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Friction factor of two-dimensional rough-boundary turbulent soap film flows
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We use momentum-transfer arguments to predict the friction factor f in two-dimensional turbulent soap film
flows with rough boundaries (an analog of three-dimensional pipe flow) as a function of Reynolds number Re
and roughness r, considering separately the inverse energy cascade and the forward enstrophy cascade. At

intermediate Re, we predict a Blasius-like friction factor scaling of f«Re

~12 in flows dominated by the

enstrophy cascade, distinct from the energy cascade scaling of Re™"*. For large Re, f~7 in the enstrophy-
dominated case. We use conformal map techniques to perform direct numerical simulations that are in satis-
factory agreement with theory and exhibit data collapse scaling of roughness-induced criticality, previously
shown to arise in the three-dimensional pipe data of Nikuradse.
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Turbulent flows are marked by rich structure over a range
of scales—they host fluctuations, vortices, tangles, and other
coherent structures that continue to defy a detailed analytical
understanding [1,2]. When parametrized in terms of the
typical flow speed U, characteristic length scale L and
kinematic viscosity of the fluid v three-dimensional turbu-
lence exhibits universal phenomena as the Reynolds number
Re=UL/v— . Most famously, in a theory referred to as
K41 [3,4], the dependence of the fluctuation energy spectrum
E(k) on the wave number and mean energy-transfer rate €
occurs in a way that is independent of v: E(k)=&"3k>"? for
values of the wave number in the so-called inertial range,
intermediate between the scales of forcing and the scales
where molecular viscosity becomes significant. In this iner-
tial range, turbulent eddies break up into smaller eddies
through a mechanism, which is to a first approximation
Hamiltonian, and results in a cascade of energy to smaller
length scales [5].

During the 1930s, Nikuradse undertook a systematic se-
ries of measurements of the pressure drop across a turbulent
pipe flow as a function of Re [6] and also as a function of
r/ D (the scale of the roughness of the pipe walls r) normal-
ized by the pipe diameter D [7]. The former measurements
provided strong support for the turbulent boundary layer
concept [8] and have been replicated and surpassed only re-
cently [9], while the latter measurements, despite recent ef-
forts [10,11], remain to this day the most complete data set of
its kind, spanning 3 orders of magnitude in Reynolds number
and a decade in the dimensionless roughness r. These data
reveal that the frictional drag experienced by a turbulent fluid
in a pipe with rough walls is a nonmonotonic and compli-
cated function of Reynolds number and roughness, which
despite intense interest and practical importance (see, e.g.,
Ref. [8]), has only begun to be understood [12,13] through
two related developments.

First, Gioia and Chakraborty [12] estimated the momen-
tum transfer between the walls of the pipe and the flow,
explicitly taking into account the presence of roughness.

Their resultant formula for the dimensionless friction factor
aPD | . —
f=3,7 1s expressed in terms of the turbulent kinetic-energy

spectrum E(k) and, thus, makes a direct connection between
a macroscopic flow property and the velocity field correla-
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tions. Second, Goldenfeld [13] pointed out that the power-
law behavior of Nikuradse’s friction factor data in the re-
gimes Re— and r/D—0 was analogous to critical
phenomena, where the inverse Reynolds number and rough-
ness play similar roles to, for example, the coupling constant
and external magnetic field in an Ising model. Consequently,
the dependence of Nikuradse’s data on Re and r can be col-
lapsed onto a universal function with sufficient precision for
intermittency corrections to be extracted [14]. These results
show that the friction factor reflects the nature of the turbu-
lent state through its dependence on the energy spectrum and
that the turbulent state is itself a manifestation of a nonequi-
librium critical point at Re=% and r/D—0.

The purpose of this Rapid Communication is to test the
claims of Refs. [12,13] in a context where detailed calcula-
tions are in principle possible: the case of two-dimensional
(2D) soap film turbulence [15,16]. Here, a soap film is sup-
ported between two vertical wires, and the draining flow pro-
vides a versatile laboratory for exploring two-dimensional
turbulence [16]. It is well understood that the nature of tur-
bulence in 2D is different from three-dimensional: there is no
vortex stretching, for example. Nevertheless, turbulent phe-
nomena exist and possess the novelty that there are two cas-
cades: an energy inverse cascade that runs from small to
large scales [17,18] and a forward cascade [18] in the enstro-
phy Q=|VXv[%, where v is the fluid velocity field. This
enstrophy cascade yields an energy spectrum E(k)=8*3k>3,
where S is the rate of transfer of enstrophy.

Prior work, dating back to Prandtl and others (for a re-
view, see Ref. [8]) is not able to make a prediction about the
friction factor in these cases because it has no specific rep-
resentation of the nature of the turbulent state and, in particu-
lar, is disconnected from the energy spectrum. On the other
hand, the momentum-transfer theory of Gioia and
Chakraborty [12] can reflect the character of 2D turbulent
states, as expressed by the energy spectrum, through the de-
pendence of the friction factor on Re and r. We show below
that the momentum-transfer theory predicts a significant de-
pendence of the friction factor on the nature of the turbulent
cascade, one that we observe in direct numerical simulations
reported here, and which obeys the scaling predicted by
roughness-induced criticality. Thus, our direct numerical cal-
culations agree well with the momentum-transfer and
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roughness-induced criticality picture and strongly suggest
that the standard picture of turbulent boundary layers is in-
complete.

Calculation of the friction factor scaling laws in 2D. In
the momentum-transfer theory of Gioia and Chakraborty, the
friction factor is shown to be proportional to the root-mean-
square velocity fluctuation u, at a scale s determined by the
larger of the roughness r or the Kolmogorov scale 7. Since
E(k)dk represents the turbulent kinetic energy in the wave-
number band between k and k+dk, it follows that

% 1/2
U = { f E(k)dk] . (1)
1/s

Anisotropy near the wall has only a small effect [19] on the
low-order structure function used in our calculation. For sim-
plicity, using the K41 form for E(k), we obtain foc€!/3s!/3,
With the limiting forms for s at large and small Reynolds
number, we obtain the predictions of the empirically ob-
served Blasius regime[20], in which the friction scales as
Re™* for small but turbulent Reynolds numbers, and the
Strickler regime [21] at large enough Re, where the friction
factor is independent of Re and only depends on the rough-
ness through the relation fo< (/D).

In two-dimensional turbulent systems, both the energy
cascade and the enstrophy cascade may be observed or they
may occur individually [22] depending on the manner of
energy injection and the scale at which it occurs. The two-
dimensional inverse-cascade friction factor is the same as the
case of three-dimensional flows, with a Blasius scaling of
fxRe "+ and a Strickler scaling of fo(r/D)"3. The energy
spectrum due to the enstrophy cascade leads to a new
prediction for the friction factor: a scaling of foRe™"? in the
Blasius regime and foc(r/D) in the Strickler regime. These
are our central predictions, which we seek to verify by
numerical simulation in the next section. In general, the
friction factor corresponding to any conserved quantity
(such as helicity) with units [L]YT]" is focRe (!=9/(2-9)
(Blasius regime) and fo<(r/D)'~% (Strickler regime), where
¢=al(l-b).

Simulations of 2D turbulent rough-pipe flows. To test the
momentum-transfer theory’s prediction of the friction factor
in 2D, we have performed simulations for a range of Rey-
nolds numbers and single-wavelength roughness, both with
grid-generated turbulence and turbulence generated by wall
roughness. The roughness of the wall breaks translational
invariance and means that one cannot simply solve the
Navier-Stokes equations using spectral methods. We have
overcome this difficulty by using a judiciously chosen con-
formal map technique, allowing us to use a spectral method
to satisfy incompressibility. The SMART algorithm [23] is
used to calculate the advection of the velocity field. The
friction factor is measured by computing the pressure drop
necessary to maintain the average flow velocity over the pe-
riodic domain.

To simulate a rough-walled pipe, we apply a conformal
map of the form w=z+r exp(ikz), where the aspect ratio is
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FIG. 1. Energy spectra for grid- and roughness-generated turbu-
lence. Grid-generated turbulence exhibits the k=3 enstrophy cascade,
whereas roughness-generated turbulence exhibits the k'3 inverse-
cascade scaling. Inset: simulated wall velocity profile of grid-
generated turbulence in a smooth pipe at Re=60 000. The profile is
consistent with a power law with exponent 0.323 = 0.005. We pre-
dict an exponent of 1/3 for enstrophy-cascade turbulence.

held constant (rk=3/4) and the wave number k may be var-
ied to produce roughness of different scales. Note that r
plays the role of roughness in Nikuradse’s experiments, but
our aspect ratio is 3/4 and not unity as in his experiments.
This conformal map results in the addition of two-body force
terms to the Navier-Stokes equation in the transformed (rect-
angular) domain, in addition to an overall weighting factor
deriving from the changed volume of each cell,

oV - = — |V]?

lg'P—+(V-V)V=1VV+ —A+——>
at g'[*  1g’]

2v

AL(V X V)
(2)

Here |g'|>=x>+x2=y>+y2=x,y,—X,y,, V is the velocity in
the transformed coordinates, and the vector A is defined as

X + X, X
AE|: uYuv qu:|. (3)

XuXuy — XoYuv

We use a simulation domain of 2048 X 512 to simulate a
section of pipe of diameter 1 and length 4. After initializing
the velocity field, we allow the system to evolve for a suffi-
cient number of pipe transits so that the system is fully tur-
bulent (one pipe transit corresponds to four units of time as
the mean flow velocity is set to 1 in the simulation units).
The smaller the roughness, the more transits are needed. This
results in roughness-generated turbulence, in which case the
observed energy spectrum is dominated by the inverse cas-
cade, as shown in Fig. 1.

In order to attain an enstrophy-dominated flow, we used a
technique suggested by the observations reported by Rutgers
[22]. We simulated grid-generated turbulence by placing a
series of cylinders at the mouth of the pipe; in each cylinder,
we set the velocity field to zero every time step. After one
pipe transit, the velocity field is fully developed. We then
remove the grid and allow the turbulence to decay for a
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FIG. 2. Scaling of the friction factor with respect to Re for
inverse-cascade and enstrophy-cascade dominated flows in 2D. The
roughness is #/D=0.067, and the data have been averaged over a
time of five pipe transits.

transit before we begin to measure the friction factor and
other flow properties. We have observed energy spectra
dominated by the enstrophy cascade in this system, as shown
in Fig. 1.

Our simulation results at small values of the dimension-
less roughness (r/D=0.067) are plotted in Fig. 2. These re-
sults were obtained by averaging over five full pipe transits,
yielding reproducible values for the friction factor, with con-
trolled error bars, as shown. For this flow, we observe an
approximate power-law scaling of the friction factor with
Reynolds number, with an exponent —0.22 +0.03 together
with an energy spectrum dominated by the inverse cascade.
In the case of grid-generated decaying turbulence, corre-
sponding to an enstrophy-cascade dominated spectrum, we
observe an exponent of —0.42*=0.05. These results are
within satisfactory agreement with the scalings of —1/4 and
—1/2, respectively, predicted for the 2D Blasius regime on
the basis of a momentum-transfer argument.

We cannot reach sufficiently high Reynolds numbers to
observe a pure Strickler regime, but we can verify the Strick-
ler scaling exponent with data collapse. In three dimensions
or in a system dominated by the inverse cascade, we expect
data collapse when plotting fRe!* against (r/D)Re¥* [13].
For the enstrophy cascade, these variables should be fRe'’?
and (r/D)Re'?, respectively. We have observed previously
that in the presence of roughness, the spectrum is dominated
by the inverse cascade. However, we have found that by
adding a small amount of random forcing to the velocity
field, the enstrophy cascade may be observed even in a rough
pipe though it may be coexistant with an inverse cascade.
Using this method, we can obtain the roughness dependence
of the friction factor in an enstrophy-cascade dominated
flow. The collapse of the friction factor curves using the
enstrophy-cascade variables is shown in Fig. 3. The collapse
is quite good, despite an apparent shallowness to the Blasius
regime in the raw data. This shallowness is likely caused by
the presence of a small amount of roughness, modifying the
expected Re™"? scaling at larger Reynolds numbers. We have
neglected intermittency, which is negligible in 2D [24].

Relationship of the friction factor to the velocity profile.
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FIG. 3. (Color online) The bottom inset shows the enstrophy-
cascade data collapse of the friction factor curves for nondimen-
sional roughness 0.05 (O), 0.08 ((J), 0.1 (A), 0.16 (<), and 0.2 (V)
over a range of Reynolds numbers from 1000 to 80000. The top left
inset shows the unscaled friction factor data. The top right inset
shows the energy spectrum at r/D=0.08 and Re=80 000. The
straight lines correspond to k'3 and k3.

Following Prandtl [25], we have calculated the mean veloc-
ity profile u(y) as a function of distance from a wall y and for
the enstrophy cascade this yields u(y) ~y® with a=1/3, cor-
responding to the Blasius regime. For a general conserved
quantity, a=(1-¢)/(3—¢). This relation depends on the
zero roughness limit. In [26], it has been shown that rough-
ness modifies the velocity profile so as to increase the appar-
ent scaling exponent. Other work [27,28] also considers the
influence of rough walls on the velocity profile and near-wall
scaling.

In our simulations of smooth-pipe enstrophy-cascade tur-
bulence, we have measured the velocity profile and found the
power-law scaling exponent «a=0.323*+0.005 between
0.01D and 0.1D, as shown in the inset of Fig. 1, close to the
predicted a=1/3. In the case of our rough-pipe simulations,
the velocity profile yielded an exponent of 0.333 +0.002,
significantly steeper than the predicted a=1/7 that applies in
the smooth inverse-cascade case. Our interpretation is that
this is due to the spectral contamination from an enstrophy
cascade, as in the case of the simulations with random forc-
ing that we presented. The momentum-transfer theory inte-
gral has an upper limit that is comparable with the Kolmog-
orov lengthscale at low roughness, and so in that case the
small-k part of the energy spectrum controls the friction fac-
tor scaling. Because of this, we would expect to see a veloc-
ity profile consistent with the enstrophy cascade until the
roughness or Reynolds number was high enough to place the
crossover between the inverse cascade and contaminant en-
strophy cascade below the scale of the roughness.

Our results for the power-law Blasius regime in a 2D
enstrophy-dominated turbulence show convincingly that this
regime is more than an empirical fit and has a dynamical
significance. Our direct numerical simulations support the
fundamental connection between spectral structure and fric-
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tion factor scaling, which is manifested in the observed
roughness-induced criticality.
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