of course, one can
define the equivalent projections onto the green and blue
vertices.

But it does not stop there. In a tripartite network, one can
also form projections onto two of the colors. For instance,
one can form a projected bipartite network of red and green
vertices in which a red and a green vertex are connected by
an ordinary edge if they were connected by a hyperedge in
the original network. Thus one can create a network of, for
example, photos and the tags applied to them, while drop-
ping information about which users applied which tags. And
again one can also construct the equivalent projections onto
red/blue and blue/green vertex combinations. Alternatively,
one can construct a red/green network by connecting any
pair of vertices—of different colors or not—if they share a
common blue neighbor. Thus a tag would be connected to a
photo if any user applied that tag to that photo, but tags
would also be connected to other tags that were used by the
same user.

Many other standard concepts in the theory of networks
can be generalized to tripartite graphs, including clustering
coefficients, correlations between the degrees of adjacent
vertices �including three-point correlations�, community
structure and modularity, motif counts, and more. The con-
cepts introduced above, however, will be sufficient for our
purposes in this paper.

III. RANDOM TRIPARTITE GRAPHS

In theoretical studies of networks, random graph models
have received particular emphasis because they capture
many of the essential properties of networked systems in the
real world while simultaneously being amenable to analytic
treatment. A variety of random graph models has been stud-
ied from models of simple undirected or directed graphs to
more complicated examples with correlations, communities,
or bipartite structure �10–14�. In this section we develop the
theory of random tripartite hypergraphs with given degree
distributions, which turn out to model many of the properties
of real tripartite graphs quite effectively. Random hyper-
graphs have received some attention previously within the
mathematics community �15–17�, particularly in the context
of combinatorical problems such as graph coloring, and
some general results are known concerning the component
structure �18–20�. In this paper we concentrate more nar-
rowly on results relevant to our primary interest in tripartite
graphs.

A. Model

Consider a model hypergraph with nr red vertices, ng
green vertices, and nb blue vertices. Each vertex is assigned a
degree, corresponding to the number of hyperedges it will
have. These degrees can be visualized as “stubs” of hyper-
edges emerging from each vertex in the appropriate numbers.

The degrees must satisfy Eq. �2�, so that the total number of
stubs emerging from vertices of each color is the same and
equal to the total desired number of hyperedges m.

A total of m three-way hyperedges is now created by
choosing trios of stubs uniformly at random, one each from
red, green, and blue vertices, and connecting them to form
hyperedges. This model is the equivalent for our tripartite
graph of the so-called “configuration model” for unipartite
graphs �12� and the random bipartite graph model �10� for
bipartite graphs.

Given the definition of the model, we can, for example,
calculate the probability that a hyperedge exists between a
given trio of vertices i, j, k. In the process of creating a
single hyperedge, the probability that we will choose a spe-
cific stub attached to red vertex i is 1 /m since there is a total
of m stubs attached to red vertices and we choose uniformly
among them. If i has degree ki then the total probability of
choosing a stub from vertex i is ki /m. Similarly the prob-
abilities of choosing stubs from green and blue vertices j and
k are kj /m and kk /m. Given that there are m hyperedges in
total, the overall probability of a hyperedge between i, j, and
k is then

Pijk = m �
ki

m
�

kj

m
�

kk

m
=

kikjkk

m2 . �5�

Via a similar argument, the probability that there is a hyper-
edge connecting a particular red/green pair i, j �or any other
color combination� is kikj /m. Note that in a sparse graph in
which the typical degrees remain constant as the size of the
graph increases, both of these probabilities vanish as 1 /m.
Among other things, this implies that the chance of occur-
rence of small loops in the network vanishes in the limit of
large graph size. In the language of graph theory, one says
that the network is locally treelike, a property that will be
important in the developments to follow.

Rather than specifying the degree of every vertex in the
network, we can alternatively specify just the degree distri-
butions pr�k�, pg�k�, and pb�k� of the three vertex types �con-
strained to satisfy the sum rules �3� and �4��, then draw a
specific sequence of degrees from those distributions, and
connect the vertices as before. As a practical matter, if one
wants to generate actual example networks on a computer,
one must ensure that the degrees satisfy Eq. �2�, which in
general they will not on first being drawn from the distribu-
tions. A simple strategy for ensuring that they do is first to
draw a complete set of degrees and then repeatedly choose at
random a trio of vertices, one of each color, discard the cur-
rent values of their degrees, and redraw them from the ap-
propriate distributions until the constraint is satisfied. Having
done this the network itself can then be generated as follows.
The sets of vertices are stored as lists in three arrays of size
m each, one for vertices of each color, in which the label of
each vertex appears k times, where k is its degree. For ex-
ample, if red vertex 1 participates in five hyperedges then 1
would appear five times in the list for red vertices. Each of
the lists is then randomized using standard shuffling algo-
rithms, and then one forms the network by progressively
selecting trios of elements, one from each of the three arrays,
and joining them with hyperedges. Note that in principle the
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same method can be applied to hypergraphs with any number
of vertex colors.

The degree distributions represent the probability that a
vertex of a given color chosen at random from the entire
network has a given degree. If we choose a hyperedge at
random, however, and follow it to the red, green, or blue
vertex at one of its corners, that vertex will not have degree
distributed according to pr�k�, pg�k�, or pb�k�, and the reason
is easy to see: vertices with many hyperedges are proportion-
ately more likely to be encountered when following edges. A
vertex of degree ten, for instance, has ten times as many
chances to be chosen in this way than a similarly colored
vertex of degree one. �And a vertex of degree zero will never
be chosen at all.� Thus the distribution of degrees of vertices
encountered is proportional to kpr�k� for red vertices and
similarly for green and blue. Requiring this distribution to
sum to unity, the correctly normalized distribution is
kpr�k� /�kkpr�k�=kpr�k� /cr.

As in other random graph models, we are, in fact, usually
interested not in the degree of the vertex we encounter but in
the number of hyperedges attached to it other than the one
we followed to reach it. This so-called excess degree, which
is 1 less than the total degree, has the same distribution as
above, but with the replacement k→k+1, giving an excess
degree distribution of

qr�k� =
�k + 1�pr�k + 1�

cr
�6�

and similarly for other vertex colors.

B. Generating functions

The fundamental tools we will use in calculating the prop-
erties of the random tripartite graph are probability generat-
ing functions. We begin by defining generating functions for
the degree distributions thus

r0�z� = �
k=0

�

pr�k�zk, �7a�

g0�z� = �
k=0

�

pg�k�zk, �7b�

b0�z� = �
k=0

�

pb�k�zk. �7c�

Given these generating functions we can, for instance, easily
calculate the means of the distributions: cr=r0��1� and so
forth. Higher moments are also straightforward.

We also define corresponding generating functions for the
excess degree distributions,

r1�z� = �
k=0

�

qr�k�zk =
1

cr
�
k=0

�

�k + 1�pr�k + 1�zk =
r0��z�
r0��1�

,

�8a�

g1�z� = �
k=0

�

qg�k�zk =
g0��z�
g0��1�

, �8b�

b1�z� = �
k=0

�

qb�k�zk =
b0��z�
b0��1�

. �8c�

C. Projections

As a first example, we use our generating functions to
calculate the degree distribution for the projection of a tri-
partite random graph onto one of its vertex types, as de-
scribed in Sec. II. Consider first the projection onto �say� red
vertices in which two red vertices are joined by an edge if
they share a green neighbor. �The blue vertices are ignored in
this projection.�

Suppose a given red vertex A has s green neighbors and
each of those green neighbors has t red neighbors other than
vertex A. Given that s is distributed according to pr�s� and t
is distributed according to qg�t�, the probability �g�k� that A
has exactly k neighbors in the projected network is

�g�k� = �
s=0

�

pr�s��
t1=0

�

qg�t1� ¯ �
ts=0

�

qg�ts���k,�
n=1

s

tn� , �9�

where ��i , j� is the Kronecker delta. Multiplying both sides
by zk and summing over k, the generating function for this
probability distribution is

Rg�z� = �
k=0

�

zk�
s=0

�

pr�s��
t1=0

�

qg�t1� ¯ �
ts=0

�

qg�ts���k,�
n=1

s

tn�
= �

s=0

�

pr�s��
t1=0

�

qg�t1� ¯ �
ts=0

�

qg�ts�z��n
tn�

= �
s=0

�

pr�s��
t1=0

�

qg�t1�zt1
¯ �

ts=0

�

qg�ts�zts

= �
s=0

�

pr�s���
t=0

�

qg�t�zt	s

= �
s=0

�

pr�s��g1�z��s

= r0�g1�z�� . �10�

We can also calculate the generating function for the pro-
jection in which two red vertices are connected by an edge if
they share either a green or a blue neighbor. The probability
for a vertex to have k neighbors in this network is

�gb�k� = �
s=0

�

pr�s��
t1=0

�

qg�t1� ¯ �
ts=0

�

qg�ts�

� �
u1=0

�

qb�u1� ¯ �
us=0

�

qb�us���k,�
n=1

s

�tn + un��
�11�

and the corresponding generating function is
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Rgb�z� = �
k=0

�

zk�
s=0

�

pr�s��
t1=0

�

qg�t1� ¯ �
ts=0

�

qg�ts�

� �
u1=0

�

qb�u1� ¯ �
us=0

�

qb�us���k,�
n=1

s

�tn + un�	
= �

s=0

�

pr�s���
t=0

�

qg�t�zt	s��
u=0

�

qb�u�zu	s

= r0�g1�z�b1�z�� . �12�

We can use this result to calculate, for instance, the aver-
age degree in the projected network, which is given by

Rgb� �1� = r0��1��b1��1� + g1��1�� . �13�

We will also use it in Sec. IV to compare predictions of the
random graph model with real-world networks.

D. Formation and size of the giant component

In this section we examine the component structure of our
model network, focusing on the giant component. As with all
networks, if our tripartite network is sufficiently sparse—if it
has very few edges for the given number of vertices—then
vertices will be connected together only in small groups or
small components. If, however, the number of edges is suf-
ficiently high, then a fraction of the vertices will join to-
gether into a single large group, the giant component, with
the remainder in small components. There is a phase transi-
tion with increasing density at which the giant component
forms that is closely analogous to the phase transition in
classical percolation.

There is more than one possible definition of a component
in our tripartite network, but the simplest approach is to de-
fine it as a set of vertices of any colors that are connected via
hyperedges such that every vertex in the set is reachable
from every other by some path through the network. Thus
the collection of vertices depicted in the top panel of Fig. 2
constitutes a component in this sense.

When viewed in the context of folksonomies, components
and particularly the giant component play an important prac-
tical role. In a folksonomy such as that of Flickr, the photog-
raphy website, users can “surf” between photographs by tra-
versing the hypergraph. A user can, for example, click on the
tag associated with a photo and see a list of other photos with
the same tag. Similarly a user can click on the name of
another user and see a list of photos that user has tagged. The
existence, or not, of a giant component in the network dic-
tates whether this type of surfing is actually useful or not. If
there is no giant component, then surfing users will find
themselves restricted to the small set of photos, tags, and
users in the component in which they start their surfing. But
if there is a giant component then users will be able to surf to
a significant fraction of all photos on the entire website just
by clicking on tags or users that seem interesting. The same
considerations affect automated surfing by computerized
“crawlers” that crawl websites either to perform directed
searches �so-called “spiders”� or to create indexes for later
search. If there is no giant component in the folksonomy,
then it cannot be crawled in a useful way.

We can calculate properties of the giant component in our
tripartite random graph by methods similar to those used for
ordinary random graphs �10�. Consider a randomly chosen
hyperedge in the full hypergraph, as depicted in Fig. 3, and
let us calculate the probability that this hyperedge is not a
part of the giant component. We define ur to be the probabil-
ity that the hyperedge is not connected to the giant compo-
nent via its red vertex, and similarly for ug and ub, so that the
total probability of not belonging to the giant component is
urugub.

Suppose that the excess degree of the red vertex—the
number of other hyperedges attached to it—is k. �In the ex-
ample shown in Fig. 3 we have k=3.� In order that the hy-
peredge be not connected to the giant component via the red
vertex it must be that none of these other hyperedges is con-
nected to the giant component either. Any one hyperedge
satisfies this criterion with probability ugub—the probability
that neither of its other corners lead to the giant
component—and all k of them together do so with probabil-
ity �ugub�k.

The excess degree is distributed according to the distribu-
tion qr�k� defined in Eq. �6�. Averaging over this distribution,
we then derive an expression for ur, thus

ur = �
k=0

�

qr�k��ugub�k = r1�ugub� . �14�

Similarly we can show that

ug = g1�ubur�, ub = b1�urug� . �15�

The simultaneous solution of these three equations for ur, ug,
and ub then allows us to calculate the probability 1−urugub
that a randomly chosen hyperedge is in the giant component.
Alternatively, the probability that a randomly chosen red ver-
tex is not in the giant component is the probability that none
of its k hyperedges leads to the giant component, which is
�kpr�k��ugub�k=r0�ugub�, so that a red vertex is in the giant
component with probability

Sr = 1 − r0�ugub� , �16�

and we can write similar equations for Sg and Sb. Sr can also
be thought of as the fraction of red vertices in the giant
component and hence is a measure of the size of that com-

FIG. 3. �Color online� If a hyperedge �outlined in bold� is not to
belong to the giant component, then it must be that none of the
hyperedges reachable via, for instance, its red vertex �circle� are
themselves members of the giant component.
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ponent. The absolute number of red vertices in the giant
component is nrSr and the number of vertices of all colors is
nrSr+ngSg+nbSb.

As in other random graph models, it is in most cases not
possible to solve Eqs. �14� and �15� for ur, ug, and ub in
closed form, but a numerical solution can be found easily by
iteration starting from suitable initial values.

We can also derive a condition for the existence of a giant
component in the network. A giant component exists if and
only if ur, ug, and ub are all less than 1. �They must all be
less than 1 because an extensive giant component of vertices
of any one color automatically implies an extensive compo-
nent of the other two colors since, with only mild conditions
on the degree distribution, the first color must be connected
into a giant component by an extensive number of hyper-
edges and each hyperedge is attached to one vertex of each
color.�

Consider values of the variables that are only slightly dif-
ferent from 1, thus

ur = 1 − �r, ug = 1 − �g, ub = 1 − �b, �17�

where �r, �g, and �b are small. Then, from Eq. �14�,

�r = 1 − ur = 1 − r1�ugub� = 1 − r1�1 − �g − �b + �g�b�

= ��g + �b�r1��1� + O��2� , �18�

where we have performed a Taylor expansion of r1 and made
use of r1�1�=1 �which is necessarily true if qr�k� is a prop-
erly normalized distribution�. We can derive similar equa-
tions for �g and �b and combine all three into the single
vector equation,


�r

�g

�b
� = 
0 r r

g 0 g

b b 0
�
�r

�g

�b
� , �19�

where we have introduced the shorthand r=r1��1�, g=g1��1�,
and b=b1��1�.

If ur, ug, and ub are to be less than 1, meaning the corre-
sponding �’s must all be nonzero, then this equation implies
the determinant condition

�− 1 r r

g − 1 g

b b − 1
� = 0 �20�

or

2rgb + rg + gb + br = 1. �21�

This condition defines the point at which the phase tran-
sition takes place. Equivalently, 2rgb+rg+gb+br crosses 1
at the transition. In fact, it is greater than 1 when there is a
giant component and less 1 when there is none �rather than
the other way around� as can be shown by exhibiting any
example where this is the case. A suitable example is pro-
vided by a network in which all vertices have degree one,
which clearly has no giant component. This choice makes
r=g=b=0 and the result follows.

Thus our condition for the existence of a giant component
is

2rgb + rg + gb + br � 1. �22�

This is the equivalent of the well known condition of Molloy
and Reed �12� for the existence of a giant component in a
unipartite random graph.

An alternative form for this condition can be derived by
making use of Eqs. �6� and �8� to write

r = r1��1� = �
k=0

�

kqr�k� =
1

cr
�
k=0

�

k�k + 1�pr�k + 1�

=
1

cr
�
k=0

�

k�k − 1�pr�k� =
k2�r

k�r
− 1, �23�

and similarly for g and b. Here ¯ �r indicates an average
over the degree distribution of the red vertices and cr= k�r.

Substituting these expressions into Eq. �22�, we find, after
some algebra, that

k�r

k2�r
+

k�g

k2�g
+

k�b

k2�b
� 2. �24�

This form is particularly pleasing since it has the same gen-
eral shape as the criterion of Molloy and Reed for the uni-
partite case, which can be written as k� / k2��

1
2 .

E. Other types of components

The definition of a component used in Sec. III D is not the
only one possible for our tripartite graph. In some folksono-
mies one cannot surf over connections formed by both users
and tags. In some cases, for instance, one is barred from
seeing which resources a particular user has tagged for pri-
vacy reasons, meaning one can surf between resources with
the same tag but not with the same user. In this case we are
surfing on the network formed by two colors of vertices only,
say red and green.

We can approach this situation using the same techniques
as in Sec. III D. We define probabilities ur and ug as before
and find that they satisfy the equations

ur = r1�ug�, ug = g1�ur� . �25�

Linearizing around the point ur=ug=1 we then find that the
transition at which the giant component appears takes place
when

�− 1 r

g − 1
� = 0 �26�

or equivalently rg=1, with r and g defined as before. By
considering appropriate special cases, one can then show that
the giant component exists if and only if rg�1. Substituting
from Eq. �23�, we can also write this condition in the form

k�r

k2�r
+

k�g

k2�g
� 1. �27�

Note that this expression is not symmetric with respect to
permutations of the three color indices, as Eq. �24� was. This
means that, in general, giant components for different color
pairs will appear at different transitions, and it is possible to
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have a giant component for one pair without having a giant
component for another. Thus, for instance, in our Flickr ex-
ample one might be able to surf the network of photos and
tags but not the network of photos and users. �Actually, one
can surf both just fine in the real Flickr network.�

F. Percolation

One can also consider percolation processes on tripartite
networks. If some vertices are removed from the network
then the remaining network may or may not percolate, i.e.,
possess a giant component. For example, on the Flickr web-
site users can designate photos as publicly viewable or not,
and those that are not are, for all intents and purposes, re-
moved from the network. One cannot use them, for instance,
for surfing across the network. There are many ways in
which vertices might be removed, but as a simple example
let us assume that vertices of only one kind are removed and
make the standard percolation assumption that they are re-
moved uniformly at random. �More complicated percolation
schemes are certainly possible, with more than one type of
vertex removed, different probabilities of removal for differ-
ent types, or nonuniform removal, and all of these schemes
can be studied by methods similar to those outlined here.�

Suppose a fraction 	 of the red vertices in our network
are present �or functional� and 1−	 are removed �or non-
functional�. In the language of percolation theory, a fraction
	 of the vertices are occupied. Then define ur as before to be
the probability that the red vertex attached to a random hy-
peredge does not belong to the giant component or the giant
cluster as it is more commonly called in the percolation con-
text. There are two different ways in which this can happen.
If the vertex itself has been removed, then it does not belong
to the giant cluster. Alternatively, it may be present but, as
before, none of its neighbors, either blue or green, is in the
giant cluster. This allows us to write down an expression for
ur, thus

ur = 1 − 	 + 	r1�ugub� . �28�

The corresponding expressions for ug and ub are the same as
in our previous calculation, ug=g1�ubur�, ub=b1�urug�, and
the fractions of red, green, and blue vertices in the giant
percolation cluster are

Sr = 	�1 − r0�ugub�� , �29a�

Sg = 1 − g0�ubur� , �29b�

Sb = 1 − b0�urug� . �29c�

We can also calculate an expression for the value of 	
at which the percolation transition happens. As before we

perturb around the point ur=ug=ub=1 that corresponds to no
giant cluster and the equivalent of Eq. �19� is


�r

�g

�b
� = 
0 	r 	r

g 0 g

b b 0
�
�r

�g

�b
� , �30�

with r, g, and b defined as before. This implies that the
transition happens at 	=	c, where 	c is the solution of
2	rgb+	rg+gb+	br=1. That is,

	c =
1 − gb

r�2gb + g + b�
. �31�

Making use of Eq. �23� and the corresponding expressions
for g and b we then find that

	c = � k2�r

k�r
− 1�−1��2 −

k�g

k2�g
−

k�b

k2�b
�−1

− 1	 . �32�

G. Simulations

Before looking at real-world tripartite networks, we first
compare our calculations with simulation results for
computer-generated random graphs.

Consider a tripartite random graph with Poisson degree
distributions, thus

pr�k� = e−cr
cr

k

k!
, pg�k� = e−cg

cg
k

k!
, pb�k� = e−cb

cb
k

k!
, �33�

where the average degrees cr, cg, and cb satisfy Eq. �2�. The
corresponding generating functions are

r0�z� = r1�z� = e−cr�
k=0

�
cr

k

k!
zk = ecr�z−1�,

g0�z� = g1�z� = e−cg�
k=0

�
cg

k

k!
zk = ecg�z−1�,

b0�z� = b1�z� = e−cb�
k=0

�
cb

k

k!
zk = ecb�z−1�. �34�

We can use these to calculate, for instance, the degree distri-
bution of the projection of the network onto the red vertices
in which two vertices are connected if they share either a
green or a blue neighbor. The generating function for this
distribution is given by Eq. �12� to be

Rgb = r0�g1�z�b1�z�� = ecr�e
�cg+cb��z−1�−1�. �35�

Expanding in powers of z, we then find that the probability
�gb�k� of a red vertex having exactly k neighbors in the pro-
jected network is

�gb�k� =
�cg + cb�k

k!
ecr�e

−�cg+cb�−1��
m=1

k � k

m
��cre

−�cg+cb��m, �36�

where � k
m � is a Stirling number of the second kind, i.e., the

number of ways of dividing k objects into m nonempty sets
�21�.
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The main panel of Fig. 4 shows the form of this distribu-
tion for the case cr=3, cg=10, and cb=6. In the same plot we
show the results of simulations in which random tripartite
graphs with the same degree distributions and nr=100 000,
ng=30 000, and nb=50 000 were generated and then explic-
itly projected onto the red vertices and the resulting degree
distribution was measured directly. As the figure shows, the
agreement between the two is excellent.

The inset of Fig. 4 shows the size of the giant cluster for
percolation on the red vertices of the same network as a
function of the occupation probability 	, calculated both by
numerical solution of Eqs. �28� and �29� and by direct mea-
surement on simulated networks. Again the agreement is ex-
cellent.

IV. COMPARISON WITH REAL-WORLD DATA

In this section we compare the predictions of our tripartite
random graph model against data for the folksonomy of the
Flickr photosharing website. As we show, the theory and
empirical observations agree well in some respects but less
well in others. In many ways the discrepancies are at least as
interesting as the cases of agreement since they indicate situ-
ations in which the structure of the observed network cannot
be explained by a simple random model that ignores social
and other effects. When data and model disagree it is a sign
that these effects are important in determining the network
structure. Thus, as with other random graph models, one of
the most significant roles our model can play may be as a
null model that allows the experimenter to determine when a
network is doing something nontrivial.

Our example data set represents the folksonomy network
of 266 198 photos added to the Flickr website by its users
during 2007 along with the tags applied to those photos and
the users who applied them. The first step in analyzing the
data is to measure the three degree distributions for the three
types of vertices. The degree distributions are shown in Fig.
5. As is common in most social networks, they are highly
right skewed, meaning there are many vertices of low degree
and a small number of very high degree, although the distri-
butions do not follow power-law forms as the distributions in
some networks do. Using these distributions, we can, follow-
ing Eqs. �7� and �8�, construct the corresponding generating
functions, which are simple polynomials �albeit of high or-
der� that can be easily evaluated numerically.

We can use our generating functions to calculate, for ex-
ample, the generating functions Rgb�z� and so forth for the
degree distributions of the projections of the network onto
one vertex type using Eqs. �10� and �12� and their equiva-
lents for other vertex types. Again these functions can be
rapidly evaluated for any argument z numerically. The de-
gree distributions themselves are then given by derivatives of
the generating functions, thus

pk =
1

k!
�dkRgb

dzk �
z=0

. �37�

Direct numerical evaluation of derivatives is plagued by
problems with noise and should be avoided, but one can get
good results �22� by instead employing Cauchy’s integral
formula for the kth derivative of a function

�dkf

dzk�
z=z0

=
k!

2
i
� f�z�

�z − z0�k+1dz , �38�

where the integral is around a contour enclosing the point z0
but excluding any poles of f�z�. Applying this formula to Eq.
�37� we get

pk =
1

2
i
� Rgb�z�

zk+1 dz . �39�

We then calculate the degree distribution by performing the
contour integral numerically around a suitable contour �the
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FIG. 4. �Color online� The degree distribution for the projection
of our Poisson hypergraph onto its red vertices alone, in which two
red vertices are joined by an edge if they have either a green or a
blue neighbor in common on the original tripartite network. The
solid line is the exact solution �Eq. �36�� and the points are the
results of numerical simulations averaged over a hundred realiza-
tions of the network. The error bars are smaller than the size of the
points in all cases. Inset: the fraction of red vertices belonging to
the giant percolation cluster for site percolation on the tripartite
network as a function of occupation probability 	. The solid line is
the exact solution and the points are the results of numerical
simulations.
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FIG. 5. �Color online� The three degree distributions of the tri-
partite Flickr folksonomy network for photos �red circles�, tags
�green diamonds�, and users �blue squares�.
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unit circle �z�=1 works well�. One can, without difficulty,
calculate to good precision the first thousand or so coeffi-
cients of the generating function in this fashion.

We have performed this calculation using the degree dis-
tributions of the Flickr network and projecting onto the re-
sources, i.e., the photos. Figure 6 shows a comparison of the
results with the degree distribution for the actual projected
network. The upper solid line in the figure represents the
theoretical result, while the circles represent the measure-
ments. Although the two curves have the same general shape,
it is clear from the figure that the agreement between them is
only moderately good in this case. Upon closer inspection,
however, it turns out that there is a relatively simple reason
for this.

As discussed in Sec. III A, our random graph model as-
sumes a locally treelike structure for the tripartite network, a
structure with no short loops. The Flickr network, on the
other hand, turns out to have many short loops, which is why
empirical measurements and model do not agree in Fig. 6. As
we now show, however, the loops in the Flickr network are
primarily of a trivial kind that can easily be allowed for in
the calculations.

Typically, photos are not added to the Flickr network in-
dividually but in sets. The most common practice is for a
user to upload a set of photos on a particular subject—say,
pictures of a Ferrari motor car—and then label all of the
photos in the set with the same set of tags—Ferrari, auto-
mobile, sports car, and so forth. This creates short loops
between photos in the set of the form P1→T1→P2→T2
→P1, where the P’s are the photos and the T’s are tags.
These loops will have an adverse effect on the calculation of
the number of neighbors a photo has in the projected net-
work since in many cases two projected edges from a photo
will lead to the same neighboring photo, rather than to dif-
ferent neighbors, and hence give a lower degree in the pro-
jected network than in our naive random graph calculation.

To test the effect of these “trivial” loops in the network
structure, we have pruned the data set to remove instances of

multiple tagging. In the pruned data set the application by a
user of many tags to the same photo is represented by just a
single hyperedge rather than many. In this representation,
hyperedges represent the act of tagging a photo, rather than a
specific tag, and only one hyperedge is included between a
user and a photo no matter how many tags the user applies.
Similarly we also represent the tagging of many photos with
the same tag by a single hyperedge, so that hyperedges rep-
resent the act of tagging an entire photo set rather than just a
single photo. This should remove most instances of trivial
loops in the projected network of the type described above.

Now we calculate again the projection of the hypergraph
onto the set of photos. We also recalculate the theoretical
predictions to reflect the changed degree distributions of the
hypergraph following pruning. The results are shown in Fig.
6 �squares and lower solid curve� and, as the figure shows,
the agreement is now quite good between theory and obser-
vation. This suggests that the earlier disagreement between
the two is indeed primarily a result of the presence of the
loops in the hypergraph introduced by the practice of mul-
tiple tagging.

We can perform similar calculations for projections onto
other types of vertices. In Fig. 7 we show degree distribu-
tions, before and after pruning of the data set, for the projec-
tion onto users. Agreement between theory and observation
for the unpruned data is again quite poor in this case but
significantly better for the pruned data.

These calculations provide, in many ways, a good ex-
ample of the utility of random graph models. When com-
pared with the raw data from the Flickr network, our random
graph model agrees qualitatively, but not quantitatively, indi-
cating that there are effects present in the network that are
not accounted for by simple random hyperedges. On the
other hand, once one prunes the data to remove multiple
tagging, the agreement becomes much better, suggesting that
multiple tagging is the primary nonrandom behavior taking
place in the network and that in other respects the network is,
in fact, quite close to being a random graph. Thus the model
allows us not only to say when the network deviates from the
random assumption but also the particular nature of the de-
viation.
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FIG. 6. �Color online� Circles show the cumulative distribution
function for the degree distribution of the projection of the Flickr
network onto its photograph vertices, while the upper solid line
shows the prediction of the random graph model for the same quan-
tity. Squares show the same function after pruning of the data to
remove multiple tagging as described in the text and the lower solid
curve shows the corresponding model prediction, recalculated from
the new degree distributions after pruning.
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FIG. 7. �Color online� Cumulative distribution functions for the
degree distributions of the projection of the Flickr network onto its
user vertices, both before and after pruning of the data. The points
represent the observations, unpruned �circles� and pruned �squares�,
while the solid lines represent the predictions of the model.
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V. CONCLUSIONS

Motivated by the emergence of new types of social net-
works, such as folksonomies, we have in this paper proposed
and studied a model of random tripartite hypergraphs. We
have defined basic network measures, such as degree distri-
butions and projections onto individual vertex types, and cal-
culated a variety of statistical properties of the model in the
limit of large network size. Among other things we have
calculated the explicit degree distributions for projected net-
works, the conditions for the emergence of a giant compo-
nent, the size of the giant component when there is one, and
the location of the percolation threshold for site percolation
on the network. In principle, the techniques introduced could
be extended to hypergraphs with more vertex types or addi-
tional types of edges, although we have not pursued any such
extensions here.

We have compared our results against measurements of
computer-generated random hypergraphs and a real-world
tripartite network, the folksonomy of the online photo shar-

ing website Flickr. In the latter case, we have focused on the
degree distributions of projections of the hypergraph onto
one vertex type and find that in some instances the theory
makes predictions in moderately good agreement with the
observations while in others the agreement is poorer. In all
cases, however, we find that agreement becomes significantly
better when we remove instances of multiple tagging from
the network—instances in which a user applies many tags to
the same photo or the same tag to many photos—suggesting
that the disagreement is primarily a result of relatively trivial
structures in the network rather than more subtle or large-
scale social network effects.
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