
Towards real-time community detection in large networks

Ian X. Y. Leung,* Pan Hui,† Pietro Liò,‡ and Jon Crowcroft§

Computer Laboratory, University of Cambridge, Cambridge CB3 0FD, United Kingdom
�Received 2 September 2008; revised manuscript received 10 March 2009; published 16 June 2009�

The recent boom of large-scale online social networks �OSNs� both enables and necessitates the use of
parallelizable and scalable computational techniques for their analysis. We examine the problem of real-time
community detection and a recently proposed linear time—O�m� on a network with m edges—label propaga-
tion, or “epidemic” community detection algorithm. We identify characteristics and drawbacks of the algorithm
and extend it by incorporating different heuristics to facilitate reliable and multifunctional real-time community
detection. With limited computational resources, we employ the algorithm on OSN data with 1�106 nodes and
about 58�106 directed edges. Experiments and benchmarks reveal that the extended algorithm is not only
faster but its community detection accuracy compares favorably over popular modularity-gain optimization
algorithms known to suffer from their resolution limits.

DOI: 10.1103/PhysRevE.79.066107 PACS number�s�: 89.75.Hc, 87.23.Ge, 89.20.Hh, 05.10.�a

I. INTRODUCTION

Recent years have seen the flourishing of numerous online
social networks �OSNs�. Cyber communities such as Face-
book, MySpace, and Orkut, where users can keep in touch
with friends on the internet, have all emerged as top ten sites
globally in terms of traffic. Tools and algorithms to under-
stand the network structures have consequently emerged as
popular research topics. By their nature, OSNs contain an
immense number of person nodes which are sparsely con-
nected. Edges are often bidirectional since a mutual agree-
ment is required before such friendship links are established.
One of the most notable phenomenon in such networks is the
resemblance of the so-called six degrees of separation �1�
where on average every person is related to another random
person via five other people in the real world. This has in-
deed been shown in real life communities and, much more
conveniently, on online communities �2�. Networks which
exhibit such small degrees of separation while being sparsely
connected are famously known as small-world networks �3�.

Well-established online communities often contain tens of
millions of users connected by some billions of edges which
enable—and necessitate—the use of parallelizable and scal-
able computational techniques for their analysis. In this lit-
erature, we examine the problem of network community de-
tection. Graphically, such communities are characterized by
a group of nodes which are densely connected by internal
edges but less so toward the outside of the communities, as
depicted by the densely connected subgraphs in Fig. 1. Un-
derstanding the community structure and dynamics of net-
works is vital for the design of related applications, devising
business strategies and may even have direct implications on
the design of the networks themselves �4�.

We empirically analyze a recently proposed community
detection technique by label propagation discussed in �5�,

which is summarized as follows. Each node in a network is
first given a unique label. Every iteration, each node is up-
dated by choosing the label which most of its neighbors have
�the maximal label�. If there happens to be multiple maximal
labels �which is typical in the beginning�, one label is picked
randomly. Previous results have shown that this algorithm is
extremely efficient in uncovering accurate community struc-
ture. As an example, we apply the algorithm on a set of OSN
connection data crawled by Mislove et al. �4� of 3�106

nodes connected by roughly 0.2�109 directed links.
We give a survey of related work in the next section and

look further into the characteristics of the algorithm in Sec.
III. We discuss the potential implementations, improvements,
and applications of the algorithm on different types of net-
works �Sec. IV�. Section V gives detailed comparisons be-
tween the label propagation algorithm �LPA� and fast
modularity-optimization algorithms. We conclude the paper
with future directions of research in Sec. VI.

II. RELATED WORK

Community detection in complex networks has attracted
ample attention in recent years. Apart from OSNs, research-
ers have engaged in community analysis in various types of
networks. In the case of the internet, examples of communi-
ties are found in autonomous systems �6� and indeed web
pages of similar topic �7�. In biological networks, it is widely
believed that modular structure plays a crucial role in bio-
logical functions �8�. Related literatures such as �9–11� may
serve as introductory reading, which also include method-
ological overviews and comparative studies of different al-
gorithms.

The detection of community structure in a network is gen-
erally intended as a procedure for mapping the network into
a tree �12�, known as dendrogram. In this tree, the leaves are
the nodes and the branches join them or �at a higher level�
groups of them, thus identifying a hierarchy of communities.
Nodes can either be agglomerated successively starting from
single nodes �agglomerative� or the whole network can be
recursively partitioned �divisive�. Newman and Girvan �13�
introduced a seminal divisive algorithm in which the selec-

*ian.leung@cl.cam.ac.uk
†pan.hui@cl.cam.ac.uk
‡pietro.lio@cl.cam.ac.uk
§jon.crowcroft@cl.cam.ac.uk

PHYSICAL REVIEW E 79, 066107 �2009�

1539-3755/2009/79�6�/066107�10� ©2009 The American Physical Society066107-1

http://dx.doi.org/10.1103/PhysRevE.79.066107


tion of the edge to be cut is based on the value of its edge
betweenness, the number of shortest paths between all node
pairs running through it. It is clear that when a graph is made
of tightly bound clusters, each loosely interconnected, all
shortest paths between nodes in different clusters have to go
through the few intercluster connections, which therefore
have a large betweenness value. Recursively removing these
large betweenness edges would partition the network into
communities of different sizes.

Quantitatively, however, we need a metric to measure
how well the community detection is progressing, otherwise
most algorithms would either continue until every node is
split into a single community or all join together into one.
Newman and Girvan proposed in �13� a measure of the

goodness of communities called modularity for the set of
uncovered communities C; the modularity is defined to be

Q = �
c�C

� Ic

E
− �2Ic + Oc

2E
�2	 , �1�

where Ic indicates the total number of internal edges that
have both ends in c, Oc is the number of outgoing edges that
have only one end in c, and E is the total number of edges.
This measure essentially compares the number of links in-
side a given module with the expected value for a random-
ized graph of the same size and same degree sequence.

The concept of modularity has gained such popularity that
it has not only been used as a measure of the community

12

236

1

237

224

212

208

214

189

109

11

8
3

7

4

13

15

2

80

5

180

74

175

81

41
77

170

85

63

72

67

168

87

65

32

68
89

42

43

202

190

198

211

230

44

6284
47

88
37

54

60

169

64

16

90

173

177

176

33

58

178

179

73

38

56

59

83
18

171

172
17

167

57

78

45

86

29

24

46

499

309

487

474

403

475

371

490

174

495

294

389

484

385

6
193

244
219

183
228

195
192

187

223
199

217

28
265

333

493

486

454
407343

337496
391

459 347312

365

465
436

383

354
400395

433

471
393

321408

430
455

392

467

285

299

338

339

298

444

442

301

463

461

441

470

413

346

290

279

404

377

352 34

440

282

351

304

66

51
53

70

79

69

76
50

25

27

61

356

39

382

19

23

443

500

31

4921

451

349
368

424

276

305

344

401

482

458

355

447

380

362488330
270

272

323
429
363

283

288

359318

329

381

476
419

466414
317

287
399 284

295

361

483

480

448

390

327

434 415
452

428

384

481

472

456

268497

335 291
280

479
303491

450

489 398 498

460

316 286

366

372

328

307275

267

314

435

492

386

311

334

266

402

426453
416 446357

427 387
468

376

326

319296277
324

409
449

350485

423
394

396
473

369

325

477

494

364

431 457

438

406 360310
281

367

353411378

322

340

341

478278

422
370
412

418
331

345

336

300

313274

410

445 432
348

420379 397
375

374358421
464

373
332

293289

320308
405469

342437306

273
439
425

269

388
292302

297

271 462

417
315

132122

150

153

164

147
158

138 157

140

154

156

135

119

137

165

155

149

130

145

162

136

151159

131

128
166

139

125

144

133

141118

142
126

124148

134

97

127123

163

161146 143

121

120

152

160

114 113
117

93

129

238

218
213

221231

233

215

48

22

225

20

235
55

181

242

234

207 201

185

206

227

216197

241

232

220

204
239

182

246

200

194

191

229

92

91

82 245

186

209

203

210

205

36

226

188

222

196

184

240

250 260

263
258

247
253

248251

252
257255

261256

259
262

14 264
254

249

103
102

94

104

105

98

106

95
101

99

110

111

100

107

7140
35

26
52

243

108

30

115

109
75

116
96

112

FIG. 1. Snapshot of a subgraph of an OSN �500 nodes�.

LEUNG et al. PHYSICAL REVIEW E 79, 066107 �2009�

066107-2



partitioning of a network but also as a key fitness indicator in
various community detection algorithms. The algorithm pro-
posed by Clauset, Newman, and Moore �CNM� �14�, which
greedily combines nodes or communities to optimize modu-
larity gain, is perhaps to date one of the most popular algo-
rithms in detecting communities in relatively large scale net-
works. In the time when CNM was proposed, it was then the
only algorithm capable of community detection on networks
of size 500 000 in a matter of hours. Throughout the years,
several variations of the CNM have been proposed �15–17�.
Most of them concentrate on more efficient data structures as
well as modularity gain heuristics to improve the overall
performance. A latest adaptation �17� that treats newly com-
bined communities as a single node after each iteration is
able to identify community structure on a network containing
1�109 edges in a matter of hours.

It is vital, however, to understand that modularity is not a
scale-invariant measure, and hence, by blindly relying on its
maximization, detection of communities smaller than a cer-
tain size is impossible. This is famously known as the reso-
lution limit �18� of modularity based algorithms. Since LPA
does not involve modularity optimization, its community de-
tection capability is scale independent and therefore not af-
fected by the resolution limit as will be shown in Sec. V.

III. DISCUSSION

Here, we give a brief discussion on the characteristics of
the algorithm as well as some preliminary results applying
the algorithm on the OSN described above.

A. Near linear time algorithm

One can consider the label spreading as a simplified but
specific case of epidemic spreading where all individuals are
considered infectious with their own unique disease. Each
person is infected by a disease that is prevalent in his or her
neighborhood. Figure 2 depicts the labeling convergence
seen in a 4-clique. The number of clusters monotonically
decreases each iteration as certain labels become extinct due
to domination by other labels. With certain rare and excep-
tional cases, the labeling self-organizes to an unsupervised
equilibrium efficiently.

As suggested in �5�, certain properties may prevent the
equilibrium from occurring. For instance, a network with a
bipartite structure might render the system to oscillate if the
algorithm is run synchronously, i.e., all nodes are updated
together only after they have selected their maximal labels.

Running the algorithm asynchronously in a randomized order
every iteration, as suggested in the paper, may result in less
definitive results but solves the problem. It was also sug-
gested that a node that has two equally maximal labels to
choose from may fail to converge and an extra stopping cri-
terion to prevent the switching of label would have to be in
place. It is, however, noted in our implementation that in-
cluding the concerned label itself into the maximal label con-
sideration effectively avoids all the above nonconvergent be-
haviors and the requirement for an extra stopping criterion.

In one iteration, each node’s neighbors are examined and
the maximal label is chosen. The running time of this algo-
rithm is therefore O�knd�, where k is the number of itera-
tions, n is the number of nodes, and d is the average degree
of nodes. Note that nd can also be described by m, the num-
ber of edges. The number of iterations required, k, is depen-
dent on the stopping criterion but is not very well under-
stood. Reference �5� suggested that the number of iterations
required is independent to the number of nodes and that after
five iterations, 95% of their nodes are already accurately
clustered.

Since labels can hardly affect nodes outside their local
densely connected substructures, the convergent behavior
should be dependent on these substructures rather than the
whole network. This is confirmed by preliminary testing and
directs us to look at substructures which can ultimately be-
come the community. Experiments show that the average
number of iterations required for the labeling to converge �no
change in labels� in an N-clique for the asynchronous and
synchronous implementations are 2.1 and 3.6, respectively,
highly independent of N. To further investigate the average
convergent behavior on a substructure, we look at Fig. 3
which summarizes the relationship between number of itera-
tions required before convergence, k, to the pairwise connec-
tivity, p, that controls the edge density in a random graph of
size N �where p=1 corresponds to the N-clique�.

In both implementations, we see that k remains fairly con-
stant over both N and p until p reaches a certain threshold,
which when reached we begin to see an inverse dependence
between N and k. The overall averages of asynchronous and
synchronous implementations in this case are 2.8 and 5.2.

FIG. 2. Each node is looked at in a certain order and a new label
is selected. The above shows how nodes in a 4-clique self-organize
into one single community in one iteration.

Sync.
Async.

12345678910

N (x100)

0.10.20.30.40.50.60.70.80.91

p

2
3
4
5
6
7
8
9

10
11

k

FIG. 3. The above plots show the number of iterations required
before convergence for both the synchronous and asynchronous
implementations on a random graph of size N with probability of
pairwise connection p. All values here are averaged over 100
realizations.

TOWARDS REAL-TIME COMMUNITY DETECTION IN… PHYSICAL REVIEW E 79, 066107 �2009�

066107-3



Let us, however, consider another simple but nonrandom
topology. Suppose we start off with an N-clique, at each jth
construction, the graph is grown by connecting the N− j most
recently joined nodes to the new node �cf. Fig. 4�.

These structures by construction will converge into a
single community by LPA. Without worrying about how
abundant such patterns are in real world communities, we
look at the convergent behavior shown in Fig. 5. The trend
clearly reveals that k grows logarithmically with respect to
N. We therefore suggest the possible worst case of k of the
order of O�log N�, where N is the size of the largest substruc-
ture with a topology similar to the above. Indeed, we antici-
pate real world social networks to contain highly heteroge-
neous substructures which may be intricately connected to
affect each other’s convergence. We thus consider the under-
standing of the convergent behavior in large complex net-
works such as OSNs as a direction for further investigation.

B. Community detection in OSN

We carry out community detection on the aforementioned
OSN using a desktop PC with 4 GB ram and a 2.4 GHz
quadcore processor running 32-bit JAVA VM 1.6. Due to lim-
ited memory, we restrict the number of nodes to the first
million. Since the order of nodes in the original data corre-

sponds to that of a breath-first web crawling, this way of
“cutting off” the data is equivalent to extracting a snowball
sample. As discussed in �4�, snowball methods are known to
oversample high-degree nodes, undersample low-degree
ones, and overestimate the average node degree. This is seen
by the higher average degree of the subgraph, 250, compared
to 106 of the original graph. Nonetheless, since the purpose
of this literature is to evaluate the algorithm on large-scale
networks, the sampled network satisfies our requirements.
The sampled subgraph contains 1 000 000 nodes and
58 793 458 directed links. Convergent behaviors of the two
different implementations are shown in Fig. 6.

A crucial point is that in a complex network as large as
this, the so-called “convergence” does not necessarily yield
an optimal result in terms of modularity. For example, we see
the asynchronous implementation merely took on average
five iterations to achieve a maximum modularity but has
highly volatile results in different runs as depicted by the
shaded area in the figure. On the other hand, the synchronous
implementation achieved maximum modularity much slower
than the asynchronous version but its performance on aver-
age is much more stable �its performance range is thus omit-
ted�. The performances of these two different implementa-
tions are equally important to be understood and utilized.
Further discussions on the implications of these implementa-
tions and their utilizations are given in Sec. IV.

FIG. 4. This substructure is constructed on an N-clique, N=25, by attaching each new node, labeled l, N� l�2N, to existing nodes
l−1, . . . ,2�l−N�, thus contains 49 �2N−1� nodes and 600 �N�N−1�� edges.

LEUNG et al. PHYSICAL REVIEW E 79, 066107 �2009�

066107-4



Each single-threaded iteration finishes in a matter of tens
of seconds, and thus, depending on the stopping criterion, it
can take as little as 8–10 min up to peak performance. Ex-
trapolating the time required with respect to the number of
edges, the algorithm without any optimization should be able
to detect communities on a graph with 1�109 edges in less
than 180 min, in a magnitude similar to that in �17�.

Figure 7 shows the distribution of community or cluster
size collected by a specific run of the asynchronous version
of the algorithm when the modularity peaked at 0.638. The
size distribution of communities within the OSN follows a
two-part power-law distribution in the complementary cumu-
lative distribution function with an estimated coefficient of
1.1. The interested reader is referred to �11,19� for discus-
sions on the characteristics of different networks.

IV. MORE RELIABLE AND EFFICIENT ALGORITHM

In this section, we discuss potential modifications to the
algorithm to increase its reliability, functionality, and compu-
tational efficiency.

A. Hop attenuation and node preference

Due to the epidemic nature of the algorithm, a major limi-
tation of the algorithm is noted where certain “label epi-
demic” manages to “plague” a large amount of nodes. To be
exact, in some runs a certain community of size over
500 000 �50% of the number of nodes� is formed—as op-
posed to the thousand other counterparts averagely sized in a
magnitude of 100’s—greatly contributing to modularity drop
after the peak. We conjecture that this is partially due to the
asynchronous nature of the algorithm and the initial forma-
tion of communities, where certain communities do not form
strong enough links to prevent a foreign epidemic to sweep
through. Further experiments confirm that the synchronous
version of the algorithm slows down the formation of such
“monster” communities but do not prevent them.

We propose an extension to this algorithm by adding a
score associated with the label which decreases as it
traverses from its origin. A node is initially given a score of
1.0 for its label. After a node i has collected from its neigh-
borhood, Ni, all the respective labels and the scores, the
calculation of the new maximal label, L�, can be generalized
by

Li� = argmax
L �

i��Ni

si��Li��f�i��mwi�,i, �2�

where Li is the label of node i, si�L� is the hop score of label
L in i, wi�,i is the weight of the edge between i� and i �we
sum the weights in both directions if the graph is directed�,
and f�i� is any arbitrary comparable characteristic for any
node i. For instance, if we define f�i�=Deg�i�, when m�0,
more preference is given to node with more neighbors; m
�0, less. The final step is to assign a new attenuated score s�
to the new label L� of i by subtracting hop attenuation �, 0
���1:

si��Li�� = � max
i��Ni�Li��

si�Li��� − � , �3�

where Ni�L� is the set of neighbors of i that has label L. The
value � governs how far a particular label can spread as a
function of the geodesic distance from its origin. This addi-

0

5

10

15

20

25

1 10 100 1000

k

N

Sync.
Async.

FIG. 5. The relationships between the number of iterations re-
quired before convergence, k, of both implementations to the size,
N, of the aforementioned structure. All values here are averaged
over 100 realizations.

M
od

ul
ar

ity
,Q

N
o.

of
C

om
m

un
iti

es

Iteration

Range(Async.)

���
���
���
���

��
�����
���

���
���
���

���
���
���
���
���

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

Avg. Q(Async.)
Avg. Q(Sync.)

Avg. No. of Comm.(Async.)
Avg. No. of Comm.(Sync.)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10000

20000

30000

40000

50000

FIG. 6. Average performances of asynchronous and synchro-
nous LPA. Values are averaged over five runs. Shaded area denotes
the range of the performances of asynchronous implementation.

P
(S

>
s)

Community Size, s

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000 100000 1e+006

FIG. 7. The community-size distribution of communities uncov-
ered by the algorithm, which follows a two-part power law.

TOWARDS REAL-TIME COMMUNITY DETECTION IN… PHYSICAL REVIEW E 79, 066107 �2009�

066107-5



tional parameter adds in extra uncertainties to the algorithm
but may encourage a stronger local community to form be-
fore a large cluster start to dominate. Ideally, the selection of
� can even be adaptive to current number of iteration, the
neighborhood of the node concerned and perhaps some a
priori network parameters. We investigate the use of varying
� in the next section and assume here a constant value for �.
Note that this setting may induce a negative feedback loop,
we therefore let �=0 if the selected label is equal to the
current label.

As discussed, modularity has been widely used in the lit-
erature as a metric to contrast the community detection ca-
pabilities on real world networks between different algo-
rithms. While high modularity indicates a significant
modularized structure over a randomized graph of the net-
work concerned, the correspondence between high modular-
ity and accurately partitioned communities is not well under-
stood due to the resolution limit of modularity. Here we
attempt to contrast the behaviors of the algorithms on the
OSN based on modularity but shall not draw strong conclu-
sions on the accuracies of the community detection due to
the above reason. In Sec. V, a novel benchmark proposed by
Lancichinetti et al. �20� capable of revealing resolution limit
of modularity-based algorithms is used for further compari-
sons.

Figure 8 depicts the average performance curves over five
runs for both versions of the algorithm applying hop attenu-
ation and preferential linkage. The results suggest that, on
both implementations, a slight but not too high a preference
on high-degree nodes �m�0� can speed up the process for
achieving peak modularity on the OSN network but also
gives rise to a steeper drop as shown in Fig. 8�a�. We believe,
however, different magnitudes of m simply restrict the choice
of nodes to different subsets, some of which may contribute
to a global pandemic and some may not. By simply using the

degree of a node may not be a heuristic generic enough for
different networks. Further study is required to understand, if
at all possible, how to deduce a generic preference on neigh-
borhood labels every iteration without resorting to a global
metric, which is costly. Nonetheless, we show that giving
preference to certain nodes over others when deciding be-
tween labels to accept can be beneficial in terms of number
of iterations to achieve maximum modularity.

Looking at hop attenuation, we find that the application of
� indeed deters the occurrence of the “monster clusters” as
expected and thereby preventing the modularity drop after
certain iterations. But it was also obvious that high hop at-
tenuation prevented the healthy growing of the communities
and restricted the increase in modularity �cf. Figs. 8�b� and
8�e��. Moreover, we conjecture that hop attenuation restrains
the spread of the label from an arbitrary center and thereby
the formation of circular clusters. This suppression in form-
ing noncircular clusters may lead to the suboptimal perfor-
mance in terms of modularity, as shown in the asynchronous
case �Fig. 8�e��. Finally, from Figs. 8�c� and 8�f�, we see that
combining both parameters, on average, benefits both ver-
sions of the algorithm in achieving a community partitioning
of high modularity more efficiently and consistently.

B. Hierarchical and overlapping communities

Communities in certain networks are known to be hierar-
chical. For instance, students in the same classes often form
some strong local communities, while these communities,
say of the same school, in turn form a larger but relatively
weaker community. As discussed in Sec. II, most CNM-
based algorithms are inherently hierarchical since communi-
ties are agglomerated by greedy local optimization of modu-
larity gain.

We present two simple modifications to the original
method to enable the detection of hierarchical communities.

M
od

ul
ar

ity
,Q

Avg. Q(m = 0)
m = 0.1
m = 0.2

m = -0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10 12 14 16 18 20

Avg. Q(δ = 0)
δ = 0.05

δ = 0.1
δ = 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10 12 14 16 18 20

Avg. Q(m = 0, δ = 0)
m = 0.1, δ = 0.05
m = 0.05, δ = 0.1
m = 0.1, δ = 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10 12 14 16 18 20

Iteration

Avg. Q(m = 0, δ = 0)
m = 0.1, δ = 0.05
m = 0.05, δ = 0.1
m = 0.1, δ = 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10 12 14 16 18 20

M
od

ul
ar

ity
,Q

Iteration

Avg. Q(m = 0)
m = 0.1
m = 0.2

m = -0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10 12 14 16 18 20

Iteration

Avg. Q(δ = 0)
δ = 0.05

δ = 0.1
δ = 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10 12 14 16 18 20

FIG. 8. Average performance comparisons of the synchronous and asynchronous implementations with varying � and m over five
runs.

LEUNG et al. PHYSICAL REVIEW E 79, 066107 �2009�

066107-6



First, let us consider the application of hop attenuation on
label propagation. Suppose we impose a very high hop at-
tenuation at the beginning, we expect communities of small
diameter to form. If we then gradually relax the attenuation
value, we should expect these small communities to merge
into larger ones. In order to achieve this, we modify Eq. �3�
as follows:

si��Li� = 1 − ��dG�O�Li�,i�� , �4�

where

dG�O�Li�,i� = 1 + min
i��Ni�Li�

dG�O�Li�,i�� . �5�

Essentially, instead of receiving the current hop scores
from the neighborhood and carry out a subtraction, the score

is now determined by the actual geodesic distance �dG� from
the label L’s origin denoted by O�L� and the function �.
This gives greater flexibility of � in terms of geodesic dis-
tances and can facilitate iteration-dependent hop attenuation
as required here with slight extra computation cost.

Our second proposal is inspired from �17�, where we can
similarly treat newly combined communities as a single
node, and use the number of intercommunity edges as the
weight of edges between these “fresh condensed” nodes. In-
stead of doing this every iteration, we can apply certain
amount of hop attenuation or hard limit in terms of the di-
ameter of the community and do this after an equilibrium is
reached.

Figure 9 gives an illustration of the first modification ap-
plied on a subgraph on the OSN. Note that this modification

FIG. 9. �Color online� Community detection in the OSN �n=3000� by gradually decreasing hop attenuation ��=0.5 at the top with
Q=0.64 and �=0 at the bottom with Q=0.78�. Nodes with three or less neighbors are filtered to ease the visualization �21�.

TOWARDS REAL-TIME COMMUNITY DETECTION IN… PHYSICAL REVIEW E 79, 066107 �2009�

066107-7



depends very much on the initial labeling of nodes because it
determines the initial centers of these small communities.

Another important question which was also briefly ad-
dressed in �5� is the problem of overlapping communities
�22�, i.e., nodes can often be considered a member of differ-
ent communities. From previous sections, we understood that
different asynchronous version of the algorithm is capable of
generating very different results in different runs. This is
exactly how �5� suggested as a potential solution—to rerun
the algorithm several times. In a parallel environment, how-
ever, the results tend to be much less fluctuating. An initial
attempt was to increase the number of labels passed each
time between nodes to achieve a similar effect. Preliminary
experiments indicate limited success since this setting ham-
pers the convergence process, possibly due to the potential of
latent labels switching back and fro in the system. Another
possibility is the exploit the fact that nodes on the border of
its community have different proportions �purity� of neigh-
bors from other communities. We can potentially use that as
a measure of membership but this indeed may only be appli-
cable to such boundary nodes.

C. Optimization

The individual inspection of every node, particularly
those with many neighbors, is a crucial factor in determining
the speed of the algorithm. Putting aside efficient data struc-
tures and prudent programming, an obvious optimization we
can do without much compromise on the performance is to
selectively update high degree nodes. The reader may have
realized that, after certain iterations, it would be pointless to
update certain nodes that are well inside a cluster. These
nodes are surrounded by nodes with the same label, which
are unlikely to change for the same reason. We employ a
simple purity measure of neighbors to selectively update
nodes that are on the borders of their communities. In other
words, we only update nodes whose number of neighbors
sharing the maximal label is less than a certain percentage.
Indeed, small degree nodes are likely to be avoided in early
iterations in this setting but their contributions to the overall

community structure and performance are almost insignifi-
cant. We carry out the modified algorithm with thresholds set
at 100% �equivalent to the unmodified algorithm�, 80%,
60%, and 40% to examine the trade off between accuracy
and speed.

Figure 10 reveals that after the first iteration, the extra
constraint will increasingly avoid updating nodes. As more
nodes settle in a more stable cluster, increasingly less amount
of time will be required in an iteration. Interestingly, even
with a threshold as low as 40%, the absolute difference in
modularity compared to the original setting is reasonably
small; and we can see the overall running time can be sig-
nificantly reduced.

D. Parallel and online analysis

Clear advantages of label propagation include its ease to
be parallelized and its potential online implementation in
real-time networks. Since each node is required only to know
information about its neighbors and updates itself according
to the common rules, parallelism can be easily achieved.
This brings us to another technical point that when the algo-
rithm is completely parallelized even without explicit syn-
chronization, it would tend to behave like the synchronous
version of the algorithm. And this is the key reason why we
have stressed in the literature that improving both synchro-
nous and asynchronous versions of the algorithm are equally
important.

The running time in a parallel environment effectively
reduces to k if there are ��n� machines. This can be achieved
in real world ubiquitous system such as a mobile ad hoc
network �MANET� or potentially on OSNs themselves �if
members are willing to contribute their computational
power� in real time. For instance, social information such as
the community structure is known to benefit routing in MA-
NET �23�. Moreover, in such scenarios the space requirement
for storing link information would become decentralized and
thus insignificant.

On the same note, we see great potential in adapting the
algorithm for online community detection in real-time dy-
namic networks where the presence of nodes and edges are
constantly evolving. The microscopic movements and inter-
mittent presence of nodes contribute to changes in terms of
weights of the edges. These in turn result in five distinct
macroscopic behaviors of communities, namely, growth,
shrinkage, union, division, and death of communities. The
challenge indeed is to detect local changes without the need
for a global update given limited computational resource or
time constraint. We believe label propagation is particularly
suited in this paradigm and thus propose this as future work.

V. COMPARISONS

We first look at two relatively large and previously stud-
ied networks for comparisons. These networks are, respec-
tively, the Amazon Purchasing Network analyzed in �14� and
the actor collaboration network �24�. As done in �14�, we
assume all edges to be undirected to ease the analysis. With
the added heuristics, the algorithm is able to perform within

%

Iteration

Nodes avoided (time saved) : 80%
60%
40%

Abs. % Diff in Q : 80%
60%
40%

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

FIG. 10. The difference in percent modularity and speed of the
optimized modifications with the original.

LEUNG et al. PHYSICAL REVIEW E 79, 066107 �2009�

066107-8



5% of CNM and 10% of the adaptation by Danon, Díaz-
Guilera, and Arenas �CNM-DDA� �15� in terms of modular-
ity �c.f. Table I�. LPA, however, achieves the result in a mat-
ter of minutes which is unparalleled by the above.

For a more standardized comparison, we turn to the re-
cently proposed benchmark graphs by Lancichinetti et al.
�20�, an extension to the Girvan-Newman benchmark �13�
which incorporates more realistic scale-free degree and
cluster-size distributions. We follow closely the implementa-
tion of the benchmark graphs as described in �20� and com-
pare the original LPA with the improved version on the
graphs of size 1000 and 5000. To contrast label propagation
with general fast modularity maximization algorithms, we
also run the benchmarks on the CNM algorithm.

As shown in Fig. 11, both implementations achieve supe-
rior accuracy over CNM in terms of normalized mutual
information �NMI� even up to a mixing parameter of 0.6.
Interestingly, the original method shows signs of failure at
�=0.5 in the N=1000, d̄=50 benchmark graphs �cf. Fig.
11�b��. We believe this corresponds to the formation of mon-
ster communities discussed in Sec. IV A. The number of
nodes and the average degree of the benchmark graphs in
effect dictate the number and sizes of the original communi-
ties generated. The results hence point out that denser and
less modularized graphs are relatively prone to the formation
of monster communities. However, the application of hop
attenuation as exemplified in Fig. 11�b� greatly improves the
overall performance of LPA in such scenarios.

TABLE I. The results correspond to the peak modularity achieved in ten iterations or less, with f =Deg
and m=0.1 and a gradually decreasing � as discussed in Sec. IV B.

Network Size
Directed

Links Q �claimed� Peak Q �sync.� Peak Q �async.�

Amazon purchase �Mar 03� 409687 4929260 0.745 �14� 0.724 0.727

Actor collaboration 374511 30052912 0.528 �5�, 0.719 �15� 0.642 0.660

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.6

M
od

ul
ar

ity
,Q

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6

N
M

I

Mixing parameter, µ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.6

M
od

ul
ar

ity
,Q

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6

N
M

I

Mixing parameter, µ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.6

M
od

ul
ar

ity
,Q

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6

N
M

I

Mixing parameter, µ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.6

M
od

ul
ar

ity
,Q

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6

N
M

I

Mixing parameter, µ

FIG. 11. Average performance comparisons between the three algorithms in the benchmark graphs with size N and average degree d̄.
Both versions of LPA here are asynchronous; LPA-� implements a gradually decreasing � as discussed in Sec. IV B. All benchmark graphs
have power-law degree and cluster-size distributions with exponents 3 and 2. For N=1000, the results are the average over 100 realizations;
for N=5000, over 10 realizations.

TOWARDS REAL-TIME COMMUNITY DETECTION IN… PHYSICAL REVIEW E 79, 066107 �2009�

066107-9



Importantly, as opposed to label propagation, we can see
that CNM algorithm’s performance does not merely depend
on the mixing parameter but also the average degree of the
network. Resolution limit of modularity maximization is re-
flected by CNM’s worse performance in graphs having a
smaller average degree. Although in most configurations all
algorithms expectedly manage to uncover a modularity value
of a similar magnitude, the real accuracy in terms of NMI
does not follow. This finding corresponds to the notion in
�18� that modularity maximization does not simply translate
to actual communities.

VI. CONCLUSIONS

In this paper, we have empirically analyzed a scalable,
efficient, and accurate community detection algorithm. We
discussed the behaviors and emphasized the importance of
both the synchronous and asynchronous implementations of
the algorithm. We suggested potential heuristics that can be
applied to improve its average detection performance and
adaptability. Most importantly, we contrasted the algorithm
with modularity-gain-based methods in terms of community
detection accuracy and observed how it can be potentially

applied online and concurrently in large-scale and real-time
dynamic networks.

Understanding the dynamics of this algorithm would be
the major future work of this discipline before one devises
further heuristics to improve the algorithm. We believe that
each notion discussed in Sec. IV is worthy of further inspec-
tion. An equally important point is to analyze mathematically
or empirically on how to best adapt the algorithm to different
types of networks by the added heuristics. How do different
network topologies and models affect the algorithm’s conver-
gent behavior? These are all valuable questions to be inves-
tigated in future work.

In summary, we show that label propagation with the ap-
propriate modifications is a more reliable and efficient
method in detecting communities in large-scale networks
than popular existing methods. We trust that with further
understanding and analysis epidemic-based community de-
tection would be of substantial value to the field.

ACKNOWLEDGMENTS

We thank Franco Bagnoli and Vito Latora for helpful
comments. We are grateful to Eric Promislow for providing
us with the Amazon network data. This project was sup-
ported by EC IST SOCIALNETS under Grant No. 217141.

�1� J. Kleinberg, in STOC ’00: Proceedings of the 32nd Annual
ACM Symposium on Theory of Computing �ACM, New York,
NY, 2000�, pp. 163–170, ISBN: 1-58113-184-4.

�2� See the Facebook.com Six Degrees Project.
�3� D. J. Watts and S. H. Strogatz, Nature �London� 393, 440

�1998�.
�4� A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B.

Bhattacharjee, in IMC ’07: Proceedings of the Seventh ACM
SIGCOMM Conference on Internet Measurement �ACM, New
York, NY, 2007�, pp. 29–42.

�5� U. N. Raghavan, R. Albert, and S. Kumara, Phys. Rev. E 76,
036106 �2007�.

�6� D. Lusseau and M. E. J. Newman, Proc. R. Soc. London, Ser B
271, S477 �2004�.

�7� G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee,
Computer 35, 66 �2002�.

�8� E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai and A.
L. Barabási, Science 297, 1551 �2002�.

�9� M. E. J. Newman, Eur. Phys. J. B 38, 321 �2004�.
�10� L. Danon, A. Díaz-Guilera, J. Duch, and A. Arenas, J. Stat.

Mech.: Theory Exp. �2005� P09008.
�11� S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U.

Hwang, Phys. Rep. 424, 175 �2006�.
�12� F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Pa-

risi, Proc. Natl. Acad. Sci. U.S.A. 101, 2658 �2004�.

�13� M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113
�2004�.

�14� A. Clauset, M. E. J. Newman, and C. Moore, Phys. Rev. E 70,
066111 �2004�.

�15� L. Danon, A. Díaz-Guilera, and A. Arenas, J. Stat. Mech.:
Theory Exp. �2006� P11010.

�16� K. Wakita and T. Tsurumi, in WWW ’07: Proceedings of the
16th International Conference on World Wide Web �ACM,
New York, NY, 2007�, pp. 1275–1276.

�17� V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
J. Stat. Mech.: Theory Exp. �2008� P10008.

�18� S. Fortunato and M. Barthelemy, Proc. Natl. Acad. Sci. U.S.A.
104, 36 �2007�.

�19� R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 �2002�.
�20� A. Lancichinetti, S. Fortunato and F. Radicchi, Phys. Rev. E

78, 046110 �2008�.
�21� http://www.cytoscape.org/
�22� G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Nature 435, 814

�2005�.
�23� P. Hui, J. Crowcroft, and E. Yoneki, in MobiHoc ’08: Proceed-

ings of the Ninth ACM International Symposium on Mobile Ad
hoc Networking and Computing �ACM, New York, NY, 2008�,
pp.241–250.

�24� A.-L. Barabási and R. Albert, Science 286, 509 �1999�.

LEUNG et al. PHYSICAL REVIEW E 79, 066107 �2009�

066107-10


