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Optimization has been shown to be a driving force for the evolution of some biological structures, such as
neural maps in the brain or transport networks. Here we show that insect networks also display characteristic
traits of optimality. By using a graph representation of the chamber organization of termite nests and a
disordered lattice model, it is found that these spatial nests are close to a percolation threshold. This suggests
that termites build efficient systems of galleries spanning most of the nest volume at low cost. The evolutionary
consequences are outlined.
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I. INTRODUCTION

An important question in the study of evolution concerns
the relevance of optimization as a driving force shaping liv-
ing matter in relation to path dependence or structural con-
straints �1�. Biological structures, from proteins to brains,
display different levels of adaptation to their environmental
context. Sometimes, such adaptive traits are tied to optimal
designs. An example is provided by treelike transport net-
works such as blood vessels �2�. For this class of distribution
networks, it has been shown that some basic assumptions
such as the self-similar nature of the branching tree and en-
ergy minimization explain the observed architectures. Here,
scaling arguments allow us to understand a wide range of
phenomena spanning many orders of magnitude. Similarly,
brains are known to display optimal wiring, resulting from
the metabolic cost associated to cognitive tasks �3–5�.

The case for insect nests is a much less known example.
Although building is by far the most spectacular outcome of
insect societies, the exact rules of building are largely un-
known �6�. Termite nests in particular are one of the most
obvious examples and their properties and organization are
an important component of their ecological success. Termites
are known to be the earliest evolving social insects and true
ecosystem engineers, deeply affecting their habitats �7�.
Their nests are excellent examples of large scale designs,
buffering external fluctuations and providing the backbone
for all colony activities. These nest structures can be de-
scribed in terms of complex networks �8�. This type of struc-
ture emerges as the outcome of the collective dynamics
within colonies formed by more or less large groups of indi-
viduals with fairly limited cognitive capacities �9–11�. As it
occurs with many biological and technological networks,
they have neither completely regular nor completely random
topology �12,13�. Most of these networks display the small-
world �SW� effect, which makes them efficiently connected.
Even if spatially embedded networks can display SW pat-
terns �14�, but in general they do not reach the SW behavior
due to geometrical constraints �15�. For example, we cannot
easily connect distant nodes if there is a maximal link length
and nodes are located far from each other. Link competition

for available space also limits the number of shortcuts. Pla-
nar networks, for example, do not allow link crossings.
These limitations suggest that the general small-world model
needs to be extended. In that case, how are spatial networks
optimized through evolution?

The study of average statistical patterns in termite nests
has shown that these networks seem to minimize connectiv-
ity �8�. Actually, the analysis of network sensitivity to link
removal reveals that the elimination of single node �a corri-
dor in the real nest� is enough to disconnect the network in
more than 40% of the cases. These observations point toward
some optimal design of nest organization. Our goal in this
paper is to provide a theoretical framework to explain the
origins of such patterns within the context of percolation
transition in spatial lattices. In this context, as it happens
with cortical maps �16�, bone networks �17,18�, or artificial
designed circuits �19�, the type of termite nests studied here
�20� displays a characteristic layered architecture. As will be
shown below, such layered structure provides a good frame-
work to understand their global organization and the pres-
ence of optimality.

Our approach is based on a simple model of disordered
lattice with link removal and node merging. Here, node lo-
cation disorder introduces a certain fraction of so-called
shortcuts, that is, links that do not belong to the correspond-
ing three-dimensional �3D� Delaunay triangulation �21�. We
study the transport properties of the network realization and
the functional role played by shortcuts. In addition, closely
interacting nodes are merged into a single hub gathering all
the connections from participating nodes. Merging enables a
transition from regular deterministic networks to spatially
embedded random networks and appears to be an indispens-
able ingredient for modeling termite networks.

The paper is organized as follows. In Sec. II, the basic
data sets are presented. In Sec. III our disordered lattice
model is introduced and compared with data sets. We obtain
the best fit parameter sets through an optimization method
described in Sec. IV. Mean field approximation to the aver-
age degree is presented in Sec. V. The topological efficiency
of these nests is measured in Sec. VI and our results are
summarized in Sec. VII.
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II. TERMITE NETWORK MAPPING

Six Cubitermes nests �see Fig. 1�A�� were used. The
nests, labeled M9–M12, M18, and M19, originated from dif-
ferent locations in Central African Republic and Cameroon.
One of the nests, M19, was still under construction when it
was collected. All the nests comprise several chambers inter-
connected by openings and short corridors.

Nests were imaged and reconstructed into 3D virtual vol-
umes using x-ray tomography with a medical scanner. For
every nest, we obtain the transportation network G= �V ,E�
corresponding to the biggest set of physically interconnected
chambers in the original nest. In this network, a node v�V
represents a physical chamber and a link �vi ,v j��E depicts a
physical corridor between chambers vi and v j.

The network G was obtained with standard image pro-
cessing techniques as follows:

�i� Binarization. In the tomographical images, denser ma-
terials �e.g., the nest walls� are represented by lighter gray
levels; soft materials and air are characterized by signifi-
cantly darker gray levels. The volumetric images were bina-
rized by applying a threshold on the gray-level value of the
voxel �the 3D equivalent of a pixel�. Now, white voxels mark
the nest scaffold and black voxels represent air �chambers
and corridors�. Given the naturally high contrast offered by
the material no edge enhancement algorithm was applied.

�ii� Threshold on distance from nest walls. Cubitermes
nests consist of relatively big chambers connected by narrow
corridors �less than �0.5 mm in radius�. Hence each voxel
that is more than 0.5 mm away from any of the walls either
belongs to a chamber or to the space outside the nest. We
detected and individually labeled all the connected sets of
voxels in the empty space whose distance from the walls was
bigger than two voxels �D26 distance�. Each connected num-
bered component marks the “core” of a single nest chamber
and its label and properties were recorded into a network
node.

�iii� Constrained dilation of chambers. The chamber cores
were concurrently dilated, one step at a time, to fill progres-
sively their surrounding empty space �stopping at walls�. At
some point, a dilated core also crams into its outgoing cor-
ridors and gets in touch with the others dilated cores coming
from the other end of the corridor. In this case, an edge
between the vertices was created, corresponding to the physi-
cal corridor.

As a result of this process of network extraction, the
graph associated to the nest structure is obtained �see Figs.
1�B� and 1�C��. Termite nests are homogeneous networks
that follow an exponential degree distribution �see Fig.
2�D��,
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FIG. 1. �Color online� Cubitermes nest define a 3D very sparse network with nodes representing chambers and links depicting galleries.
Here we show a �a� photograph of the real Cubitermes nest �c9�, �b� the spatial 3D network organization, and �c� the topological organization
of the network shown in a 2D layout �see text�. These networks are homogeneous, following an exponential degree distribution as shown
in �d�.
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FIG. 2. Illustration of the synthetic networks generated with our model. �a� 3D organization of the network. �b� Topological organization.
�c� Probability degree distribution is exponential. Parameters: L=6, H=14, 1− p=0.46, 1−q=0.5, �=0.96, and �=0.75. The bending at low
k values �not seen in \� is due to the latticelike behavior exhibited by our model.
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P�k� =
1

�
exp�−

k

�
	 , �1�

where �
0.45 �8�.

III. LATTICE MODEL

Here, we investigate the topological and geometrical fea-
tures of Cubitermes nests with a network model of link re-
moval and merging on a disordered lattice. Our construction
network model consists of four different steps:

�1� We start from a fully connected 3D lattice G= �V ,E�
with �V�=S2H nodes, where every node has four horizontal
links and two vertical links. The model assumes a 3D lattice
constructed of H horizontal layers having S2 nodes each �see
Fig. 3�A��. Without loss of generality, we place any pair of
adjacent lattice nodes at a distance equal to 1.

�2� From the above lattice, we perform a random �asym-
metric� link deletion process. The following algorithm was
used: �i� a random lattice node u is chosen. �ii� Pick a ran-
dom link attached to the node u and remove this horizontal
�vertical� link with probability p�q�. Iterate steps �i�–�ii� until
there are only 2�S−1�SHp horizontal links and S2�H−1�q
vertical links.

�3� Node locations are jittered with a 3D random displace-
ment �−� ,�� of size 0���1 �see Fig. 3�C��.

�4� Node merging rule: �1� choose a random pair �i , j�
�E of linked nodes i and j. �2� The nodes i and j are merged
together to the node i of degree ki�t+1�=ki�t�+kj�t�−2 if the
Euclidian distance is d�i , j��� �see Fig. 4�. Perform �1� and
�2� until the separation distance between all pairs of linked
nodes is above the threshold �.

Figure 3 illustrates the different stages involved in our
network model. Every layer has a uniform bond density de-
noted by p�1, that is, the probability of having a bond con-
necting two adjacent nodes within the same layer �or intra-
layer density�. On the other hand, there is a different
interlayer density q�1 of edges connecting nodes in differ-
ent vertically adjacent layers �see Fig. 3�B��. This model is
roughly equivalent to a multilayered structure �22� having
alternating layers with different concentrations p and q. De-

pending on the relative ratio p /q we will obtain asymmetric
structures with a vertical �horizontal� main direction or a
symmetric structure with no predominant direction.

However, we will rarely see such an ordered structure in
termite nests. We can obtain a �more realistic� disordered
structure when node locations are perturbed by adding an
individual random displacement of size 0���1 �see Fig.
3�C��. This geometrical perturbation causes topological dis-
order by interacting with the node merging rule.

Node merging enables the emergence of hub nodes having
many more connections than the rest of nodes. Indeed, this is
the case for ant and termite tunneling networks �23–26�. The
merging of two nodes causes a reduction in the number of
nodes and links in the graph �when ��0�.

IV. OPTIMAL PARAMETER SETS

In this section, we describe the fitting method to obtain
the best model parameters for every Cubitermes network. We
can estimate the characteristic separation between adjacent
lattice nodes with the average link length in the network

�lij
 =
1

N�N − 1��i�j

lij , �2�

where link length lij is the �Euclidean� distance between
nodes i and j. Lattice dimensions S and H can be computed
from the enclosing network volume divided by the charac-
teristic length �lij
 �see Fig. 5�,

S =
max�xi� − min�xi�

�lij

�3�

and

H =
max�yi� − min�yi�

�lij

, �4�

where �xi ,yi ,zi� are the coordinates of the ith node. We com-
pute the tightest enclosing 3D box that minimizes the empty
volume �i.e., places without network nodes� �27� or, alterna-
tively, the lattice that minimizes the approximation error.
When the network is not perfectly aligned with the vertical
direction �Z axis� we can rotate the node coordinates with the
three orthogonal eigenvectors e1 ,e2 ,e3, weighted by the cor-
responding eigenvalues �1 ,�2 ,�3.

It is very difficult to find an analytical estimate for the
remaining lattice parameters p, q, �, and �. In this case, we

S

H
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FIG. 3. 2D illustration for the construction rules used in the

disordered lattice model. �a� Our model starts from an isotropic 3D
lattice with S2H nodes. Here, H=4 and S=3. �b� Layered structures
can be simulated if p�q, where p is the survival probability of
horizontal �intralayer� link and q is the survival probability of ver-
tical �interlayer� links. �c� Node jittering deforms the original lattice
and yields a nonhomogeneous spatial node distribution.
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FIG. 4. Node merging. The last step in our model merges any
pair of nodes falling apart less than � units �see text�. Here, we
merge nodes 2 and 5 and remove the edge �2, 5�. Merging of two
nodes in a graph causes a reduction in the degree of any node that
had been adjacent to both.
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can search the entire space of lattice networks with an evo-
lutionary algorithm �28� for the set of parameters that pro-
vides the best model fitting to the target network. One pos-
sible set of constraints to be imposed is based on local
properties. It has been suggested a classification of different
networks by means of the set of k-subgraph frequencies �or
subgraph census� �29�. When looking at different networks,
we find that their internal structure in terms of small sub-
graphs differs considerably. This suggests a way to distin-
guish between networks having distinct features using their
subgraph census as the network signature. This is done by
Vazquez et al. �30� who used the abundance of triples and
four-node loops measured from a real protein network to
obtain the best model parameters. Here, we will compute the
four-subgraph census �31� to estimate the approximation er-
ror of model networks when compared to the real networks.
Then, we will use the four-node subgraph frequencies to
guide our genetic search algorithm and obtain the best esti-
mates for p, q, �, and �.

Here, we minimize the distance U between the subgraph
census measured in the target network and the predicted sub-
graph census measured in the model network,

U = ��
m

„P�m� − P��m�…2�1/2�1 +
�C − C��
C + C�

	 , �5�

where P�m� is the probability of the subgraph m in the real
network, P��m� is the probability of the subgraph m in the
model network, C is the number of different �nonzero� sub-
graphs in the real network, and C� is the number of different
subgraphs in the model network. The rightmost term ensures
the synthetic network will have the same number of nonzero
four subgraphs as the real target network. It can be easily
shown that the above corresponds to a well-behave metric
definition concerning the motif distribution.

Figure 6 shows the subgraph census for the six networks
analyzed here. We can see that 4�C�6 and the most abun-
dant subgraphs are the four stars and the four chains. Still,
the less frequent subgraphs signal important deviations to be
captured by the specific values of lattice parameters. Table I
summarizes the best fit parameters found with our algorithm
for the termite networks.

We have exhaustively explored the four-dimensional �4D�
parameter space �defined by p ,q ,� ,�� to assess the reliability
of our fitting method. In Fig. 7�A� we show the metric land-
scape for the termite nest c18 as a function of p and q when
�� ,�� is fixed. This surface shows there is a unique global
minimum that coincides with the best fitting parameters
found with our evolutionary search algorithm. Other termite
nests exhibit similar metric surfaces with unique global
minima �not shown�. In addition, the model networks mini-
mizing the distance U with the target nest also reproduce a
number of observed topological properties, including the av-
erage number of links per node L /N �see Fig. 7�B��. Note
that we can reproduce the same average connectivity al-
though is not explicitly accounted for by our metric defini-
tion �see Eq. �5��. We will show below that we can reproduce
other nonlocal network properties �see Sec. VI�.
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FIG. 5. �Color online� Plots of link length distributions P�lij� for
the termite nests analyzed here. Distributions have been rescaled by
subtracting the average link length �lij
 divided by the standard
deviation. All the distributions show a well-defined mean value.
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FIG. 6. �Color online� Four-subgraph census for the six termite
networks analyzed in this paper. From top to bottom, the different
networks have C=5, C=4, C=4, C=5, C=5, and C=6 different
nonzero four subgraphs. Note that the most frequent motifs are the
four stars and the four chains. In order to generate realistic multi-
layered networks is important to be able to reproduce the least
frequent motifs too.

TABLE I. Best fitting parameters for the Cubitermes networks
analyzed here �see text�. For all networks, the fitting error is U

0.01.

Nest N �k
 S H 1− p 1−q � �

c9 507 2.66 6 14 0.566 0.522 0.965 0.751

c10 349 2.056 4 21 0.54 0.719 0.544 0.884

c11 260 2.153 4 16 0.505 0.928 0.735 0.923

c12 183 2.54 4 11 0.524 0.538 0.56 0.94

c18 287 2.38 5 11 0.455 0.704 0.596 0.939

c19 268 3.26 4 16 0.188 0.469 0.449 0.804
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V. Šk‹ ESTIMATION

In previous sections we have presented our network data
sets, the lattice model, and how to fit model parameters in
order to reproduce the observed architectures. In this section,
we will proceed to analyze the optimization conjecture by
developing a mean field theory estimate of the average de-
gree �k
. Such theory allows defining a percolation condition
which can be compared with the observed data sets.

The average degree, �k
, is negatively affected by the de-
letion of links. On the other hand, merging reduces the num-
ber of nodes, thus increasing the average number of links per
node. Corrections of higher order introduce the possibility of
more complex merging, which could result again not only in
a loss of nodes but also in a loss of links. The analytic deri-
vation of �k
 considers two terms. The first term introduces
the effect of merging within connected nodes, resulting in a
net increase in �k
, whereas the second introduces the fusion
of links, thus relaxing the increase in �k
 through node merg-
ing. It is important to recall that, within a lattice, average

connectivities lower than 2 would correspond to linear
chains. Since we deal with more complex structures, our
computations are valid for �k
�2. Furthermore, we make the
assumption that all nodes within a layer are connected re-
gardless of link removal.

Let us consider a lattice where a process of jittering and
merging is performed with probabilities � and �, respec-
tively. Let 	�� ,�� be the probability that a randomly chosen
node is merged with another given node. Let vi be the set of
points which are a distance equal or less than �+� from the
geometrical location of the node i in the ordered lattice and
v j be the set of points which are a distance d�� from the
node j in the ordered lattice. Then, the general form of
	�� ,�� is

	��,�� =
1

2
�

vi�vj

dv��
vi�vj

dv	−1

. �6�

�The term 1/2 arises because when merging at work, from
two nodes we form a single node.� Now, three different cases
can be considered:

Case 1. The first observation is that if

2� + � � 1, �7�

	�� ,��=0 since vi�v j =�.
In this situation, the number of nodes will be fixed, N

=HS2 �i.e., all the nodes of the lattice�. The number of ex-
pected links will be

�E�p,q�� = �2p + q�HS2 − 2pHS − qS2, �8�

given that

�k
 =
2�E�p,q��

N
�9�

we obtain, by defining x�4p+2q,

�k
 
 x + O�1

S
+

1

H
	 . �10�

Case 2. The next situation considers that �2
2�+��1.
This combination of parameters enables the merging process
to be at work. The probability of merging will be propor-
tional to the volume of the intersection between two spheres
of radius �+� and �, centered, for example, in �0,0,0� and
�1,0,0�, respectively. Notice that if �2
2�+��1, only
merging between two connected nodes will occur. Let us call
this probability 	1�� ,��. Given a node i the only nodes sus-
ceptible to be merged are the nodes j directly connected to it.
Applying Eq. �6�, we obtain 	1�� ,�� for our case by solving
the following integrals:

�
vi�vj

dv =
4

3
	�� + ��3 +

4

3
	�3 − �

vi�vj

dv ,

�
vi�vj

dv =
	

12
�2� + � − 1�2�1 + 4� + 2� − 3�2� .

�The last integral is obtained by computing the intersection
volume between two spheres of different radius.� The num-
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FIG. 7. �Color online� Exploration of the parameter space for
the disordered lattice model. Average metric distance U between
synthetic networks and the c18 termite network as a function of �a�
�p ,q� and �b� the average number of links �k
. The arrow in �a�
denotes the global minimum found by the evolutionary search al-
gorithm. This minimum is located in the region of the parameter
space with U�0.07 �in dark gray and in red�. In addition, the plot
in �b� shows how the model network minimizing the distance U
with the c18 nest also has the same connectivity �k

2.38 �see
Table I�. Plots obtained from numerical simulations by taking 20
sample networks for each �p ,q� �2000 networks�. The parameters
�=0.59 and �=0.39 were fixed to the best fitting parameters found
in Table I for c18.
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ber of nodes of the net in this first approach, N�� ,��, will be

N��,�� � �1 − 	1��,���HS2. �11�

Consistently with the proposed methodology, we also ex-
pect that horizontal �vertical� links are present with probabil-
ity p�q�. The expected number of links �E�p ,q�� will satisfy
Eq. �8� by using the appropriate values of p and q. Thus, we
can compute the average degree,

�k
 

�4p + 2q�HS2 − 4pHS − 2qS2

�1 − 	1��,���HS2

=
x

�1 − 	1��,���
+ O�1

S
+

1

H
	 . �12�

As in the first case, we observe the linear character of the
leading term of the above equation �see Fig. 8 for compari-
son with numerical results�.

Case 3. Now we explore the scenario where 2
2�+�
��2. This is interesting because the merging between two
nodes located at the diagonal corners of a square is possible
�nodes located at distance d=�2 in the original lattice� lead-
ing to link merging �32�. Thus, we need to introduce a term,
	�2�� ,��, which accounts for the diagonal merging. To ob-
tain 	�2�� ,��, we need to introduce in Eq. �6� the following
values:

�
vi�vj

dv =
4

3
	�� + ��3 +

4

3
	�3 − �

vi�vj

dv ,

�
vi�vj

dv =
	

12�2
�2� + � − �2�2 � �2 + 4�2� + 2�2� − 3�2� .

Now the expected number of nodes will be

N��,�� � �1 − 	1��,�� − 	�2��,���HS2, �13�

and the expected number of links will be

�E�p,q�� = �1 − 	�2��,�����2p + q�HS2 − 2pHS − qS2� .

�14�

This results, again, in a linear behavior on x=4p+2q of the
leading term of �k
,

�k
 

�1 − 	�2��,���

1 − 	1��,�� − 	�2��,��
x + O�1

S
+

1

H
	 . �15�

Higher values of 2�+� will increase both node merging and
link fusion, but we stop our analysis here since the above
approximation is enough for our purposes.

By comparing these theoretical predictions with real data,
we can see that the linear form �after 4p+2q
2� is found in
the simulated webs by computing the size of the largest con-
nected component against 4p+2q. In Fig. 8 we show the
numerical results where obtained through numerical simula-
tion by taking 20 sample networks for every pair �p ,q�, with
p� �0,1�, q� �0,1� �2000 networks per plot� and the param-
eters � and � were fixed to the best fitting parameters in
Table I. For each data set, we also estimate the position of
the network expected connectivity and, as we can see, they
all fall very close to the percolation threshold. An exception
is data set c19, which is consistent with the fact that is an
unfinished set and thus will have larger numbers of links �8�.

VI. GLOBAL EFFICIENCY

An important feature of the nest is their ability to sustain
an active colony of termites. This is actually closely related
to network’s navigability �33�. We have conjectured that Cu-
bitermes nests are efficient transportation networks in spite
of their sparseness �34�. Here, we assess network efficiency
by comparing Eloc�G� and Eglob�G� �16� measured in the real
nests to the predictions from our lattice model. The topologi-
cal efficiency of synthetic and real networks �35� is here
measured by

E�G� =
1

N�N − 1��i�j

1

D�i, j�
. �16�

From the above definition, we can compute the local net-
work efficiency or the global network efficiency. We can
compute the local topological efficiency at every node i with
the subgraph Gi of the neighbors of i. Moreover, we define
local efficiency as the average efficiency of the local sub-
graphs, Eloc�G�=1 /N�i�GE�Gi�. On the other hand, the glo-
bal efficiency Eglob�G� measures the topological efficiency in
the whole graph G.

The model gives good predictions for the local and global
efficiencies �see Fig. 9�. In spite that these nests exhibit some
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FIG. 8. Plots of average degree �k
 of the largest connected
component vs expected connectivity 4p+2q in synthetic networks.
There is a nonlinear transition from the sparsest network with �k

=2 to the maximal connectivity �k
=6. The arrows indicate the
location of the real termite network �see Sec. V�. We can appreciate
that c9, c11, and c18 are close to the percolating transition while
c19 is not because of its relatively large average degree �see text�.
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significant variability, a very good agreement was obtained.
The model overestimates local efficiency for the networks
c10,c11,c12 and underestimates the global efficiency for the
same networks. We can explain this as a consequence of the
natural balance between local and global efficiencies taking

place in sparse networks. The model also overestimates both
the local and global efficiencies for nest c19 partly because
of the relatively large network connectivity, i.e., �k
=3.25 is
the largest average degree of the six networks analyzed here.

VII. DISCUSSION

In this paper we have analyzed the organization of layered
insect nests, showing that their architecture is consistent with
an optimal network. Specifically, using both data from real
termite nests and a disordered lattice model, we provided
evidence for a link minimization process. The networks rep-
resenting termite nests are shown to be close to the percola-
tion threshold, thus allowing to properly span the entire nest
volume at a low cost. This has been shown to be consistent
with the efficiency measures and suggests that the rules of
nest construction have been optimized through evolution in
order to maximize network functionality while minimizing
its connectivity.
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