
Nonlinear phase interaction between nonstationary signals: A comparison study of methods
based on Hilbert-Huang and Fourier transforms

Men-Tzung Lo,1,2,3,*,† Vera Novak,1 C.-K. Peng,2 Yanhui Liu,4 and Kun Hu1,5,*,‡

1Division of Gerontology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
2Division of Interdisciplinary Medicine and Biotechnology and Margret and H. A. Rey Institute for Nonlinear Dynamics in Medicine,

Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
3Research Center for Adaptive Data Analysis, National Central University, Chungli 32054, Taiwan, Republic of China

4DynaDx Corporation, Mountain View, California 94041, USA
5Division of Sleep Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA

�Received 25 January 2009; revised manuscript received 13 May 2009; published 29 June 2009�

Phase interactions among signals of physical and physiological systems can provide useful information
about the underlying control mechanisms of the systems. Physical and biological recordings are often noisy
and exhibit nonstationarities that can affect the estimation of phase interactions. We systematically studied
effects of nonstationarities on two phase analyses including �i� the widely used transfer function analysis �TFA�
that is based on Fourier decomposition and �ii� the recently proposed multimodal pressure flow �MMPF�
analysis that is based on Hilbert-Huang transform �HHT�—an advanced nonlinear decomposition algorithm.
We considered three types of nonstationarities that are often presented in physical and physiological signals: �i�
missing segments of data, �ii� linear and step-function trends embedded in data, and �iii� multiple chaotic
oscillatory components at different frequencies in data. By generating two coupled oscillatory signals with an
assigned phase shift, we quantify the change in the estimated phase shift after imposing artificial nonstation-
arities into the oscillatory signals. We found that all three types of nonstationarities affect the performances of
the Fourier-based and the HHT-based phase analyses, introducing bias and random errors in the estimation of
the phase shift between two oscillatory signals. We also provided examples of nonstationarities in real physi-
ological data �cerebral blood flow and blood pressure� and showed how nonstationarities can complicate result
interpretation. Furthermore, we propose certain strategies that can be implemented in the TFA and the MMPF
methods to reduce the effects of nonstationarities, thus improving the performances of the two methods.
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I. INTRODUCTION

Many physical and physiological systems possess mul-
tiple feedback interactions among system components or
control nodes �1,2�. Phase relationship among output signals
of these systems can provide insights into underlying control
mechanisms of these interactions �3–5�. Traditional ap-
proaches to quantify phase relationship are based on Fourier
transform, which assumes stationary signals consisting of
sinusoidal wave forms. However, due to nonlinear coupling
among multiple interactions, signals of complex systems are
typically nonstationary �statistical properties such as mean
and standard deviation �SD� vary with time� �6–8�. Thus,
Fourier-based approaches are believed to be unreliable for
the analysis of nonstationary signals.

To resolve the difficulties related to nonstationarity,
Hilbert-Huang transform �HHT� that is based on nonlinear
chaotic theories has been designed to extract dynamic infor-
mation from nonstationary signals at different time scales
�9�. In the last 10 years, the HHT has been utilized in more
than 2000 published works and has been applied in a various
of research fields such as climate research �10–12�, orbit re-
search �13�, structural health monitoring �14–17�, water

wave analysis �18,19�, blood pressure hemodynamics �20�,
cerebral autoregulation �21–23�, cardiac dynamics �24�, res-
piratory dynamics �25�, and electroencephalographic activity
�26�. Recently, the HHT has been applied to quantify nonlin-
ear phase interaction between nonstationary signals �21–23�.
The HHT-based phase analysis, namely, multimodal pressure
flow �MMPF�, does not assume stationarity and is thus be-
lieved to be more reliable than traditional Fourier-based
methods �22,27�. However, no systematic studies have been
conducted to compare the performance of the MMPF method
with those of traditional approaches, especially for the as-
sessment of phase interactions between nonstationary sig-
nals.

Here we systematically study the performance of the
HHT-based MMPF method using two oscillatory signals
with prior known phase relationship. We also compare the
MMPF with the transfer function analysis �TFA�, a Fourier-
based method that has been widely used to quantify phase
relationship between two coupled signals in many physical
and physiological systems such as complex structures and
viscoelastic materials �28�, seismological monitoring system
�29�, and cardiovascular control systems �30–33�. We exam-
ine the effects on the two methods of three different types of
nonstationarities that are often observed in real-world record-
ings:

�1� Missing segments of data. During continuous signal
recordings, it is often to have portions of data that are unre-
liable and therefore need to be discarded, e.g., blood pressure
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monitor often calibrates every 1 min in order to compensate
for or correct the possible baseline drift. The missing data are
usually replaced with interpolated values obtained from local
fitting or by the global mean value. Recognizing effects of
such procedure on phase analyses is important for correct
result interpretations.

�2� Linear and step-function trends. The existence of
trends in physical and physiological time series is so com-
mon that it is almost unavoidable. For instances, an increased
resistance due to an increased temperature in an electronic
circuit can lead to a decrease in electric current, the ocean
temperature drops after the sun set and changes at different
depth levels, the heart rate can increase quickly due to men-
tal stress, and the blood flow velocity can drop suddenly due
to respiration-related CO2 changes. Mathematically, these
gradual and sharp changes can be approximately described
by linear and step functions, respectively. Here we study
trends of two simple forms �i.e., linear and step functions�
and examine their effects on the estimations of phase inter-
actions between two oscillators. We consider the cases when
trends are independent of the mechanisms related to or con-
trolling the phase interactions between two oscillators.

�3� Mixed chaotic oscillations at different frequencies. A
physical or physiological system usually contains many con-
trol nodes that influence the system at different frequencies.
Thus, signals of the system may have multiple oscillatory
components centered at different frequencies, and each com-
ponent may represent a distinct underlying mechanism. Ad-
ditionally, each oscillatory component in each signal is not
necessarily stationary with sinusoidal wave forms but rather
displays a chaotic behavior as characterized by a broad peak
in power spectrum �i.e., the amplitude and period of an os-
cillator vary at different times�. Therefore, it is often difficult
or even impossible to separate different components based
on Fourier transform. To determine effects of nonstationarity
associated with multiple oscillatory components and their
varying wave forms on phase analysis, we consider the cases
that two signals have two corresponding oscillatory compo-
nents and the phase interaction between two signals is differ-
ent when choosing different corresponding components �see
details in Sec. II A 2�.

To test and compare performances of the MMPF and the
TFA, we generate two oscillatory signals with an assigned
constant phase shift. We generate the first oscillatory signal
using sinusoidal wave forms, and the other signal using the
same instantaneous amplitudes and phases of the first signal
but with an assigned phase shift �see details in Sec. II A�. For
such two stationary oscillations, the MMPF and the TFA
should give the same phase relationship, i.e., a constant
phase shift between two signals that is equal to the assigned
phase shift. Next we will artificially introduce nonstationari-
ties into the signals and perform the MMPF and the TFA
methods on the nonstationary signals �Sec. II A�. Deviations
of the new phase shifts from the originally assigned phase
shift value will reveal influences of nonstationarities on the
two methods. We note that a real physical or physiological
time series often possesses different types of nonstationari-
ties at different time windows �Sec. IV and Appendix C�. In
order to understand the superposed effects of all nonstation-
arities in real data on phase analysis, it is important to use the

deductive approach to understand effects of each type of
nonstationarities, separately.

The layout of the paper is as follows. In Sec. II, we briefly
introduce the TFA and the MMPF methods. We also describe
how to generate two signals with designed phase relationship
and how to introduce different types of nonstationarities. In
Sec. III, we present our simulation results and demonstrate
effects of nonstationarities caused by missing data, linear
trends, step functions, and mixed oscillatory modulations at
different frequencies. We also compare the performances of
the MMPF and the TFA and discuss certain strategies to
minimize effects of nonstationarities on the two methods. In
Sec. IV, we provide examples of nonstationarities and their
effects on the MMPF and the TFA in real physiological data
analysis �cerebral blood flow velocity and blood pressure�.
Data was collected from the previous studies that were in
accordance with the Helsinki Declaration of the World Medi-
cal Associations and were approved by the institutional hu-
man subjects Internal Review Board at Beth Israel Deacon-
ess Medical Center. All subjects provided written informed
consent prior to participation. In Sec. V, we summarize our
results and discuss the advantages and the disadvantages of
the two methods.

II. METHODS

A. Surrogate signals

To test performances of the MMPF and the TFA, we gen-
erate two oscillatory signals denoted as I�t� and O�t� that
have assigned phase interactions. For convenience, we call
I�t� the input signal and O�t� the output signal. To simplify
the interpretation of the simulation results, two signals have
oscillations centered at the frequency f0 and with an assigned
constant phase shift ���t�=��0=� /10=18°. The length of
the signal is 5 min, and the sampling frequency of each sig-
nal is 50 Hz �t=0.02i, i=0,1 ,2 ,3 , . . . ,15 000�.

1. Surrogate signals with missing data or trends

To simulate signals with nonstationarities caused by miss-
ing segments of data and trends, we generate I�t� and O�t� in
the following steps:

Step 1. First, we generate a stationary oscillatory signals
that have sinusoidal wave forms with a constant amplitude
and frequency: I0�t�=A0 cos�2�f0t�.

Step 2. The Hilbert transform of I0�t� is obtained by

Ĩ0�t� =
1

�
P� I0�t��

t − t�
dt�, �1�

where P denotes the Cauchy principal value. The instanta-
neous amplitude AI�t� and the phase pI�t� of I0�t� can be
calculated from the analytical signal as follows:

I0�t� + iĨ0�t� = AI�t�ejpI�t� �2�

For the sinusoidal function, AI�t�=A0 and pI�t�=2�f0t.
Step 3. We generate the second signal O�t� by adding a

phase shift ���t� to pI�t� while keeping the same instanta-
neous amplitude AI�t�,
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O�t� = Re�AI�t�ej�pI�t�+���t��� = AI�t�cos�pI�t� + ���t�� . �3�

Here we consider two signals with a constant phase lag
���t�=��0. Thus,

O�t� = AI�t�cos�pI�t� + ��0� . �4�

For the sinusoidal wave form I0�t�=A0 cos�2�f0t�, O�t�
=A0 cos�2�f0t+��0�.

Step 4. �1� To test the effect of nonstationarity associated
with missing segments of data, we divide O0�t� into nonover-
lapped 10-s segments, randomly chose m% of all segment,
and replace points in the chosen segments with the global
mean. �2� To test the effect of nonstationarity associated with
trends, we superpose O0�t� with a linear trend y�t�=a0+b0t

or a step-function trend y�t�= �
0 t�t1

G t�t1
�, where a0, b0, and G

are constants: O�t�=O0�t�+y�t�.

2. Surrogate signals with mixed chaotic oscillations
at different frequencies

To simulate more realistic and more complex nonstation-
arities, we generate two oscillatory signals with varying fre-
quency and amplitude. Additionally, we introduce to each
signal a second oscillatory component that is independent of
the original oscillation component but may have a Fourier
spectrum with overlaps �frequent band� with the original
component. We consider the case that the phase relationship
between the additional components in the input and the out-
put signals is different from that between the first compo-
nents. For simplicity, we assign the phase lag zero for the
additional oscillatory components in two signals. The proce-
dure includes the following steps:

Step 1. We generate a set of one cycle sinusoidal wavelets
�i.e., �i�t�=Ai cos�2�

t
Ti

� , 0� t�Ti�, where the amplitude Ai

and the period Ti obey uniform distributions. The mean and

the standard deviation are �A	 and 	A for Ai, and T̄=1 / f0 and
	T for Ti, respectively.

Step 2. Next we construct a nonstationary signal I0�t� by
stitching these sinusoidal wavelets together.

Step 3. We generate O0�t� from I0�t� in the same way as
described in Sec II A 1 �steps 2 and 3� for pure sinusoidal
I0�t�.

Step 4. We repeat steps 1–3 to generate a second pair of
oscillatory signals, I1�t� and O1�t�, by choosing a different

set of periods Ti� with a different mean period T̄� or fre-

quency f̄�=1 / T̄�. In addition, we assign the phase shift 0 for
the two new oscillators.

Step 5. We superpose I0�t� with I1�t� to generate I�t�
= I0�t�+
I1�t�, and O0�t� with O1�t� to generate O�t�=O0�t�
+
O1�t�, where 
 is the weight of the second oscillatory
component in each signal.

The generated I�t� and O�t� have two mixed chaotic os-
cillations centered at different frequencies and the phase lag
between two signals at the two frequencies are different
���0=� /10 between I0�t� and O0�t�, and 0 between I1�t� and
O1�t��.

B. Transfer function analysis

The TFA is based on Fourier transform. The main concept
of the method is to decompose each signal into multiple
sinusoidal wave forms at different frequencies and to com-
pare the amplitudes and phases of components between two
signals at each frequency. To illustrate the TFA algorithm, we
consider an input signal I�t� and an output signal O�t�, each
with 5 min and a sampling rate of 50 Hz �15 000 data
points�. The two time series are first divided into 100-s seg-
ments with 50% overlap �i.e., each segment�. In each seg-
ment, the Fourier transform of I�t�, denoted as SI�f�, and the
Fourier transform of O�t�, denoted as SO�f�, are calculated
with a spectral resolution of 0.02 Hz. Then SI�f� and SO�f�
were used to calculate the transfer function

H�f� =
SI�f�SO

� �f�

SI�f�
2

= G�f�ej��f�, �5�

where SO
� �f� is the conjugate of SO�f�, 
SI�f�
2 is the power

spectrum density of I�t�, G�f�= 
H�f�
 is the transfer function
amplitude �gain�, and ��f� is the transfer function phase at
frequency f . Then the average G and � are obtained within
an interested frequency band �e.g., 0.3�0.02 Hz for the
simulated 0.3 Hz oscillator and 0.75�0.02 Hz for 0.75 Hz
oscillator in this study� from all segments. For two oscilla-
tory signals with a constant period and with a fixed phase
shift, e.g., I�t�=A0 cos�2�f0t� and O�t�=A0 cos�2�f0t
+��0�, the average transfer function phase at f = f0 is
��TFA� �̄=��0.

In addition to the assumption that signals are composed of
sinusoidal wave forms, transfer function analysis also as-
sumes the linear relationship between two signals. Thus, the
method calculates a parameter, called coherence, to indicate
whether the assumed linear relationship is reliable. The co-
herence C�f� is defined by

C�f� =

SI�f�SO

� �f�
2


SI�f�
2
SO�f�
2
. �6�

Ranging from 0 to 1, the coherence value close to 0 indicates
the lack of linear relationship between the input and the out-
put signals. Therefore, G�f� and ��f� cannot be used if C�f�
is too small ��0.5�.

C. Multimodal pressure-flow method

The MMPF method includes four major steps: �1� decom-
position of each signal �the input and the output� into mul-
tiple empirical modes, �2� selection of empirical modes for
�dominant� oscillations in the input signal and corresponding
oscillations in the output signal, �3� calculation of instanta-
neous phases of the extracted input and output oscillations,
and �4� calculation of input-output phase relationship.

Step 1. Empirical mode decomposition. To achieve the
first major step of MMPF, empirical mode decomposition
�EMD� algorithm based on Hilbert-Huang transform is used
to decompose each signal into multiple empirical modes,
called intrinsic mode functions �IMFs� �20�. Each IMF rep-
resents a frequency-amplitude modulation in a narrow band
that can be related to a specific physical or physiologic pro-
cess �20�.
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For a time series x�t� with at least two extremes, the EMD
extracts IMFs one by one from the smallest scale to the larg-
est scale using a sifting procedure

x�t� = c1�t� + r1�t�

=c1�t� + c2�t� + r2�t�

]

=c1�t� + c2�t� + ¯ + cn�t� , �7�

Where ck�t� is the kth IMF component and rk�t� is the re-
sidual after extracting the first k IMF components �i.e.,
rk�t�=x�t�−�i=1

k ci�t��. Briefly, the extraction of the kth IMF
includes the following steps:

�i� Initialize h0�t�=hi−1�t�=rk−1�t� �if k=1, h0�t�=x�t��,
where i=1.

�ii� Extract local minima and maxima of hi−1�t� �if the
total number of minima and maxima is less than 2, ck�t�
=hi−1�t� and stop the whole EMD process�.

�iii� Obtain upper envelope �from maxima� and lower en-
velope �from minima� functions p�t� and v�t� by interpolat-
ing local minima and maxima of hi−1�t�, respectively.

�iv� Calculate hi�t�=hi−1�t�− p�t�+v�t�
2 .

�v� Calculate the SD of p�t�+v�t�
2 .

�vi� If SD is small enough �less than a chosen threshold
SD max, typically between 0.2 and 0.3� �20�, the kth IMF
component is assigned as ck�t�=hi�t� and rk�t�=rk−1�t�
−ck�t�; otherwise, repeat steps �ii�–�v� for i+1 until SD
�SD max.

Steps �i�–�vi� are repeated to obtain different IMFs at dif-
ferent scales until there are less than two minima or maxima
in a residual rk−1�t�, which will be assigned as the last IMF
�see the step �ii� above� �Fig. 1�.

To better extract oscillations embedded in nonstationary
physiology signals, a noise assisted EMD, called ensemble
EMD �EEMD� �34�, has been implemented in the MMPF
method �see details in Appendix A�. The EEMD technique
can ensure that each component does not consist of oscilla-
tions at dramatically disparate scales, and different compo-
nents are locally nonoverlapping in the frequency domain.
Thus, each component obtained from the EEMD may better
represent fluctuations corresponding to a specific physical
and physiologic process.

Step 2. Mode selection. The second step of the MMPF is
to choose an IMF for the input signal I�t� and the corre-
sponding IMF for the output signal O�t�. How to select an
IMF depends on the interested frequency range under study.
Here we focus on in the frequency band centered at a given

frequency f0. The selected IMFs denoted by I��t� and Ô�t� are
used for the analysis of phase relationship.

Step 3. Instantaneous phases of oscillators. The third step
of the MMPF analysis is to obtain instantaneous phases of
two oscillations using Hilbert transform �see Sec. II A 1�.
For the chosen IMFs, I��t� and Ô�t�, we use Eqs. �1� and �2�
to obtain their instantaneous phases, pI�t� and po�t�, respec-
tively.

Step 4. Phase relationship between two oscillations. The

instantaneous phase shift between two oscillators can be cal-
culated as ���t�= po�t�− pI�t�. There are many indices that
can be derived from the phase shift time series pI�t� and po�t�
�or ���t�� to characterize phase relationship between the two
oscillators, including the mean and the standard deviation of
phase shifts �21–23�, and synchronization index �5,35� and
cross-correlation index �36�. In this study, since we consider
two oscillatory signals with a preassigned constant phase
shift, we use the mean phase shift in each simulation
��MMPF=���t� to quantify the phase relationship.

III. SIMULATION RESULTS

A. Effects of missing data

In this section, we study how missing data affect the per-
formances of the MMPF and the TFA. We artificially intro-
duce missing data in the output signal O�t�=A0 cos�2�f0t
+��0� by selecting a number of 10-s segments and replacing
the data points in the segments with the global mean �zeros
in the simulations� �Fig. 2�b��. For simplicity, the input signal
I0�t�=A0 cos�2�f0t� has no missing data �Fig. 2�a��. Because
the signal length is 300 s, each missing segment corresponds
to 3.33% of the total data points. For a given number of
missing segments or a given percentage of missing data, we
repeat the simulation 50 times, each time with randomly se-
lected 10-s segments. In each simulation, we perform the
MMPF and the TFA analyses to obtain ��MMPF and ��TFA.

The results indicate that �i� the MMPF underestimates the
phase shift between two signals due to missing data
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FIG. 1. �Color online� Demonstration of empirical mode decom-
position. �a� Input and �b� output signals are blood pressure and
cerebral blood flow velocity of an old subject during supine rest
conditions, respectively. Intrinsic mode functions �IMFs� of �c� in-
put and �d� output signals. IMFs of mode 6 in two signals corre-
spond to the oscillations induced by respiration.
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���MMPF���0� �Fig. 2�b�� and �ii� the difference between
��MMPF and ��0 �i.e., ��MMPF−��0� is linearly proportional
to the percentage of missing data �Fig. 3�a��. To explore the
underlying reason for the effect of missing data, we study the
instantaneous phase shift ���t� between selected IMFs of
I�t� and O�t�. We observe that ���t� in the missing segments
displays large fluctuations with values approximately distrib-
uting uniformly from −� to � �−180° to 180°� �Fig. 3�b��.
Clearly, these artifacts caused by missing oscillatory cycles
in O�t� induce a white noise background in ���t� and the
average of these artifact values is zero. Since ��MMPF is the
average of all points in ���t� including m% data for missing
segments, we can obtain

��MMPF = �m/100� 
 0 + �1 − m/100���0 = ��0 −
��0

100
m .

�8�

The derived analytical relationship between ��MMPF and
the percentage of missing data �m� is consistent with the
simulation results. With the knowledge of how missing data
affect ���t�, we can improve the performance of the MMPF
by �i� calculating the median of ���t�, �ii� removing a uni-
form �white-noise� background in the distribution of ���t�
and calculating ��MMPF as the average of the remain values,
or �iii� identifying and removing artifact data points in those
cycles with huge jumps �to 180°� and drops �to −180°�. Us-

ing the second strategy �see Appendix B�, the improved
MMPF essentially eliminates the effect of missing data,
yielding a phase shift ��MMPF that is identical to ��0 �Fig.
2�b��.

For the TFA, we found that the average of ��TFA obtained
from 50 simulations is close to �or not significantly different
from� ��0. However, there is a large variation in the values
obtained in different realizations, as indicated by the large
standard deviation of ��TFA values �Fig. 2�b��. The variation
becomes larger when the oscillation frequency is lower
�smaller f0=0.3 Hz� �Fig. 2�c��. Although it is clear that the
random error is caused by the altered Fourier transform due
to missing data, there is no efficient way to compensate for
such an influence in each simulation. The realistic approach
that can minimize the effect on the TFA is to select signals
without missing data or to rely on a large number of simu-
lations in order to obtain a more reliable average.

B. Effect of linear trend

In this section, we consider the case in which the input
signal I�t� is a pure sinusoidal signal I0�t�=A0 cos�2�f0t� and
the output signal is a sinusoidal signal O0�t�=A0 cos�2�f0t
+��0� with a linear trend y�t�=a0+b0t �Fig. 4�a��. We apply
the MMPF to I�t� and O�t�. The decomposition procedure of
the MMPF �EMD or EEMD� can perfectly separate and the
linear trend �IMF in mode 1� and the sinusoidal component
�IMF in mode 2� in the output signal �Fig. 4�b��. Thus, the
phase difference between the input and the output signals
obtained from the MMPF at the given frequency f0 is iden-
tical to the assigned value ��MMPF=��0=18°. The result re-
mains the same for different frequencies f0 of the sinusoidal
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signal and different slopes b0 of the linear trend �Fig. 4�d��.
We also apply the TFA on the same I�t� and O�t�. The trans-
fer phase angle is ��TFA=18° when b0=0 �i.e., no linear
trend�. However, when b0�0, ��TFA deviates from the ex-
pected value and becomes larger and larger for increasing b0
�Fig. 4�d��. The increase in ��TFA is more pronounced for
the sinusoidal wave form with a lower frequency �smaller
f0�, e.g., the deviation is larger for f0=0.3 Hz compared to
f0=0.75 Hz �Fig. 4�d��.

The effect of the linear trend on the TFA can be easily
understood when considering the Fourier transform of the
linear trend �Fig. 4�c��. Due to the assumption of sinusoidal
wave forms in the Fourier transform, the linear trend has a
significant contribution to all frequency bands in Fourier
space, especially to the lower-frequency band �smaller f0�
�Fig. 4�c��, thus affecting the oscillatory component centered
at f0. The overestimation of the phase shift with the presence
of a linear trend is caused by the fact that the Fourier phase
of a linear trend is between 90° and 180° �Fig. 4�c��, which
is much greater than the assigned phase shift ��0=18° be-
tween two oscillations. Therefore, to minimize effects of the
linear trend and to obtain reliable estimate of phase shift
between two oscillatory signals, a detrending process �i.e.,
removing polynomial trends in two signals� is usually per-

formed before applying the TFA method �32�. It is a general
misunderstanding that polynomial fit can efficiently remove
trends, so that the identified effect of linear trends on phase
analysis is not a serious concern. On the contrary, filtering
trends is not a trivial task because different local trends can
be present at different time windows in real signals �37�. As
we demonstrated in Appendix C, detrending by polynomial
fit can lead to residual trend that may still complicate phase
analysis.

C. Effect of step function

In this section, we study the influence of sudden drift in
the recording on the MMPF and the TFA methods. The sud-
den drift is modeled mathematically as a step function,

y�t� = � 0 t � t1

G t � t1,
� �9�

where G is a constant and t1 is randomly chosen from a
uniformly distributed values from 0–300 s. Thus, we con-
sider the input signal I�t�=A0 cos�2�f0t� and the output sig-
nal O�t�=A0 cos�2�f0t+��0�+y�t� �Fig. 5�a��.
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For the MMPF method, a step function contributes to dif-
ferent components or IMFs at different frequency bands �Fig.
5�b��. Thus, the step function in the input signal affects the
extracted oscillatory component of at frequency f0, leading
to a certain deviation of the phase shift ��MMPF from the
expected value ��0=18° �Fig. 5�e��. The contribution of the
step function to each IMF displays a similar wave form
shape although the scale of the wave form is different for
different IMFs. It is important to note that the influence of
step function on each IMPF is localized and centered at t
= t1. Thus, the step function affects the instantaneous phase
shift ���t� mainly at 
t1. �Fig. 5�c��. We can minimize the
effect of the step function on the MMPF in the same way as
in the case of missing data, i.e., filtering out the outlines in
instantaneous phase shift ���t� �Appendix B�.

A step function also affects the performance of the TFA,
leading to �1� an overestimation of the mean phase shift
���TFA���0� and �2� a variation in ��TFA in different real-
izations �Fig. 5�e��. The effect of step function is much stron-
ger for low-frequent oscillatory signals compared to high-
frequent signals, i.e., ��TFA increases more for lower
frequency f0 �Fig. 5�e��. Similar to the case with a linear
trend, the frequency-dependent effect of a step function is
due to that the Fourier amplitude of a step function is aver-
agely larger in lower-frequency band than in higher-
frequency band �Fig. 5�d��. However, unlike a linear trend,
the Fourier amplitude of a step function displays “notches” at
certain specific frequencies where Fourier amplitude be-
comes zero �Fig. 5�d��. Theoretically, if f0 in our simulation
is the frequency corresponding to certain notch and the mean
phase shift ��TFA is obtained at the same frequency point,
��TFA should be the same as ��0=18° �no effect from the
step function�. However, this case can hardly occur in a real
study because the frequencies of the input and the output
signals unlikely coincide with the notch frequency of a step
function and the TFA phase shift is always based on the
average results in a preselected frequency band.

D. Mixed nonstationary oscillations at different frequencies

In this section, we consider input signals I�t�= I0�t�
+
I1�t� with two oscillation components, i.e., an additional
oscillator I1�t� is embedded in the original oscillatory signal
I0�t�. To better mimic real nonstationary physical and physi-
ological signals, we create each oscillation component �I0�t�
and I1�t�� that has varying amplitude and period �Figs.
6�a�–6�c��. The output signal O�t�=O0�t�+
O1�t� has also
two corresponding components: one component O0�t� has
the same instantaneous amplitude as I0�t� but has a constant
phase advance ��0=18°, and O1�t� is the same as I0��t� �see
Sec. II A 2 for details�.

First we consider that the oscillation periods of the two
components in I�t� have no overlapping �Fig. 6�e��: �i� the
oscillation period of the interested component I0�t� has a uni-

form distribution from 3 to 4.2 s with the average T̄=1 / f0
=3.6 s and �ii� the period of I1�t� has a uniform distribution

from 1.2 to 1.8 with the average period of T̄�=1 / f̄�=1.5 s.
For a chosen weight 
 of the second component �I1�t� and
O1�t��, we repeated the simulation 50 times. In each realiza-

tion, amplitude, period, and order of oscillations in I0�t� and
I1�t� are randomly generated. Generally, the MMPF can
separate the two oscillatory components �modes 3 and 2 in
Fig. 6�d��, so that ��MMPF is very close to the assigned phase
difference between I0�t� and O0�t� ���0=18°� �Fig. 6�f��. In-
creasing the weight of I1�t� does not significantly affect the
mean value of ��MMPF averaged over 50 realizations. How-
ever, I1�t� does induce certain random variation in different
realizations, as characterized by a standard deviation of
��MMPF that increases when the weight of I1�t�, 
, increases
�Fig. 6�d��. In contrast to the MMPF, the TFA significantly
underestimates the phase difference between I0�t� and O0�t�
in the presence of the second oscillatory component I1�t�.
The deviation of ��TFA from ��0=18° increases with in-
creasing the weight of I1�t�. The influence on the TFA of the
second oscillatory component is caused by the fact that I1�t�
still has a slight contribution to the frequent band that is
chosen to calculate transfer phase �0.25–0.3 Hz� �Fig. 6�e��.
This observation has an important implication for phase
analysis of nonstationary signals, indicating that interested
oscillatory components must be dominant in signals with
multiple components for a reliable estimation of phase rela-
tionship by the TFA. In addition, there is a large variation in
��TFA among different realizations even in the absence of
the second oscillatory component �
=0� �Fig. 6�e��, indicat-
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two oscillatory components without significant overlapping in fre-
quent domain. �a� A surrogate input signal I�t� with two oscillatory
components. �b� I0�t� at low frequency �centered at 0.28 Hz� and �c�
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ing that nonstationarity associated with varying amplitude
and cycle period can also affect the performance of the TFA.
We further consider the case that the oscillation periods of
the two components in I�t� have certain overlap �Fig. 7�: �i�
the oscillation period of the interested component I0�t� has a
uniform distribution from 3 to 6 s �Fig. 7�b�� and �ii� the
period of I1�t� has a uniform distribution from 0.6 to 3.6 s
�Fig. 7�c��. Thus, the power spectra of two components have
a significant overlapped part between 0.1 and 0.4 Hz �Fig.
7�e��. Clearly, the MMPF cannot separate I0�t� and I1�t� very
well, and the selected IMF that resembles I0�t� mostly �mode
4 in Fig. 7�d�� is also contributed partially from I1�t�. As a
result, the MMPF cannot estimate the phase shift between
I0�t� and O0�t� very reliably ���MMPF���0�, and the devia-
tion of ��MMPF significantly increases when the weight of
I1�t� increases �Fig. 7�e��. For the TFA analysis, ��TFA cal-
culated at the frequency between 0.17 and 0.33 Hz is even
smaller than ��MMPF �i.e., deviating more away from the
expected value ��0=18°� �Fig. 7�f��. This observation indi-
cates that the second oscillation significantly affects the per-
formances of the MMPF and TFA. This may be not surpris-
ing because the two corresponding components in I�t� and
O�t� can have undistinguishable oscillations over a range of

overlapped frequency and no existing empirical analysis can
reliably separate these two components.

For signals with two oscillatory components, the above
simulation results indicate that the MMPF performs rela-
tively better than the TFA due to the fact that the EMD or the
EEMD can better separate two oscillatory components than
Fourier transform. With such a consideration, we propose to
apply the TFA to the IMFs extracted from the EMD or the
EEMD rather than to original signals. By applying the modi-
fied TFA to the same surrogate data, we showed that the
estimated phase shift is much closer to the expected value,
compared to the original TFA results �Figs. 6�f� and 7�f��.
For the same reason, we expect that the modified TFA should
have a better performance in analyzing signals with linear
trends or step functions.

IV. APPLICATION OF PHASE ANALYSIS TO BLOOD
PRESSURE AND FLOW INTERACTION

In this section, we discuss the application of the MMPF
and the TFA methods for the assessment of phase relation-
ship between blood pressure and cerebral blood flow velocity
at the respiratory frequency �0.1–0.4Hz�. To demonstrate
nonstationarities and their influences, we selected three sub-
jects including two controls �subjects 1 and 2� and one dia-
betic subjects �subject 3� as examples �Table I�. Both blood
pressure and flow signals have complex temporal structures,
showing multiple oscillatory components at different time
scales �Figs. 1 and 8� and different types of trends at differ-
ent locations. In addition, certain artifacts during the data
acquisition can also affect the signals. For examples, the
BFV signal in the second subject declined abruptly at time
course around 210 s and then returns to base line at 230 s
�Fig. 8�b�� and the BFV signal of the third subject had a
segment of missing data at 
160 s �Fig. 8�c��. These non-
stationarities introduced by intrinsic and extrinsic factors can
substantially affect the estimation of BP-BFV phase relation-
ship as we demonstrated in our simulations. For the three
subjects, the estimated phase shift between blood pressure
and blood flow velocity were quite different using the
MMPF and using the TFA �Table I�. Interestingly, the results
of the modified TFA are very close to those of the MMPF
�Table I�. These results may be caused by the fact that non-
stationarities have stronger effects on the original TFA and
that the modified TFA has a better performance as we dem-
onstrated in the simulations. The different degrees of influ-
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FIG. 7. �Color online� Effect on the phase shift estimation of
two oscillatory components with a significant overlap in frequent
domain. �a� A surrogate input signal I�t� with two oscillatory com-
ponents: �b� I0�t� at low frequency �centered at 
0.25 Hz� and �c�
I1�t� at high frequency �centered at 
0.4 Hz�. Both components
have varying amplitudes and cycle periods that obey a uniform
distribution. �d� IMFs of the input signal I�t� obtained from the
EEMD. Mode 4 IMF represents mostly the component I0�t� in �b�,
mode 2 IMF represents partially the component I1�t� in �c�, and
mode 3 is contributed partially by I0�t� and partially by I1�t�. �e�
Fourier amplitudes of I0�t� and I1�t� at different frequencies show a
significant overlap between the components of I0�t� and I1�t� in
frequency domain. �f� Mean phase shifts calculated from the
MMPF, the TFA, and the modified TFA methods for different
weights of I1�t� in the input signal �I�t�= I0�t�+
I1�t��. Data are
presented as mean and standard deviation �error bar�. Each data
point was from 50 realizations.

TABLE I. MMPF, TFA, and modified TFA results of phase
shifts between blood pressure and blood flow velocity in three rep-
resentative subjects.

Subject

Phase shift
�deg�

MMPF TFA Modified TFA

1 31.1 15.5 26.1

2 36.5 18.0 39.5

3 13.1 27.3 13.9
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ence on the MMPF and the TFA due to nonstationarities may
also provide an explanation for the discrepancy in our previ-
ous study that the MMPF reveals a significant alteration of
blood flow regulations in diabetes while the TFA could not
identify the alteration using the same database �Sec. IV� �22�.

V. DISCUSSSION

In this study, we systematically study the effects of differ-
ent types of nonstationarities on two phase analyses. Our
simulation results indicate that all tested nonstationarities
have less or more influences on the performances of the TFA
and the MMPF, depending on the type and the degree of
nonstationarity and the frequency of interested oscillatory
components. Compared to the TFA, the MMPF has generally
a better performance in the presence of these nonstationari-
ties, as evident by �i� a smaller variation in estimated phase
shifts for oscillatory signals with missing data or with vary-
ing amplitude and cycle period, �ii� resistance to linear
trends, and �iii� less change associated with step-function
trends and with multiple oscillatory components. To mini-
mize the effects of certain nonstationarities �e.g., trends and
missing data�, data preprocessing such as detrending or re-
moving segments should be performed to obtain more reli-
able phase relationship. Moreover, we introduce a simple
process of filtering instantaneous phase shifts in the MMPF
that can automatically and efficiently eliminate the effects of

missing data and step-function trends �Sec. III A and Appen-
dix B�. We also propose to apply the TFA on the interested
oscillatory components extracted by the EMD or the EEMD
�the modified TFA� in order to minimize the complication of
multiple oscillatory components in signals �Sec. III D�.

As a simulation study to test the performance of the
MMPF in analyzing nonstationary signals, we only consid-
ered surrogate data with a single global linear trend or one
localized step-function trend in the simulations. However,
different types of nonstationarities �e.g., high-order polyno-
mial trends, random spikes, and oscillation with nonsinusoi-
dal wave forms� usually coexist in real data, as we demon-
strated in BP and BFV signals �Sec. IV�. Even for the same
type of nonstationarities �e.g., linear trend�, the degree of the
nonstationarities �e.g., slope of linear trend� can vary at dif-
ferent time locations �Appendix C�. All these factors will
further complicate phase shift estimation. Thus, surrogate
data used in our simulations were simplified cases for real-
world nonstationary signals. On the other hand, this deduc-
tive approach to separate and evaluate effects of each type of
nonstationarities is valuable for understanding the super-
posed effects of all nonstationarities in real data. In fact,
these simulation results can provide more informative guid-
ance for experimental and methodological designs to account
for targeted nonstationarities, as compared to the approach of
attempting to simulate superposed effects from all types of
nonstationarities in a real physical or physiological signal.

In this study, we assume in our simulations that different
types of nonstationarities are independent, so that their ef-
fects on results can be additive based on simulations of in-
dividual nonstationarities. However, it is possible that differ-
ent nonstationarities can be inter-related and such
interactions can provide important information about the un-
derlying control mechanisms. Additionally, we consider only
two oscillatory signals with a constant phase shift to simplify
the simulations and interpretations. For real physical and
physiological systems, phase relationship between oscilla-
tory signals is usually not constant and often displays dy-
namic variations. Indeed, these variations in phase shift may
provide additional information on the underlying mechanism
controlling phase interactions. Therefore, further studies are
needed to examine the performance of a phase analysis in
estimating other variables related to dynamic phase interac-
tions.

Nevertheless, this study provides clear evidence for three
important conclusions. �1� Nonstationarity can significantly
influence phase analysis and complicate the data interpreta-
tion. �2� Generally, the MMPF has a better performance than
the TFA for nonstationary data. The different performance is
essentially due to the different decomposition algorithm, i.e.,
the MMPF uses Hilbert-Huang transform while the TFA is
based on Fourier transform. Therefore, one focus of future
method design in phase analysis is to improve decomposition
or filtering algorithm. �3� Nonstationarities in physical and
physiological data are often unavoidable. However, their ef-
fects on the phase analysis can be minimized by applying
concepts and strategies derived from nonlinear dynamics,
mathematics, and statistical physics. As a demonstration, we
proposed the modified TFA and the MMPF methods in this
study and showed that they have better performances for
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FIG. 8. �Color online� Different types of nonstationarities in
blood pressure �BP� and cerebral blood flow velocity �BFV�. �a�
The same BP and BFV signals in healthy elderly subject as shown
in Fig. 1. There are intrinsic multiple oscillatory components that
correspond to different physiological processes �Fig. 1�. �b� BP and
BFV signals in a healthy elderly subject. There is a segment of BFV
�210–230 s� with a bad quality that might be caused by external
influences during the data acquisition. �c� BP and BFV signals in a
patient with diabetes. BFV drops to zero at two locations due to
interruptions during the recording.
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certain specific types of nonstationarities. These findings will
provide a useful guidance for further method designs aiming
to better assess nonlinear interactions between nonstationary
signals.
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APPENDIX A: ENSEMBLE EMPIRICAL MODE
DECOMPOSITION

For signals with intermittent oscillations, one essential
problem of the EMD algorithm is that an intrinsic mode
could comprise of oscillations with very different wave-
lengths at different temporal locations �i.e., mode mixing�.
The problem can cause certain complications for our analy-
sis, making the results less reliable. To overcome the mode
mixing problem, a noise assisted EMD algorithm, namely
the EEMD, has been proposed �34�. The EEMD algorithm
first generates an ensemble of data sets obtained by adding
different realizations of white noise to the original data.
Then, the EMD analysis is applied to these new data sets.
This approach is inspired by recent study of statistical pros-
perities of white noise, which showed that the EMD acts as
an adaptive dyadic filter bank when applied to white noise.
Therefore, adding white noise would force the bits of signal
with different time scales, which are automatically projected
onto proper scales of reference established by the white
noise. Finally, the ensemble average of the corresponding
intrinsic mode functions from different decompositions or
trials is calculated as the final result to cancel out the added
white noise. Shortly, for a time series x�t�, the EEMD in-
cludes the following steps:

�i� Generate a new signal y�t� by superposing to x�t� a
randomly generated white noise with amplitude equal to cer-
tain ratio of the standard deviation of x�t� �applying noise
with larger amplitude requires more realizations of decom-
positions�.

�ii� Perform the EMD on y�t� to obtain intrinsic mode
functions.

�iii� Iterate steps �i� and �ii� m times with different
white noise to obtain an ensemble of intrinsic mode function

�IMF� �ck
1�t� ,k=1,2 . . .n�, �ck

2�t� ,k=1,2 . . .n� , . . . , �ck
m�t� ,k

=1,2 . . .n�.
�iv� Calculate the average of intrinsic mode functions

�ck�t� ,k=1,2 ,n�, where ck�t�= 1
m�i=1

m ck
i �t�.

The last two steps are applied to reduce noise level and to
ensure that the obtained IMFs reflect the true oscillations in
the original time series x�t�. In this study, we repeat decom-
position m times to make sure the noise is reduced to negli-
gible level.

APPENDIX B: IMPROVED MMPF METHOD

To eliminate effects of nonstationarities �e.g., missing
data� on the MMPF method, we modify the last step of the
MMPF, in which the mean phase difference ��MMPF is cal-
culated from the instantaneous phase difference ���t� be-
tween two signals. Instead of averaging the phase difference
���t� over all sampled points directly, we first evaluate the
histogram �or probability density function, denoted as
P����� of phase difference ���t� and attempt to remove the
contribution of missing data from the histogram. Since the
values of ���t� during the missing segments obey a uniform
distribution from −� to −� �Sec. III A�, we can estimate the
uniform distribution B from the value of P���� at phase
difference between −0.8� to −0.7� or between 0.7� and
0.8�, i.e., we assume that only missing data significantly
contribute to phase shift with large magnitudes while the
phase shift between real signals has relatively small values.
Thus, ��MMPF can be calculated from the density function
P����−B,

��MMPF = �
−�

�

��
�P���� − B�

�
−�

�

�P���� − B�d��

d��. �B1�

As we demonstrate in Sec. III A, the modified MMPF has a
better performance than the original MMPF when there are
noisy or missing portions in data.
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FIG. 9. �Color online� �a� A surrogate oscillatory signal. �b� The
signal in �a� superposed with multiple local linear trends. �c� Ex-
tracted oscillatory signal by linear detrending and sixth-order poly-
nomial detrending. �d� Decompositions of surrogate data by EMD.
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APPENDIX C: EXAMPLE OF POLYNOMIAL
DETRENDING IN DIFFERENT LOCAL LINEAR TRENDS

To minimize effects of the linear trend and to obtain reli-
able estimate of phase shift between two oscillatory signals,
a detrending process �i.e., removing polynomial trends in
two signals� is usually performed before applying the TFA
method �32�. A single linear trend can be removed using
polynomial fitting. However, different local linear trends are
usually present in a real signal. It is not a trivial task to filter
such trends in the signal. Figure 9 is an example to show that

such complicated trends are not easily removed by polyno-
mial fitting. In Fig. 9, the surrogate data are composed of a
pure sinusoidal oscillation and a nonstationary trend, which
is constructed by cascading several linear functions with ran-
dom slopes and durations one by one �see Fig. 9�b��. Inspec-
tion of Fig. 9�d� shows that EMD can separate the sinusoidal
oscillations and trends completely; however, such trends can-
not be perfectly fitted by polynomial equation; thus, the re-
sidual is apparent as shown in Fig. 9�c� even utilizing the
high-order polynomials. Accordingly, after polynomial de-
trending, the residual trend still complicates phase shift esti-
mation.
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