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Three-dimensional poor man’s Navier-Stokes equation: A discrete dynamical system exhibiting
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inertial subrange energy scaling
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Outline of the derivation and mathematical and physical interpretations are presented for a discrete dynami-
cal system known as the “poor man’s Navier-Stokes equation.” Numerical studies demonstrate that velocity
fields produced by this dynamical system are similar to those seen in laboratory experiments and in detailed
simulations, and they lead to scaling for the turbulence kinetic energy spectrum in accord with Kolmogorov

K41 theory.

DOI: 10.1103/PhysRevE.79.065302

The “poor man’s Navier-Stokes (PMNS) equation” (epi-
thet taken from Frisch [1] where it is applied to a simple
quadratic map) is a discrete dynamical system (DDS)—
hence, very inexpensively evaluated (implying appropriate-
ness of term “poor man’s”)—derived directly from the in-
compressible Navier-Stokes (N-S) equations. It provides a
local (in space) model that is related to a pseudodifferential
operator of these equations; thus we expect the PMNS equa-
tion to be capable of producing local time series at least in
qualitative agreement with laboratory measurements and/or
direct numerical simulation (DNS). Hence, it should be a
useful contribution to high-fidelity subgrid-scale (SGS) mod-
els for large-eddy simulation (LES), leading to an ability to
simulate interactions of turbulence with other physical phe-
nomena in the inertial subrange scales and possibly below.

A thorough description of the DDS properties for what
might be associated with isotropic turbulence is provided by
McDonough and Huang [2], and this work was extended to
further examination of effects of various combinations of
bifurcation parameters (including anisotropic cases) by Mc-
Donough ef al. [3] and sensitivity to initial conditions (SIC)
by Bible and McDonough [4]. Yang et al. [5] have shown
that the two-dimensional (2D) PMNS equation can be fit to
local laser-doppler anemometry (also called velocimetry)
measurements of flow over a backward-facing step, and Mc-
Donough and Zhang [6] further extended the work of [2] to
treatment of chemical reactions, and in particular demon-
strated good qualitative agreement with nonpremixed H,
-0, turbulent jet combustion measurements.

All of the above cited references report studies in two
(physical) space dimensions. Here, we present a few of the
salient features of the three-dimensional (3D) PMNS equa-
tion in the absence of any further physics. In what follows
we first briefly outline the derivation of this DDS and note
some of its analytical properties. We then show example time
series and (frequency) power spectra for a turbulent state
corresponding to 3D homogeneous, isotropic turbulence.
Following this, we present what may be the most important
result arising from the PMNS equation, at least in the context
of its possible use in LES turbulence models—namely, k=3
energy decay in the inertial subrange. We remark that results
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presented here are not intended to be all inclusive; a far more
comprehensive treatment is in progress.

The starting point for deriving the PMNS equation is the
incompressible N-S equation, sans the pressure gradient term
(hence, related to a Leray projected form):
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The subscript ¢ denotes partial differentiation with respect to
time; V and A are gradient and Laplace operators, respec-
tively (here, in Cartesian coordinates). Re is the Reynolds
number: Re=UL/v with U and L being velocity and length
scales, and v the usual kinematic viscosity. U= (u,v,w)” is
the velocity vector. Finally,  is a bounded domain in R3
with at least Lipschitz boundaries.

The next step is to assume components of U can be rep-
resented as Fourier series (see, e.g., Foias et al. [7] for jus-
tification),
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with {¢;} being a complete (in L? a Hilbert space corre-
sponding to finite energy) orthonormal basis exhibiting com-
plex exponential-like properties with respect to differentia-
tion, and x € R3. Substitution of Eq. (2) into Eq. (1) and
carrying out the usual Galerkin procedure results in a (count-
ably) infinite system of ordinary differential equations
(ODEs) for the Fourier coefficients of the form (e.g., for the
x-momentum equation)
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where the A;cfg)m, B,(clgrn, and ng)m are Galerkin triple products
(but including wave number factors for convenient notation);
e.g., A,(;e)mE(fﬁml)fgokqoegom. The superscript (1) denotes
the first (x-) momentum equation, and k= (k,,k,,k;)" sug-
gests the meaning of the subscripts; |k| is the usual vector
magnitude which we will sometimes represent as k (without
a subscript) in the sequel.
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We remark that the ODEs consisting of Eq. (3), along
with the analogous equations for by and ¢, comprise a DNS
(albeit, not a very efficient one) of the N-S equations
(modulo some means for guaranteeing satisfaction of V-U
=0) if truncated at sufficiently high k that |k|>/Re is large
enough to provide the dissipation needed to control effects of
the nonlinear terms on the left-hand side of Eq. (3). In par-
ticular, it is possible to produce nontrivial velocity fields
without explicit pressure gradient forcing; moreover, formal
elimination of the pressure gradient within the Galerkin pro-
cedure leads to additional terms of the same form as those
arising from the advection terms.

Our goal here is completely different from producing a
DNS procedure: we wish to obtain a very efficiently evalu-
ated dynamical system that might be employed as part of a
SGS model in the context of LES. One approach would be to
construct a shell model such as those discussed in Bohr et al.
[8] and numerous references therein, but we have chosen a
different method. Namely, we discard all wave vectors in Eq.
(3) except a single arbitrary one. Note that this is similar to a
technique used in deriving the Lorenz equations (see, e.g.,
Yorke and Yorke [9]), except in that case the retained wave
vector is specified (the lowest one—which would not be of
much use in SGS model construction for LES). We remark
that extending the formulation presented below to include
additional wave numbers (e.g., so as to satisfy triad con-
straints) would be straightforward, and we plan to consider
this in future studies associated with SGS models. Indeed,
this was done in 2D for the data-fitting analyses of Yang
et al. [5], but it has not yet been carried out in 3D largely
because the SGS models constructed using a single wave
vector for each instance of the DDS have worked well, both
in the sense of at least qualitative accuracy and with respect
to good load balancing between resolved- and small-scale
LES calculations.

Suppression of wave vector subscript notation in this
single wave number case permits expressing Eq. (3) as
‘ [k [?
a+AYa?+ BYab + CWac=- —a. (4)
Re
We observe that Eq. (4), along with similar forms corre-
sponding to the y- and z-momentum equations, is a continu-
ous dynamical system of sufficient phase-space dimension to
admit chaotic solutions.

The PMNS equation derivation is completed by first ap-
plying forward-Euler temporal discretization leading to
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with analogous results for p+D and ¢"*D. here 7 is the

numerical time step size, and superscripts (n) denote time-
step index or, more appropriately, a map iteration counter.
We now apply two transformations to obtain a more conve-
nient form. The first of these was introduced in Ref. [2] and
serves to convert the quadratic map portion of Eq. (5) to a
logistic map form by setting 74V=1-7]k|>/Re= ;. Ob-
serve that this reduces the number of bifurcation parameters

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 79, 065302(R) (2009)

by one in each of the three equations. It has been shown by
Bible [10] that this also expands the range of bifurcation
parameter values over which nondivergent trajectories can be
generated by the DDS (a valuable property for modeling ap-
plications). The second transformation is the well-known lo-
gistic map scaling of May [11], B;—48;, i=1,2,3 in 3D.
The final result is the 3D poor man’s Navier-Stokes equation

a" = Ba"(1 = a™) = y,a"b™ — y,3a"c™ | (6a)
pintD) = sz(”)(l _ b(n)) _ yzla(n)b(n) _ yqu(”)c("), (6b)
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This DDS exhibits several features worth mentioning.
First, it is three dimensional and contains nine bifurcation
parameters (B;, i=1,2,3 and the y;s, i,j=1,2,3, i#));
hence, it is mathematically intractable from a pure analysis
perspective. (Lyubich [12] has noted that 2D DDSs might
well be considered the mathematics “problem of the 21st
century.”) Hence, all results to be reported herein have been
obtained via numerical computation. Second, (the arbitrary)
wave number components and numerical time step size have
been embedded in the bifurcation parameter definitions.
Next, DDS (6) possesses a “structural symmetry” analogous
to that of the N-S equations, themselves, and which is not
found in most other dynamical system models; viz., all three
equations take identical forms. In this regard, it is clear that
if the bifurcation parameters are set so that 8,=8,=0; and
all y;;s are equal, one might expect to obtain the same time
series for all of a, b and ¢, modulo effects from SIC. (The
corresponding 2D case was analyzed exhaustively in Ref. [2]
and constitutes a rather extreme form of isotropy.) Moreover,
this symmetry is lacking in the Lorenz equations and in most
shell models, e.g., that of Beck [13] in which the logistic
map (not transformed as in Ref. [11]) is used as forcing for
an otherwise linear model including some random coeffi-
cients.

Finally, we observe that the nature of the construction of
Eq. (6), disregarding the final transformations, is analogous
to deriving a pseudodifferential operator of a partial differ-
ential equation (PDE) (in this case, the N-S equations) which
is carried out by first Fourier transforming the PDE, and then
inverse transforming the result, producing (after some ma-
nipulations) an integral form of the PDE (hence, a pseudod-
ifferential operator—see Treves [14]). Within this context
consideration of only a single wave vector, as in the present
case, corresponds to a form of microlocal analysis often em-
ployed in the study of pseudodifferential operators. Further-
more, by considering only a single wave vector we obtain a
trivial form of Eq. (2), which would correspond to the inver-
sion needed to complete pseudodifferential operator con-
struction in the present countably infinite basis case. In par-
ticular, use of the Fourier series representations is the analog
of Fourier inversion in the more usual application of Fourier
transforms in a pseudodifferential operator context.

In the present brief work we will focus on only one point
of a bifurcation diagram analogous to those provided in Refs.
[2-4], corresponding to chaotic behavior of the PMNS equa-
tion solutions. All §; values are 3.9, and all ;s have a value
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FIG. 1. Velocity components, with indication of “structure”
type, and corresponding power spectra; (a) u component, (b) v com-
ponent, (c) w component, and (d) u component with different initial
conditions.

0.2. Equation (6) is evaluated for 10* iterations using 64-bit
arithmetic, starting with initial conditions a%=¢/10, p©
=v2/2, and ¢©=13/3 [except for part (d) of Fig. 1—see
below]. The last 9000 of these data points are employed in
statistical analyses other than calculation of power spectral
densities (PSDs) for which 8192 points were employed. With
assumed length and velocity scales of unity, the Reynolds
number is simply Re=1/v; we take v to be that for air at
standard conditions.

Time series are run to obtain a 2 s interval of data for
statistical analysis. Figure 1 displays only a very small sub-
interval (somewhat arbitrarily chosen near the center of the
overall interval) to permit clear presentation of the detailed
structure of the fluctuations. We observe that the raw output
from the PMNS equation generally lies in the interval [0, 1
+u] with w<0.4, typically (but depending in detail on com-
binations of bifurcation parameter values and, hence, on the
associated trajectories) for nondivergent behaviors. This is
generally inconvenient for modeling purposes, and we usu-
ally shift the observed interval to [-1,1]. In the present case
we have done this in a manner that preserves the original
relative amplitudes among the three components.

We first note that the power spectra for all three velocity
components, shown in the right-hand sides of parts (a)—(c) of
Fig. 1, are essentially identical, up to locations of “drop-
outs;” they all correspond to broad-band behavior, but with a
remnant of the fundamental frequency still persisting. More-
over, although instant-to-instant details of the three velocity
component time series shown on the left sides of these fig-
ures are quite different, it is clear that these all contain the
same types of “structures;” one can observe (at least) the
following three main types: (i) relatively long intervals of
nearly periodic (actually subharmonic) behavior (hence, per-
sistence of the fundamental frequency seen in the PSDs) with
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FIG. 2. (Color online) Turbulence kinetic energy vs wave
number.

moderate amplitude peak-to-peak oscillations, (ii) generally
much shorter periods of very low peak-to-peak amplitude
fluctuations, and (iii) quite short-duration high-amplitude
bursts. But these structures appear with varying numbers and
lengths (in time) of occurrence for each of the three velocity
components in the short interval displayed here and, in fact,
for the complete time series (not shown). This stationarity of
velocity component time series over long intervals implies
energy conservation in the sense of L? and suggests that non-
linear advective and linear diffusive (dissipative) terms of
Egs. (3) and (4) are in balance for the chosen set of bifurca-
tion parameters.

Finally, part (d) of Fig. 1 presents data for only the first
component of velocity, obtained from a separate calculation
in which all components of the initial data have been in-
creased by 0.0001, and intended to demonstrate the SIC
property of the PMNS time series for the bifurcation param-
eter values under consideration here. It is clear from the fig-
ure that the power spectrum has remained essentially un-
changed, as is true for various statistics of the time series (to
be treated in more detail in a forthcoming work). The left-
hand side of part (d) presents the time series for the u com-
ponent of PMNS velocity and should be compared with part
(a) of the figure. We can identify the same types of struc-
tures, but their sequencing is seen to be different, as would
be expected in comparisons of separate turbulent-flow ex-
perimental runs made under the same nominal conditions. It
is clear by comparing these two figures that the time series
displayed in part (d) cannot be produced by a mere phase
shift of that in part (a); hence, the SIC property observed in
turbulent flow experiments is also exhibited by PMNS equa-
tion time series. But in addition it appears likely that topol-
ogy of underlying attractors must be very similar, as must
almost always be the case in laboratory investigations—
modulo slight variations in physical bifurcation parameters
near fractal regime boundaries.

In Fig. 2 we demonstrate success of the PMNS equation
in reproducing the Kolmogorov k= energy decay in the
inertial subrange. This is a relatively easy calculation since
the dispersion relation for the formula associated with Tay-
lor’s hypothesis leads directly to conversion from (temporal)
frequency, w, to (spatial) wave number, k. Figure 2 displays
results obtained in this way. It exhibits an integral scale of
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low wave numbers, approximately a decade of inertial sub-
range, and then the beginnings of dissipation scales. The
somewhat limited extent of the inertial subrange is not in-
consistent with the moderate value of Re being considered
(~7 % 10* based on physical scales mentioned earlier). We
also remark that structure function scaling exponents, includ-
ing those at second order, (to be presented in work in
progress) do not perfectly agree with K41 theory but rather
behave as observed in physical experiments—evidently ex-
hibiting intermittency effects.

Finally, we observe that the power of the energy spectrum
beyond a wave number of less than approximately 1000 de-
cays with an exponent of —2, consistent with the beginning
of dissipation; however, this does not change even at ex-
tremely high wave numbers (beyond those displayed in Fig.
2), implying that the PMNS equation alone cannot ad-
equately represent the dissipation scales (at least when run
with the current set of bifurcation parameters and/or single
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wave vector) or, correspondingly, alone does not supply suf-
ficient numerical dissipation to control aliasing in under-
resolved LES.

The results reported in this work show a strong correla-
tion of behavior, in terms of time series and energy vs wave
number spectrum, of the poor man’s Navier-Stokes equation
and the full PDE Navier-Stokes equations. We submit that
this is not accidental; the PMNS equation has been derived
from the N-S system and is related to a pseudodifferential
operator of these equations. As a consequence, one should
expect that local behavior would show good agreement with
that of the N-S equations, leading to the conclusion that the
PMNS equation might provide a suitable starting point for
various easily evaluated algebraic models of N-S system be-
havior on subgrid scales, as needed in LES formulations re-
quiring a more detailed account of interactions of turbulence
with other physical phenomena than can be expected from
the usual filtered-equation/modeled-SGS-stress formalisms.
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