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The continuous-time random walk (CTRW) is a pure-jump stochastic process with several applications not
only in physics but also in insurance, finance, and economics. A definition is given for a class of stochastic
integrals driven by a CTRW, which includes the Ito and Stratonovich cases. An uncoupled CTRW with
zero-mean jumps is a martingale. It is proved that, as a consequence of the martingale transform theorem, if the
CTRW is a martingale, the It0 integral is a martingale too. It is shown how the definition of the stochastic
integrals can be used to easily compute them by Monte Carlo simulation. The relations between a CTRW, its
quadratic variation, its Stratonovich integral, and its Ito integral are highlighted by numerical calculations when
the jumps in space of the CTRW have a symmetric Lévy a-stable distribution and its waiting times have a
one-parameter Mittag-Leffler distribution. Remarkably, these distributions have fat tails and an unbounded
quadratic variation. In the diffusive limit of vanishing scale parameters, the probability density of this kind of
CTRW satisfies the space-time fractional diffusion equation (FDE) or more in general the fractional Fokker-
Planck equation, which generalizes the standard diffusion equation, solved by the probability density of the
Wiener process, and thus provides a phenomenologic model of anomalous diffusion. We also provide an
analytic expression for the quadratic variation of the stochastic process described by the FDE and check it by

Monte Carlo.
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I. INTRODUCTION

A. Continuous-time random walk

The continuous-time random walk (CTRW) is a pure-
jump stochastic process used as a model for standard and
anomalous diffusion when the sojourn time at a site is much
greater than the time needed to jump to a new position, i.e.,
when jumps can be considered instantaneous events. The
CTRW has been introduced in physics by Montroll and
Weiss [1]; other seminal papers on its application to standard
and anomalous transport phenomena are due to Scher and
Lax [2,3] and to Montroll and Scher [4,5]. More recently,
Shlesinger [6] wrote a review that contributed to further
popularize the CTRW; theoretical, numerical, and empirical
studies on the CTRW have been discussed by Weiss [7],
Metzler and Klafter [8,9], and some authors of the present
paper [10,11].

In a CTRW, if X(¢) denotes the position of a diffusing
particle at time ¢, &=X(t,)—X(t,_;) denotes a random jump
occurring at a random time #;, and 7;=t;,—¢,_; is the waiting or
sojourn or interarrival or duration time between two con-
secutive jumps, one has
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def def N

X(t)=Snq) = > &, (1)
i=1

where 7,=0, X(0)=0, and N(¢) is a counting random process
that gives the number of jumps up to time ¢. Throughout this
paper, we assume the following:

(i) the jumps &, i=1,2,..., are independent and identi-
cally distributed (iid) random vectors in R%, d=1,2,... [12];

(ii) the waiting times 7;, i=1,2,..., are iid random vari-
ables in R,; and

(iii) the families (¢;,i=1,2,...) and (7;,i=1,2,...) are in-
dependent.

The third assumption means that we consider a so-called
uncoupled CTRW. The first two assumptions entail that the
joint distribution of any pair (&;,7;) does not depend on i. If,
in the uncoupled case, the law of (&, 7;) is given by a density
function ¢(&, 7), the independence of & and 7, means that it
can be factorized in terms of the marginal probability densi-
ties for jumps A(§) and waiting times ¢¥(7): o(&,7)
=NE) (7).

Equation (1) means that a CTRW is a random sum of
independent random variables. The process of the jump
times,

N
tN=2 Tis t0=07 (2)
i=1

is a renewal point process. Therefore, a CTRW can be seen
as a compound renewal process [ 13—15]. The existence of an
uncoupled CTRW can be proved based on the corresponding
theorems of existence for renewal processes and discrete-
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FIG. 1. Realization of a CTRW with exponentially distributed
waiting times (7,=0.1) and normally distributed jumps (u=0 and
0=10.2). The probability density function py(x) of X(1) is plotted
in Fig. 2, top left.

time random walks [16]. Cadlag (right continuous with left
limit) realizations of a CTRW can be easily and exactly gen-
erated by Monte Carlo simulation and plotted [11]. This is
illustrated in Fig. 1.

An uncoupled CTRW is Markovian if and only
if the waiting time distribution is exponential, i.e.,
(1) =exp(-7/vy,)/ v, [17,18]. An uncoupled CTRW belongs
to the class of semi-Markov processes [18-21], i.e., for any
ACR? and >0 we have

P(S, € A, 7, = 1Sy, ... s Toe1)
=P(S, e A, 1, =1S,_)) (3)

’Sn—l’ Tl, e

and, if we fix the position §,_;=y of the diffusing particle at
time #,_;, the probability on the right will be independent of
n. In the generic coupled case, if the law of (¢, 7,) is given
by a density function ¢(&,7), we can use S,=S,_;+¢&, and
rewrite this as

t
P(Sn €A, T = t|Sn—1) = f f qD()C - Sn—l’ T)d’de. (4)
AYJO

This can be shown as follows. Let I,(x) denote the indicator
function that yields 1 if x € A and O otherwise. Probabilities
can be replaced with expectations writing P(xeA)
=k[I,(x)]. Moreover, one has I,I3=1,np. Thus, if B=(0,1],

]P(Sn € A’Tn € B|Sn—1) = E[IA(Sn)IB(Tn)|Sn—l]
= E[IA(SH—I + gn)lB(Tn)|Sn—l]

=f J I5(S,-1 + OIp(1D) (&, T)dTdE
R4 Jo
=J JIA(Sn—1+§)§D(§,T)de§

RYJ B

t
=J fIA(x)qo(x—Sn_l,T)dex
R4 Jo

= J J o(x=S8,_,,Tdrdx. (5)
AYO
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Montroll and Weiss [1] wrote Eq. (4) as an integral equa-
tion for the probability density py(x,¢) of finding the particle
in position x at time ¢ in terms of the joint probability density
o(&,7) of the jumps & and waiting times 7,

px(x,0) = S(x)W (1) + f f (& Dpx(x = &t = 7)d7d§,
R Jo
(6)

where W(1)=1-[{y(7)dT is the complementary cumulative
distribution function for the waiting times, also called sur-
vival function. This can be shown observing that

P[X(¢) € dx|X(0) =0]= pxlx,1)dx (7)
and
PX(t) € dx|X(t')=x"]1=P[X(t-1') € dx|X(0) =x"]
=P[X(t-1")-x" € dx|X(0)=0]=py(x - x',t —1t")dx
(8)

because the increments in time and space are iid and hence
homogeneous. Moreover, from Eq. (4),

P(S; € dx, 7 € dt|Sy=0) = @(x,1)dxdt. 9)

The probability in Eq. (7) can be decomposed depending on
the duration of the first jump 7; with respect to ¢,

PIX(1) € dx|X(0) = 0] = P[X(¢) € dx, > 1X(0) = 0]
+P[X(¢) € dx,7; = 1]X(0) = 0]. (10)
The part without a jump before ¢ is given by

PIX(1) e dx,m, > 11X(0) = 0] = P(r, > 1) 8(x)dx
= 8(x) W (¢)dx. (11)

The other part is given by

P[X(1) € dx, 7, = t|X(0) =0]
t
=f J PIX(¢) € dx|X(t") =x"]
R Jo
XP(S; e dx', 1 € dt'|Sy=0)

Eq. 9) t

= j JP[X(l)EdX|X(t')=x’]<p(x’,t’)dt’dx’
R Jo

Eq. (8) t

= f Jpx(x—x’,t—t’)dxnp(x’,t’)dt’dx’
R Jo

={f J (& 1)pxx— &t — 7)dTdE |dx. (12)
R4 Jo

Combining Egs. (11) and (12) yields Eq. (6). Notice that the
latter just gives a one-point probability density, which is not
enough to characterize a stochastic process without further
assumptions.

Equation (6) can be solved in the Fourier-Laplace domain,
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1 1-is)

plk,s) = ——
1-o¢ks) S

(13)
where the Fourier and Laplace transforms are defined as

o) = FLf(x)](k) = f f)e®dx, keR, (14)

f(S)=EzD‘(t)](S)=f fe™d, seC. (15)
0

The inverse transforms to the space-time domain are possible
in the uncoupled case, i.e., when ¢(&, 7)=\(&) y(7); this leads
to a series expression written in terms of the probability
P[N(t)=n]=pp(n,t) of the counting process N(z) and the
n-fold convolution A*"(x) of the marginal probability density
of jumps A\(£),

Px(x,1) = 2 py(n, O (x). (16)
n=0

The method using integral transforms is described in several
papers, including the original one by Montroll and Weiss [1].
However, Eq. (16) can also be derived directly by probabi-
listic considerations. Indeed, Eq. (1) is a random sum of iid
random variables. This means that any position x can be
reached at time ¢ by a finite number n of jumps. The prob-
ability of reaching position x at time ¢ in exactly n jumps is
pa(n, )N (x). Equation (16) follows given that these events
are mutually exclusive. Note that py(0,H)N\**(x) coincides
with the singular term &(x)W(z), meaning that the distribu-
tion function for x has a jump at position x=0 of height W (z).

A CTRW with exponential waiting times is called a com-
pound Poisson process (CPP), as in this case

()"
Pt y) = exp(= 1/ %) = (17)

A CPP is not only a Markov but also a Lévy process. This
means that it has independent and time-homogeneous (sta-
tionary) increments. In the Lévy case py(x,t), even py(x,1),
fully characterizes the stochastic process defined by Eq. (1)
[16,22,23]; this is due to the infinite divisibility and the fact
that the increments are stationary and independent. For a
normal CPP, i.e., a CPP with normally distributed jumps
(NCPP), the n-fold convolution A*"(x) of N(u,0?) can be
evaluated as N(nu,nd?), leading to

oy 1
Px( 13,0, 7) = expl(= 117) 20—~ ———
=0 " \2mno
(x—nu)2>
Xexp| - —=" . 18
exp( 2no? (18)

B. CTRW in physics, insurance, finance, and economics

Since the seminal paper by Montroll and Weiss [1], there
has been much scientific activity on the application of the
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CTRW to important physical problems. One line of research
investigated anomalous relaxation related to power-law tails
of the waiting time distribution as well as the asymptotic
behavior of the CTRW for large times [4,24-28]. As men-
tioned above, Metzler and Klafter [8,9] extensively reviewed
these and subsequent studies. Furthermore, in their book,
ben-Avraham and Havlin [29] discussed the applications to
physical chemistry. Here, it is worth mentioning the recent
work on the relation between the CTRW and fractional dif-
fusion that can be traced to papers by Balakrishnan [30] and
Hilfer and Anton [31] and has been thoroughly discussed in
Refs. [10,11,32]. Some specific applications include, e.g.,
plasmas [33], microporous materials [34], and biopolymers
[35,36].

The CTRW has been applied also in insurance, finance,
and economics. Even if well known in the field of econo-
physics [10,37], these applications deserve a short summary.

In ruin theory for insurance companies, the jumps & are
interpreted as claims and they are positive random variables;
t; is the instant at which the ith claim is paid [38].

In mathematical finance, if P4(z) is the price of an asset at
time ¢ and P,4(0) is the price of the same asset at a previous
reference time 7,=0, then X(¢)=log[ P,(¢)/ P4(0)] represents
the logarithmic return (or logarithmic price) at time 7. In
regulated markets using a continuous double-auction trading
mechanism, such as stock markets, prices vary at random
times #; when a trade takes place, and &=X(r;)—X(t;_;)
=log[ P4(1;)/ P4(t;,;)] is the tick-by-tick logarithmic return,
whereas 7;=t;—1t,_; is the intertrade duration; for more de-
tails, see [10,37,39] and references contained therein.

In the theory of economic growth, & represents a growth
shock, which can actually be both positive and negative, X(r)
is the logarithm of a firm’s size or of an individual’s wealth,
and 7; is the time interval between two consecutive growth
shocks; see [10] and references therein.

C. Motivation for the study of stochastic integrals driven by a
CTRW and link with fractional calculus

Given the wide range of applications of the CTRW over-
viewed in Sec. I B, it is relevant to study diffusive stochastic
differential equations whose driving noise is defined in terms
of a CTRW,

dZ=a(Z,t)dt+ b(Z,1)dX. (19)

Here Z(X,t) is the unknown random function, a(Z,t) and
b(Z,t) are known functions of Z and time ¢, and dX repre-
sents the CTRW “measure” with respect to which stochastic
integrals are defined. In order to give a rigorous meaning to
such an expression, some constraints on the properties of the
CTRW are necessary. In a recent paper, the theory has been
discussed for stochastic integration on a time-homogeneous
(stationary) CTRW—i.e., the already mentioned CPPs [40].
Although the theory reported there was already well known
by mathematicians [41] and has been used in finance for
option pricing since 1976 [42], that paper contains useful
material and is written in a way that is clear and appealing
for physicists. Here, inspired by Ref. [40], the theory will be
further discussed and developed.

066102-3



GERMANO et al.

Consider a CTRW X(r) whose jumps in space ¢ are dis-
tributed according to the symmetric Lévy a-stable law,
ae(0,2], whose density can be expressed as a series or,
more conveniently, as the inverse Fourier transform of its
characteristic function,

Lo(&:7,) = 7 Lexp(= |7k 91(9). (20)

For a=2 thlS corresponds to a Gaussian with standard devia-
tion o=+ 2'yx Let the waiting times 7; of the CTRW have the
probability density

d
wgnm=—;ﬁﬁ4ﬂw%, (21)
where Eg(z), Be(0,1], is the one-parameter Mittag-Leffler
function [43—-45],

Eg(z) = 2 z e C. (22)

F(Bn +1)

For B=1 this corresponds to an exponential function. When
B<landteR,E B(—tﬁ) is approximated for small values of
t by a stretched exponential decay (Weibull function),
exp(=t#/T'(1+ p)), and for large values of ¢ by a power law,
BT (1-p).

In the diffusive limit for X(¢), when the scale parameters
v, of the jumps and v, of the waiting times vanish satisfying
the scaling relation y*/9*=D, if in Eq. (19) a=0 and b=1
the probability density p,(z,t)=px(x,t;v,,7,) converges to
the solution of the space-time fractional diffusion equation
(FDE) [46,47],

* 3
Py ﬁux(x t;D)=D I |aux(x,t;D),
uy(x,0;D)=68x), xeR, reR,. (23)

The space-fractional derivative of order a € (0,2] is defined
according to Riesz,

0 = F T W01 (24)

d||“
The time-fractional derivative of order B e (0,1] is defined
in the sense of Caputo,

B -
S0 =L - 0. @)

The FDE is a generalization of the standard diffusion equa-
tion, which results for «=2 and B=1; in this case the solu-
tion uy(x,z;D) of the Cauchy problem given by Eq. (23) is
the one-point probability density of the Bachelier-Wiener
process or Brownian motion B(r),

(01:0) = —— ( - ) (26)
ux(x,t; ex )
X amDi P\ 4Dt

and X(7) is the NCPP introduced at the end of Sec. I A. The
general solution of the FDE was worked out in the Fourier-

Laplace domain,
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a §B1
ﬁx(k,s)=—D|k|a+sﬁ. (27)
Because
sP1
E;l{w}(ﬁ = Eg(- DIK|*") (28)

defining xk=kt#'* and the time-independent Green’s function

G o p(€:D) = Fo [E5— D|k[9](&), (29)

the solution of the FDE [Eq. (23)] can be expressed in the
space-time domain as

uy(x,t;D) = t‘ﬂ/“Ga,B(xt_B/“;D). (30)

These results are a consequence of a generalized central limit
theorem for sequences of random variables [32]. A simpler
derivation can be found in Ref. [10]. For computational de-
tails see Sec. III and Ref. [11]. If a(x,?) and b(x,t) are not
constant, a fractional Fokker-Planck equation for uy(x,z;D)
has been proposed in the diffusive limit [8,48-52] starting
from a generalized master equation [50] or a CTRW [51].
For the NCPP this reduces to the standard Fokker-Planck
equation [53,54].

Without taking the diffusive limit and if ¢=0 and b=1,
the time evolution of the probability density px(x,?) is given
by the Montroll-Weiss integral equation [Eq. (6)] [1]. The
uncoupled case of the latter can be presented alternatively in
an integrodifferential form [55],

+00

[ @ Zpterrir=paten s | re-opuenae
0 T

31)

which can be interpreted as a time evolution equation of
Fokker-Planck type. It involves the time derivative
of px(x,r) and an auxiliary function ®(¢r) defined

through its Laplace transform as qg(s):‘f’(s)/@(s), so that
W (t)=[(®(1— 7)) 7)d7. This approach has been generalized
studying scores of possible kinetic equations for non-
Markovian processes [56]. What follows in Secs. II and III is
valid without necessarily taking the diffusive limit. Never-
theless, the latter is important because it motivates our par-
ticular choice for the marginal distributions of jumps and
waiting times and because it provides analytic expressions
that can be compared to our Monte Carlo results as will be
shown in Sec. III.

II. STOCHASTIC INTEGRALS

In Ref. [40], the stochastic integral is not explicitly de-
fined for a CTRW. However, starting from the fact that
sample paths of a CTRW can be represented by step func-
tions, it is possible to give an explicit formula.

A. Definitions

Some heuristic manipulations are useful for the definition
of the stochastic integral
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J(1) = JI Y(s)dX(s), (32)
0

where X(7) and Y(¢r) are CTRWs; as before we denote by ;
and & the jump times and the jumps of X(7). A particularly
interesting case is when X(¢) and Y(¢) are synchronous, i.e.,
when their jump times #; coincide; this is, e.g., the case if
Y(1)=G[X(¢)] with a suitable function G(X), but it is also
possible that the jump times coincide and the corresponding
jump sizes of X(¢) and Y(z) at t=¢; are independent.

Equation (1) defining X(r) can be written in terms of
Heaviside’s unit step function H (), which is 0 for <0, 6
for t=0, and 1 for >0 [57],

N(1)

X0)=2> EH,(t—1). (33)
i=1

The value of =H(0) often does not matter because H(r) is
mostly used as a cumulative distribution function; 6 appears
neither in the integral of H(r), the ramp function R(z)
=tH(t), nor in its derivative, Dirac’s function &(z) (actually
&(r) is not a proper function but rather a distribution in the
sense of Sobolev and Schwartz [58]). The usual choices for
the parameter 6 are 0, 1/2, and 1, corresponding to the left-
continuous, symmetric, and right-continuous variants of
Heaviside’s step function. The symmetric variant allows us
to express the step function through the sign function,
H,,»(f)=(sgn t+1)/2, and is preferred in many applications,
but picking #=1, which makes the CTRW right continuous,
appears more consistent with Eq. (1). Since the “derivative”
of Heaviside’s function H(z—t;) is Dirac’s function 8(t—t,),
we can write

N(1)

dx(t)= > &8t —1))dt. (34)
i=1
Here
def
&=AX(1)=X(rh) - X(£,) (35)
independently of 6, with
def
X(t) =lim X(s)= lim X(s), (36)
S_‘l; S—1;,5>1;
def
X(;)=1lim X(s)= lim X(s). (37)

S*)[i §—1;,5<1;

However, inserting Eq. (34) into Eq. (32) and using the prop-
erties of Dirac’s 6 function, it becomes necessary to evaluate
Y(t;). If ¢; is a common jump time of Y(¢) and X(), the value
of 6 in the Heaviside function used to express Y(r) matters
again because the values Y(f;), corresponding to =0, and
Y(t), corresponding to #=1, lead to different results. Al-
though the choice #=1 is more appropriate to represent the
CTRWSs X(r) and Y(¢) through Eq. (33), for the integral it is
equally correct to take Y(z7) or any linear interpolation be-
tween Y(7;) and Y(¢}), i.e., any value of Y(¢) in the “infini-
tesimal interval” [#;,77]. The result is a whole family of sto-

PHYSICAL REVIEW E 79, 066102 (2009)

chastic integrals depending on a parameter a €[0,1],

def [t N()
Jo(t)= f Y(s,)dX(s) = 2 Y(£)&
i=1

0
N(1)

=2 [(1-a)Y (&) +aY(DIX(E) - X(i)]. (38)

i=1

Notice that this expression is exact without the need for a
limit: the number of jumps N(z) between 0 and ¢ is a random
finite integer. Moreover, for any value of a the integral is a
right-continuous function with jumps AJ,(1;)=J,(t7)=J(f})
=Y(#/)AX(t;). This naive definition works nicely if the driv-
ing noise is a step function with jump times ¢; and jumps §&;
=X(r[)-X(r7). As X(r) and Y(z) are right continuous, we even
have X(7)=X(1;) and, if X(r) and Y(7) are synchronous, also
Y(£7)=Y(t,_,). As soon as one wants to go beyond this situ-
ation, measurability and convergence become an issue. This
observation prompted Ito to use martingale convergence
theorems to tackle the convergence for a large class of inte-
grators [59]. To do so it is necessary that J,(¢) is a martingale
whenever X(r) is; it turns out that this is the case if and only
if a=0. For this aim we assume that Y(z) is adapted, i.e.,
measurable with respect to the natural filtration generated by
the driving noise, F,=o(X(s):s =r). Therefore the integrand
Y(#;) becomes statistically independent of the increment &
=X(t;)-X(r;) and we end up with a stochastic integral, the
Ito integral I(r)=Jy(), which is a martingale (see Sec. II B
for details),

N(t) N(1)

I(="| Y(s)dX(s) = 2 Y(5)é= 2 Y(6;)[X(r) - X(1;)].
0 i=1 i=1

(39)

Evaluating Y(r) at the left end point 7; of the infinitesimal
interval [7;,7]] makes the integrand nonanticipating and
adapted. This can be seen as a causality requirement: one
does not want Y(r) to anticipate the future behavior of &(z)
[60]. An elementary introduction to the concept of a nonan-
ticipating function can be found in Ref. [61]. Any adapted
process with right-continuous (or left-continuous) paths is
progressively measurable.
Equation (38) can be rearranged to

J(0) = J1(0) + (a = D)X, Y1(2), (40)
where
def N
(41)

[X.Y1() = 2 [X(1;) - X()][Y (1) - Y(£7)]
i=1

is the covariation or cross variation of X(s) and Y(s) for s
€[0,7]. When Y(s)=X(s), the quadratic variation [X,X](z) is
denoted simply as [X](7). Thus each member of the family of
stochastic integrals with a € [0, 1] can be obtained adding a
compensator to the Stratonovich integral S(r)=J,,(f). The
latter is particularly appealing because it can be computed
according to the usual rules of calculus. However, the Ito
integral has the advantage of being a martingale, as proved in
Sec. II B. The distinction between integrals with different
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values of a disappears in the continuous limit for processes
with finite variation, e.g., continuously differentiable func-
tions, because this implies that their covariation is zero [59].
Unless stated otherwise [Y(s)dX(s) indicates the It0 integral,
while the Stratonovich integral is often denoted
JY(s)odX(s).

B. Martingale property of the Ito integral

Although it is easy to simulate directly the stochastic pro-
cess defined in Eq. (39)—see Sec. III for numerical
examples—it is not so easy to derive its properties. Each
term in the sum depends on the previous ones and the nice
properties of convolutions are not helpful here. However,
using the martingale transform theorem, it is possible to ob-
tain conditions under which I(z) is a martingale.

In order to define martingales, we need a filtered probabil-
ity space (Q,F,(F,);=0,P), where (F,),=q is a filtration—
i.e., an increasing family of sub-o-algebras—representing
the information available up to time 7. A martingale is a
stochastic process X(¢) for which the expected value E[|X(7)]]
exists for =0 and the conditional expectation E[X(¢)|F,] is
X(s) for all =5 [59,62,63].

Let us consider the natural filtration, that is the o-algebra
generated by the CTRW itself:

Fr=0(X(s):s=1)
def
=0(é),....6:m, ...tk =N®)=Gyp.  (42)
Then X(7) is a martingale with respect to F, if and only if the
mean of the jumps E[ ] is zero. Denote by (z;, &) the time
and height of the finitely many jumps i=N(s)+1,...,N(¢)
occurring between s and 7>s. Then

N(1)
EIX(O)|F]=X(s)+ X F[&F] (43)

i=N(s)+1

Using the semi-Markov property [Eq. (3)], we get for
i>N(s)

E[§i|‘7_—s] = E[§i|g1v(s)] = E[§i|§N(s)] = E[gi] =0, (44)

thanks to the independence of ¢ and &, ..., &y(,). Equation
(43) becomes

E[X(0)|F]=X(s), (45)

which shows that (X(7)),~, is indeed a martingale with re-
spect to its natural filtration.

Note that our argument is valid for a general uncoupled
CTRW. We do not need the independence of the increments
X(t+Atr)—-X(1) of the process X(¢) for nonoverlapping inter-
vals. Of course, if we have independent increments, i.e., a
CPP X(z), the proof becomes easier.

Let us now investigate the integral defined in Eq. (39) for
a martingale CTRW X(¢). If there is an arbitrary but finite
number of jumps between s and >, one has
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N(t)

EU0|FI=16)+ 2 E[Y()EGyg].  (46)

i=N(s)+1

Now, one observes that &=X(r;)—X(z,_;) and that the random
sum in Eq. (46) becomes

N(t)
> E[Y(5)EIGy)]
i=N(s)+1
N(t)

= 2 EY)X() - Xt ))|Gyg]. 47)

i=N(s)+1

If Y(1) is measurable with respect to F,=Gy,, then Y(£;) is
Gn(--measurable. Since N(#;)=N(t;_;), this means that Y ()
is QlN(ti_]>=g,»_1—measurable; this is to say that Y(#;) is pre-
dictable for the filtration G, i.e., the value of Y(f;) is known
at time #;_;. Whenever for each i the expression Y(;)[X(#;)
—X(#;_1)] has a finite absolute mean, e.g., if the process Y(r;)
is bounded—we have

ELY (1) (X(2;) = X(2,21))|Gnis))
= E[E[Y () (X(1;) = X(6:21))|Gi-1 1| Gnis) ]
=E[Y()E[(X(r) - X(1;2))|Gimi)|Gn]. - (48)

In the above calculation we have used the fact that Gy, is
contained in G;_; as i—1=N(s) along with the tower prop-
erty and the fact that we can pull out what is known from the
conditional expectation [63]. Since X(¢) is a martingale, we
have E[X(7;)| 7, ]1=X(;_;) which means that

E[Y(5)[X(z,) - X(ti—l):”gN(s)] =0. (49)

Consequently, each term in the random sum vanishes and
E[1(¢)| F,]=1(s). Summing up, if X(¢) is a martingale with
respect to F, and if the integrand is bounded and predictable,
one has that /(¢) is also a martingale with respect to F,.

II1. SIMULATION

In Sec. II we have explicitly defined and rigorously char-
acterized a martingale stochastic integral driven by an un-
coupled CTRW and given in Eq. (39), as well as a more
general class of stochastic integrals given by Eq. (38). A
useful property of these equations is that they can be easily
implemented by means of Monte Carlo simulation, as will be
shown here for the case Y(r)=X(¢). The theory of Sec. II is
the basis for the Monte Carlo solution of stochastic differen-
tial equations driven by CTRWs and discussed above in Sec.
IC.

The marginal distributions of jumps and waiting times
presented in Sec. I C are apparently demanding, but they can
be sampled easily using one-line transformation formulas
[11,64,65]. A random number ¢ drawn from the symmetric
Lévy a-stable probability density [Eq. (20)] can be obtained
from two independent uniform random numbers U,V
€ (0, 1) through a transformation due to Chambers et al. [66]
and implemented by McCulloch [67],
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cos[(1 — a)®] cos @ ’ (50)

{— log U cos @}l_l/asin(aq))
&=

where ®=7 (V-1/2). For a=2 Eq. (50) reduces to &
=27y,\V-log U sin @, i.., the Box-Muller method [68] for
Gaussian deviates with standard deviation o=\2v,. A ran-
dom number 7 drawn from the one-parameter Mittag-Leffler
probability density [Eq. (21)] can be similarly obtained from
two independent uniform random numbers U,V e (0,1)
through a transformation proposed by Kozubowski and
Rachev [69] and implemented by Germano et al. [70],

sinBm _ gm |

tan(BmV) 1)

T=—1vylog U

For B=1 Eq. (51) reduces to the transformation formula for
the exponential distribution, 7=—7, log U.

Now, as outlined above, the Monte Carlo simulation of an
uncoupled CTRW is straightforward. To compute the value
X(r), we generate a sequence of N(7)+1 iid waiting times
using Eq. (51) until their sum is greater than r. We discard
the last waiting time and generate N(¢) iid jumps &; using Eq.
(50). Their sum is the desired value of X(7). Based on Egs.
(1) and (2), this algorithm was used to generate Fig. 1. This
procedure is also the basis to compute I(r) according to Eq.
(39) or more in general J,(¢) according to Eq. (38) and the
covariation [X,Y](¢) according to Eq. (41). Each jump ¢
=X(t;)-X(r;) is multiplied by Y(¢;), (1-a)Y(¢;)+a¥(z;), or
Y(t;)-Y(s;), and the results of these multiplications are
summed to obtain I(z), J,(r), and [X,Y](z), respectively.

C++ code for the case Y(r)=X(¢), and a=1/2 is shown in
Table I. Furthermore, MATLAB scripts will be uploaded to the
MATLAB Central File Exchange [71,72]. CPU times grow lin-
early with the total number of jumps and take 1-3 us/jump
depending on « and 8 on a 2.2 GHz AMD Athlon 64 X2
“Toledo” Dual-Core processor with Fedora Core 7 Linux,
using the Ran uniform random number generator [73] and
the GNU c++ compiler (g++) Version 4.1.2 with the =03
—static optimization options. We checked that in our simula-
tions the empirical average of the number of jumps per run
coincides with the expectation of the Mittag-Leffler counting
process,

(t/')’z)ﬂ
rB+1)

Figures 2 and 3 show histograms from 1X 10° Monte
Carlo realizations of X(1), I(1)=[(X(s)dX(s), S(t)=[(X(s)
°dX(s), and [X](z), where t=1 and X(r) is a symmetric
CTRW with jump and time scale parameters linked by the
relation y*/y?=D=1. Thus the integrals in Figs. 2 and 3
give the Monte Carlo solution for =1 of the stochastic dif-
ferential equation dZ=XdX with initial condition Z(0)=0.
Since the It0 integral is a martingale starting at zero, its mean
is zero. This is not true for the Stratonovich integral.
The probability density of the Stratonovich integral S(r)
=X?(t)/2 can be worked out from the density of the
stochastic ~ process  X(r) by the transformation

E[N()]= (52)

PHYSICAL REVIEW E 79, 066102 (2009)

TABLE I. Relevant lines from the central loop of our C++ pro-
gram for the Monte Carlo calculation of a CTRW X(7), its quadratic
variation [X](z), its 1to integral I(r)=J (1), and its Stratonovich in-
tegral S(¢)=J,,(7). The histograms of the empirical probability den-
sities are plotted in Figs. 2 and 3.

jumps = 0

// Loop over runs
for (run = 1; run <= runs; run++) {

// Initialize and increment t, x, etc.

t =0, x =0, gvar = 0, ito = 0, str = O,
tau = random.t(); // Eq. (51)
while (t + tau < t_max) {
t += tau; // time t
xi = random.x(); // Eq. (50)
quar += xi¥xi; // [X](t)
ito += x*xi; // I(t)
str += (x+xi/2)*xi; // S(t)
X += xi; // X(t)
tau = random.t(); // Eq. (51)
jumps++; // N(t)
}

// Update histograms at the end of each run

hisx.add(x); // X(t)
hisq.add(qvar); // [X1 ()
hisi.add(ito); // I(t)
hiss.add(str); // S(t)

ps(s,0)=2px(x,(s),1)|dx,(s)/ds|, where the sum is over all
x; corresponding to the same s. For s=x%/2 this is X2
=+ 2s and thus

p(s.0) = 2px(\2s5.0/\2s, s>0. (53)

In the diffusive limit the NCPP X(r) approximates the
Bachelier-Wiener process B(z) [40], and thus the probability
density of the process X(¢) approximates the density of B(z)
[Eq. (26)]. The analytic probability density for the Stratonov-
ich integral S in the diffusive limit can be obtained inserting
the probability density of the Bachelier-Wiener process into
the transformation formula given by Eq. (52), yielding

(s.1:D) = —— ( S) >0, (54)
5,t;D) = expl—-— |, s>0.
bs \2mDts P\"2nr

According to Eq. (40) here I(£)=5(¢)-[X](z)/2; if the de-
pendence of S and [X] is small, the probability density of the
Ito integral is approximated by the convolution of the prob-
ability density of the Stratonovich integral with that of the
quadratic variation mirrored around zero and scaled to half
its width,
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FIG. 2. (Color online) Convergence of the empirical probability densities p from 1X 10° Monte Carlo runs (points) to the analytic
probability densities u (lines) in the diffusive limit for a CTRW X(7), its Stratonovich integral S(z), its Itd integral I(z), and its quadratic
variation [X](¢), with #=1 and different choices of the index parameters «, 8 and of the scale parameters 7, y;, where ¥,/ yf:D:].
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Probability density function
Probability density function

Probability density function
Probability density function

a=19,3=09
Y = 0.001

Probability density function
Probability density function

0=20,p=09 0=1.9,=09
7 = 0.0001 ¥, = 0.0001

Probability density function
Probability density function

FIG. 3. (Color online) Convergence of the empirical probability densities p from 13X 10® Monte Carlo runs (points) to the analytic
probability densities u (lines) in the diffusive limit for a CTRW X(z), its Stratonovich integral S(7), its Ito integral I(z), and its quadratic
variation [X](¢), with =1 and different choices of the index parameters «, 8 and of the scale parameters v,,y,, where y{/ yf =D=1.
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+o0
pix,t) = 2f ps(x +2x",0)ppg(=2x",0)dx".  (55)

-0

For all choices of a and B the agreement between the
analytic expressions for X(¢) and S(¢) in the diffusive limit
and the empirical results from Monte Carlo simulation of the
CTRWSs is fair already for the largest value 7,=0.1: the
curves cannot be distinguished by eyes at the scale of our
plots. Therefore we did not evaluate the analytic probability
density for X(7) [Eq. (18)], available for the particular case of
a NCPP only, i.e., the left column of Fig. 2. Instead the
quadratic variation [X](r) and consequently the Ito integral
tend visibly more slowly to their diffusive limits. For a
NCPP the diffusive limit of [X](z) is [B](z)=2Dt. In this limit
I(t)=S(t)-Dt=B*(1)/2-Dt, corresponding to the well-
known result that the probability density of the Ito integral is
equal to the density of the Stratonovich integral shifted by
=D, i.e., p/x,1)=pg(x+Dt,r). Though the quadratic varia-
tion of the NCPP is appreciably different from its limit &(x
—2Dr) for any noninfinitesimal value of 7y, as shown in the
left column of Fig. 2, where Dt=1, for v,=0.01 there is a
good agreement between the Ito integrals from Monte Carlo
and from Eq. (55).

The density of the quadratic variation for a CTRW can be
obtained from the density of squared jumps, \p(x), Wthh
results from a transformation of the density of jumps, A g(\x)
similar to the one that leads from py(x,7) to pg(x,r) [Eq.
(53)], except for a factor 2,

Ne(x;7,) = NV ). (56)

Inserting this equation into the solution of the Montroll-
Weiss equation [1] in the space-time domain, Eq. (16), gives

©

Pt YY) = 2 pan s NG (), (57)
n=0
where x> 0. Unfortunately even for an NCPP the n-fold con-
volution cannot be computed as easily as for py(x,7) in Eq.
(18). However, the characteristic function of the quadratic
variation can be written as

©

Ptk ts v y) = 2 puln s y)Np(ki v (58)
n=0

In order to consider nonexponential waiting times with
power-law tails and infinite first moment, for the sake of
simplicity let us assume that py(n,1) is the distribution of the
Mittag-Leffler counting process [32],

(/')’r)

pa(nt;y) = ———EF (= (1/7)"), (59)

where
EY ()= —E,;(z) (60)
This choice is more general than it seems, as the Mittag-

Leffler distribution for waiting times is an attractor for the
thinning procedure used to obtain the diffusive limit [74].

PHYSICAL REVIEW E 79, 066102 (2009)

Using the Mittag-Leffler distribution from the beginning
simplifies the derivation of this limit. Then Eq. (58) becomes
[10]

Nx1(kst3 Ve W) = Eg(= (t/y)P[1 = Na(k; v)]).  (61)

As the jumps ¢ follow a Lévy a-stable distribution, for x
— o, Na(x; y,) ~ (x/7,)"**"!, and the sum of & converges
to the positive stable distribution with index «/2, whose
characteristic function is

Ne(ksy) = Lk y) = exp((= i), (62)

The scale parameter v, is the same as in the Lévy stable
distribution [Eq. (20)]. Inserting this distribution in Eq. (61),
the diffusive limit yields the following characteristic function
for the quadratic variation:

lirx)(k,1;D) = Eg(— D(= ik)**tP). (63)
Now we can proceed in a similar fashion as for the solution
of the FDE [Egs. (29) and (30)]. Defining k=kt*#'® and
-1 . \a
M, 5(€D) = F [Eg(= D(= ix)*H)](&), (64)

where £€>0, we obtain the quadratic variation for the diffu-
sive limit in the space-time domain,

upx(x.t;D) = M, o(xr*F*, D). (65)

When a=2, M, (&) coincides with the right half of the
Mainardi-Wright function [75] of real argument, which is
also called M function of Wright type because its shape re-
calls a capital M centered in the origin. This function is
defined in the complex plane for 0<<3<<1 as

D s s B

and is a special case of the Wright function [76,77]

[’

W pr(2) = %n, Tanid) (67)
where o' >-1, B’ € R. When =2 and B=1 (standard dif-
fusion case), a delta function upxy(x,#;D)=8(x—2D1) is re-
covered, corresponding to the quadratic variation of the
Bachelier-Wiener process, [X](r)=2Dt. The plots in Figs. 2
and 3 display quadratic variations both from Monte Carlo
and from Eq. (65). The convergence of the quadratic varia-
tion in the diffusive limit can be used to prove that the inte-
grals of X(¢) as defined in Sec. II converge in the same limit.

IV. CONCLUSIONS AND OUTLOOK

This paper is based on the definition, given in Eq. (38), of
a class of stochastic integrals J,(z) driven by a CTRW X(z).
For a=0 this results in the It integral I(z) [Eq. (39)] for a
=1/2 in the Stratonovich integral. If the process X(¢) that
defines the measure used in Eq. (39) is a martingale with
respect to its natural filtration, then /() is a martingale too;
this is a consequence of the martingale transform theorem. It
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turns out that an uncoupled CTRW with zero-mean jumps is
a martingale. The stochastic integration theory developed
here is more general than the one sketched in Ref. [40], as it
can be applied also to a CTRW that is neither Markovian nor
Lévy. In fact, exponential waiting times are not needed to
prove that I(r) is a martingale if X(¢) is a martingale.

The theory presented in Sec. II lies at the foundation of
the Monte Carlo method for integrating stochastic differen-
tial equations driven by CTRWs. As explained in Sec. I,
these results are relevant for applications in physics and eco-
nomics as well as in all those fields such as insurance and
finance where martingale methods can help in the quantita-
tive evaluation of risk. Equation (38) is a convenient basis
for the Monte Carlo calculation of stochastic integrals. This
is shown in Sec. III, where Monte Carlo realizations of
CTRWs are used to effectively approximate the Ito and Stra-
tonovich integrals driven by the Bachelier-Wiener process
and, more generally, by the process whose one-point prob-
ability density function solves the space-time fractional dif-
fusion equation.

In his paper on stochastic calculus in physics, Fox [78]
reported the advice of Mark Kac not to irritate his friend
George Uhlenbeck by even mentioning Doob or Ito: physi-

PHYSICAL REVIEW E 79, 066102 (2009)

cists do not need to be concerned with mathematical techni-
calities because they in no way affect the outcome of com-
putations of physically measurable quantities. On the
contrary, we believe that up to date mathematical methods
from probability theory and stochastic calculus are beneficial
to the study of the CTRW and of other random processes
useful in statistical physics. We fear that progress will be
slower or impossible if these methods are ignored by physi-
cists.

Future work will deal with Monte Carlo simulations of
coupled CTRWs where jumps and waiting times obey fat-
tailed distributions [79,80]. There will also be a discussion of
convergence based on the results collected in Ref. [81].
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