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Packaging effects on site-specific DNA-protein interactions
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We show that the rate of site-specific association of a protein molecule of interest with the DNA chain can
be ~10%> times higher than that of the three-dimensional diffusion-controlled collision rate limit
~10% mol~! s~! only when the protein molecule of interest searches for its specific site on the DNA chain in
a reduced dimensional space with a dimensionality d, of d,<<1. Upon considering the concurrent dynamics of
the linear DNA chain that is embedded in a d-dimensional space along with the one-dimensional diffusion
dynamics of the nonspecifically bound protein molecule on the DNA chain, we derive the generalized scaling
law & ~232=4*3 where ¢ is the number of times by which the rate of site-specific association of the protein
molecule with the DNA chain can be enhanced over the three-dimensional diffusion-controlled collision rate
limit and d is the dimensionality of the reduced search space. Using the analogy between the self-intersection
loop length in the theory of random walks and the ring-closure events in the theory of site specific interactions
of a protein molecule with the DNA chain, we further show that the extent of packaging and volume com-
pression of the genomic DNA inside the living cell is designed in such a way that the efficiency of the protein
molecule in the process of searching for its specific site on the genomic DNA is a maximum. Our simulation
results suggest that the volume compression factor € which is the ratio between the total volume of the living
cell and the volume occupied by the DNA chain along with all the other bound protein molecules should be
such that 6= 100 for an efficient site specific interaction of a protein molecule of interest with the linear DNA
chain that is embedded in a three-dimensional space. Our theoretical and simulation results agree well with the

E. coli cellular system.
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I. INTRODUCTION

Site-specific interaction of a protein molecule with the
DNA lattice is a fundamental process in molecular biology
and biological physics [1]. Transcription of the genomic
DNA starts with the recognition of the promoter sequences
by the RNA polymerase (RNAP) enzyme complex (RNAP in
prokaryotes and RNAPII in eukaryotes), and replication of
the genomic DNA starts with recognition of the origin of
replication by the DNA polymerase enzyme complex. It was
believed earlier that the site-specific interaction of a protein
molecule with the DNA chain is a single-step three-
dimensional diffusion-controlled bimolecular rate process.
However detailed experimental studies [2—4] on the interac-
tion of the lac-repressor protein with its specific operator
sequence on the DNA chain showed a bimolecular associa-
tion rate of ~10'° mol™' s™' which is ~10? times higher
than that of the three-dimensional diffusion-controlled colli-
sion rate limit of ~10% mol™' s~!. Clearly this observation
ruled out the possibility of a single-step recognition mecha-
nism which is exclusively based on the three-dimensional
diffusion process. It seems that such higher site-specific as-
sociation rates could originate when the protein molecules
are searching for their specific sites on DNA in a reduced
one- or two-dimensional space [2]. Based on this idea, a
two-step model on the site-specific interaction of the protein
molecule of interest with the DNA lattice was proposed. Ac-
cording to this model, the protein molecule of interest non-
specifically binds with DNA via three-dimensional diffusion
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in the first step, and then it searches for its specific site via
one-dimensional diffusion along the template DNA under
nonspecifically bound conditions [3,4] in the second step.
The bimolecular rate associated with the nonspecific in-
teraction step which is mediated by the three-dimensional
diffusion is directly proportional to the total length of the
DNA under consideration. When the length of the DNA mol-
ecule of interest is N base pairs (bps), then the maximum
achievable bimolecular rate for the nonspecific interaction
step can be of the order of ~N X 108 mol~! s~!. This follows
from the fact that the DNA chain of N bps in length has at
least (N—m—1) numbers of nonspecific binding sites for the
protein molecule of interest whose recognition stretch on the
DNA chain under consideration is only m bps. In real situa-
tions generally N> m since [1] the genome size will be in the
order of N~ 10° bps for bacteria such as E. coli, and the
recognition stretch of the protein molecule will be in the
order of m~10? bps. Particularly for the RNAP enzyme
complex the length of the recognition [1] stretch m on the
DNA chain is m~ 60 bps. One should note that the protein
molecule of interest can also find its specific site on the DNA
chain even in the first nonspecific interaction step with a
maximum achievable rate of ~N X 108 mol~! s™!. However
the probability or steric factor of such a site specific bimo-
lecular collision event is very low as ~(1/N). The one-
dimensional searching step is the rate limiting one which
decides how many times by which the overall site-specific
association rate can be higher than that of the three-
dimensional diffusion-controlled collision rate. Assume that
the protein molecule has already made a nonspecific contact
with the DNA chain and it is currently scanning the genomic
DNA for its specific site via one-dimensional diffusion-
mediated random search with unit bps step size. Under this
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condition, using the results from the theory of random walks
and mean first passage time (MFPT) calculations one can
show [3,4] that the average search time 7, that is required by
such a protein molecule to locate its specific site on the DNA
chain via one-dimensional diffusion with unit base-pair step
size scales with the size of DNA such as a stiff rod as 7
o N2, and this type of searching is not an efficient one. Ear-
lier studies suggested that the efficiency of the one-
dimensional diffusion-mediated searching process could be
enhanced [3,4] by various facilitating processes such as cor-
related sliding, hopping, and intersegmental transfers via
ring-closure events. These facilitating processes eventually
increase the one-dimensional diffusion coefficient that in
turn decreases the time that is required by the protein mol-
ecule to locate its specific site on the genomic DNA. In the
presence of either these facilitating processes or a linear-type
free-energy potential (a correlated walk) which induces a
drift motion that favors the dynamics of the protein molecule
towards its specific binding site, the overall search time 7,
that is required by the nonspecifically bound protein mol-
ecule to locate its specific site on DNA via one-dimensional
diffusion-mediated search scales with the total length of the
DNA chain as 7,*N.

The molecular structure, spatial arrangement, and the ex-
tent of packaging or compression of the genomic DNA inside
the living cell seem to be well designed in such a way that
the overall efficiency of the protein molecule in locating its
specific site on the genomic DNA is a maximum. The ge-
nomic structure in prokaryotes has been shown to be de-
signed such that the genes corresponding to the DNA binding
proteins (DBPs) and their respective specific sites on the ge-
nomic DNA are generally colocalized [5]. This ensures faster
searching of DBPs for their specific sites on the genomic
DNA within physiologically reasonable time scales. Eukary-
otic genomes are more complex than that of the prokaryotes
and also larger in size. Additional driving factors such as
cis-acting regulatory elements (enhancers) are required for
efficient RNAPII-promoter interactions and subsequently for
the initiation of transcription of the gene of interest in eu-
karyotes. Apparently these cis-acting elements can increase
the probability of transcription of the associated genes only
when the jump size associated with the dynamics of the cor-
responding transcription factors (TFs) on the genomic DNA
is equal to or higher than a critical value k. [6] that scales
with the length of the genomic DNA N as k,~2N?3. Re-
cently influence of the spatial organization of the DNA chain
on the rate of site-specific interaction of the protein molecule
with DNA has been studied [7] in detail.

In this paper we address an important question how the
extent of compression or packaging of the genomic DNA
inside the living cell influences the efficiency and rate of the
site-specific interaction of a protein molecule of interest with
DNA. The outline of this paper is as follows. We will derive
a functional relationship between the degree of packaging or
volume compression of the genomic DNA inside the living
cell and the jump size associated with the dynamics of the
nonspecifically bound protein molecules which are in the
process of searching for their specific sites on DNA via ring-
closure events. For this purpose we use the analogy between
the self-intersection loop length in the theory of random
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walks and ring-closure events which are observed in the site-
specific interactions of the protein molecules of interest with
the DNA chain. We further derive a generalized functional
relationship between the reduced dimensionality d and the
number of times & by which the rate of site-specific associa-
tion of the protein molecule with DNA can be enhanced over
the three-dimensional diffusion-controlled collision rate
limit. We finally apply these results to E. coli bacterial sys-
tem and demonstrate that the extent of packaging or com-
pression of the genomic DNA of this bacterium is in such a
way that the efficiency associated with the searching of the
nonspecifically bound protein molecules for their specific
sites which are present on the genomic DNA is a maximum.

II. THEORY

Consider a linear DNA polymer of N bps length that con-
tains a specific binding site for a DBP. Initially this DBP was
in solution. Upon colliding with the DNA chain which is
mediated by a three-dimensional diffusion, the DBP of our
interest nonspecifically binds with the DNA chain at a bimo-
lecular collision rate of ~N X 10® mol™' s7!. Here the non-
specific interactions of the protein molecule with the DNA
chain mainly originate from the electrostatic forces present
in between the negatively charged phosphate backbone of the
DNA chain and the positively charged side chains of the
aminoacids which are present in the DNA-binding domains
(DBDs) of DBPs. We assume that this electrostatic attractive
potential is approximately an invariant quantity along the
entire DNA chain. As a result, the nonspecifically bound pro-
tein molecule of our interest will stay in this electrostatic
attraction domain that is closer to the DNA chain for a longer
time. Under such nonspecifically bound conditions, the ther-
mally driven diffusion dynamics of the protein molecule on
the DNA chain will be mostly confined to the two-
dimensional cylindrical surface of the DNA molecule. Since
most of the DBPs such as RNAPII complex enfold the DNA
chain upon their nonspecific binding, one can approximately
assume the dynamics of the protein molecule of interest on
the two-dimensional cylindrical surface of the DNA mol-
ecule as a one-dimensional diffusion dynamics along the
DNA chain. Here one should note that the one-dimensional
diffusion-mediated searching of the nonspecifically bound
protein molecules for their specific sites on the genomic
DNA is often interrupted by many dissociation and associa-
tion events since the electrostatic forces are weakened by the
solvent water molecules which are present at the interface of
DNA-protein complex and also by the ions which are present
in the bulk medium [8].

Under such conditions, the total free energy that is asso-
ciated with all the bonding- and nonbonding-type nonspecific
interactions which are present in between the protein mol-
ecule and the DNA chain can be assumed to be comparable
with that of the thermal free energy (RT=kgN,T
~0.591 kcal mol™' at  T=298K, where R=kzN,
~1.986 cal mol! K™! is the universal gas constant, kg is the
Boltzmann constant, N, is the Avogadro number, and 7 is the
absolute temperature in K), and one can ignore the finer de-
tails about the interactions at the interface of the nonspecifi-
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cally bound protein molecule and the DNA chain. On the
other hand, it seems that for an efficient site-specific associa-
tion of a protein molecule with the DNA chain the free en-
ergy associated with all the bonding- and nonbonding-type
nonspecific interactions should be comparable with that of
the thermal free energy [10]. Upon making a nonspecific
contact, the protein molecule of interest randomly scans the
DNA chain for an average length of L bps for a time of 7;,
[9-11], and then it dissociates from the DNA chain to reas-
sociate back at a different or the same location. The above
said condition can also be created artificially by manipulat-
ing the ionic strength of the medium in which the site spe-
cific association of the protein molecule of interest with the
DNA chain is taking place. Here we use the fact that an
increase in the ionic strength would eventually weaken the
electrostatic forces which are present in between the protein
molecule and the DNA chain [12]. That is to say, the dynam-
ics of the protein molecule of interest on the DNA chain can
be assumed as a one-dimensional diffusion of a random
walker along a linear lattice that is embedded in a three-
dimensional space or box under constant electrostatic poten-
tial along the DNA chain. Throughout this paper, we measure
the dimensional quantities in terms of bps using the transfor-
mation rule 1 bps=~3.4X 10710 m.

The total search time that is required by the protein mol-
ecule to locate its specific site on the DNA chain can be
derived as follows. Let us denote the time that is required by
the protein molecule of interest to make a nonspecific contact
with the DNA chain via three-dimensional diffusion-
mediated search as 7,,. From the theory of random walks
[11,12] and MFPT calculations one can derive the time that
is required by the nonspecifically bound protein molecule to
scan an average length of L bps of DNA as 7, =L*(6x,)”". If
the protein molecule scans L bps upon each of its nonspecific
contact with the template DNA, then the minimum amount
of search time 7, that is required by the protein molecule to
locate its specific site on the DNA chain of N bps length can
be given as follows:

7= NL™ (7, + 75) = Tip + Tap. (1)

Here 7,=L*(6x,)”" s is the time taken [11,12] by the protein
molecule to randomly scan an average length of L (bps),
x,(bps®>s7!) is the one-dimensional phenomenological
diffusion coefficient associated with the dynamics of the
protein molecule of interest on the DNA chain and
the time that is required for the nonspecific binding is de-
fined as 7,,=(kN)'=7,N"' s, where k=7, is the three-
dimensional diffusion-controlled bimolecular collision rate
(~10® bps~!' s7!). One should note that the prefactor NL™! in
Eq. (1) is the minimum number of dissociation and associa-
tion events followed by a nonoverlapping mean-free-path
length of L bps that is required by the protein molecule of
interest to randomly scan the entire DNA chain. We have
used 7;_; in Eq. (1) mainly to account for the fact that the
site of nonspecific contact on DNA will be automatically
checked by the protein molecule of interest for its specific
site and the protein molecule would need to search only L-1
bps among L bps. Many interesting results can be derived
from Eq. (1) as follows:
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(a) Overall the protein molecule spends 7p=NL"'7,
amount of time in the one-dimensional diffusion-mediated
random search along the DNA chain and 7yp=NL'7,,
amount of time in the three-dimensional diffusion-mediated
random search before locating its specific site on the DNA
chain of interest.

(b) When there is no electrostatic attraction present be-
tween the protein molecule and the DNA chain, then we find
that L— 1 and Eq. (1) reduces to 7,=(N7,,)=7, which is the
maximum average time that is required by the protein mol-
ecule to find its specific site on DNA via the three-
dimensional diffusion-mediated search. Under this condition,
the minimum achievable site specific association time is 7
~ 1, since the protein molecule of interest can also find its
specific site on the DNA chain upon making the first contact
with a probability of ~(1/N). As a result one can conclude
that the overall search time 7, will be in such way that 7,
=7,=7,, which also means that 1=(7,/7)=(1/N) after
some algebraic manipulation. If we define the number of
times by which the rate of site specific association of the
protein molecule of interest with the DNA chain can be
higher than that of the three-dimensional diffusion-controlled
rate k, as e=17,/ 7, (bps), then by inverting the inequality 1
=(7,/7,)=(1/N) we find that ] =e=<N.

(¢) When L>1 Eq. (1) can be approximated as 7,
~NL (7, +7,). Upon solving d,7,=0 for the optimum
value of L, it can be shown [9] that the condition that is
required to achieve an overall minimum search time is given
as T, =T where L,,=V6N"'x,7, and subsequently one
finds that L™ 7,/ N. From these results one can derive the
minimum achievable search time for the protein molecule of
interest to find its target site on DNA as Ts,mm:2T,L;;, and
the maximum achievable enhancement factor over the three-
dimensional diffusion-controlled collision rate as &g,y
:T,T;:nin. This also means that under such optimum condi-
tions, the one-dimensional diffusion coefficient x,; can be ex-
pressed as Xd,0=8,2nax2N(3T;)_]- From the theory of random
walks [12,13] one can also find an expression for the one-
dimensional diffusion coefficient as xd’,ZE;;k_k(izwi), where
k is the unbiased jump size associated with the dynamics of
the protein molecule along the DNA chain. Here the jump
size k that is directly proportional to the degree of conden-
sation of the DNA chain means that the protein molecule of
interest that is nonspecifically bound with the DNA chain can
jump from its current position x to anywhere in the range of
positions x * k with equal probabilities which are given as
¢;=1/(2k) for i=*+1,*2,..., * k. Here the jumps associ-
ated with the protein molecule on the DNA chain are mainly
driven by the ring-closure events in the three-dimensional
space which are consequences of the condensation of the
DNA polymer. In the context of site-specific interaction of a
protein molecule with the DNA chain, the transition rates w;
associated with the jumping of the protein molecule of inter-
est from one position of the DNA chain to another position
of the same DNA chain are the three-dimensional diffusion-
controlled collision rates as w;=(¢;e;)=k,. Here ¢;=1/(2k)
are the probabilities associated with the protein molecule to
jump in an unbiased manner to the lattice positions x =i
starting from x and e;=2kk, is the rate associated with such a
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jump with jump size of k bps since it is similar to that of the
nonspecific interactions between 2k numbers of nonspecific
binding sites and a protein molecule of interest. Upon sub-
stituting these expressions in x,,, we find that x,,
~2k*(k,/3) where k>1 is the average unbiased jump size
(bps) associated with the dynamics of the nonspecifically
bound protein molecules which are in the process of search-
ing for their specific sites on the DNA chain. Upon equating
the expressions for the one-dimensional diffusion coeffi-
cients as x,,=x,, and subsequently solving the equation for
the jump size variable k, we find the optimum jump size &,
that is required to attain a maximum of the enhancement
factor & as kya=&-> N3, Here one should note that
should be in such a way that k,,, =N which means that
{e253 N3} < N. This follows from the fact that k,,,, cannot be
higher than that of the length N of the DNA chain under
consideration. Upon solving the inequality {sing 13 <N for
€max We recover our earlier result (b) as g, =N. These re-
sults should also be true even when the linear DNA chain
under consideration is embedded in an n-dimensional space.
When the nonspecifically bound protein molecule randomly
searches for its specific site along the linear DNA chain that
is embedded in an n-dimensional space, then we have x,,,
~ 2" 1S 2e,p; where e;=2kk, is the overall rate associated
with the transition and the probability associated with the
protein molecule to jump to the site x *i starting from the
position x is ¢;=1/(2"k) since there are 2k numbers of pos-
sible jumps where i=1,2...k and each jump is associated
with 2"~! numbers of additional degrees of freedoms. As a
result we will again have x,,,=x,,. In deriving the expres-
sion for the one-dimensional diffusion coefficient x,, we
have assumed that the DNA chain is a static one which may
not be correct. When the concurrent dynamics of the DNA
chain is also considered, then the diffusion coefficient x,,
will be enhanced to a factor of at least 2 [14] as x,,— 2x,,,.
Under this condition we have k=& (N/2)"* and subse-
quently upon insisting the condition that k., =N and solv-
ing this inequality for &,,, we find that &,,,=\2N which
explicitly follows from &2 (N/2)'*<N.

(d) When the nonspecific interaction that is present in
between the protein molecule and the DNA chain is very
strong, then L—N and Eq. (1) reduces to 7,~ (7y+7,,).
Upon substituting x,=x,, in the expression of 7 in 7, we get
7,=7[(N*+4k>)/ (4k’N)]. Under this condition, when N>k
the maximum achievable enhancement factor &, will be such
that £,~ N?/(4k®). When we insist the condition that this
maximum possible enhancement factor g, should be such
that £,= e, where ¢ is the required value of the enhancement
factor for which the system needs to be tuned up, then upon
solving the inequality {N?/(4k*)}=¢ for the jump size k we
arrive at the following scaling relationship between the criti-
cal jump size k.(A) (bps) that is required to achieve a given
preset site-specific association rate that is & (bps) times
higher than that of the three-dimensional diffusion-controlled
collision rate and the size of the DNA chain N under consid-
eration as follows [12]:

k(A) = {(e/4)'’N*"}. (2)

Equation (2) states that any required value of & can be
achieved by tuning the jump size k.(A) which is not correct
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in all the situations since it is meaningless to have a jump
size such that k.(A)> N for a given DNA chain of N bps in
length. In the following sections we will show that it is
meaningless even when the jump size k.(A) is increased such
that k.(A)>{2N?"}. Since from the result (c) we have x,,,
=x4, Eq. (2) is valid even when the DNA chain under con-
sideration is embedded in an arbitrary d-dimensional lattice
box and the random walk or jump of the protein molecule
along such a DNA chain is considered instead of the random
walks or jumps in a one-dimensional space. When the
concurrent dynamics of the DNA chain is also considered,
then we have x;—2x;, and Eq. (2) becomes as k.(A)
> {(8/8)1/3N2/3}.

One can also derive the scaling law similar to the one
given by Eq. (2) from a purely random-walk perspective as
follows. Consider a linear lattice of N units in size where the
lattice position x=0 is a reflecting boundary and the lattice
position x=N is the “only” absorbing boundary for the ran-
dom walker which is present inside this lattice interval
(0,N). This means that the random walker can escape only
through the lattice point x=N and it will be reflected back
into the interval (0,N) whenever x> N and x<0. We assume
that the random walker was present initially at the lattice
position x=x, at time =0, where 0<<x,<N, and it is cur-
rently at the lattice position x at time 7. The dynamics of such
a random walker can be well described by the Langevin-type
equation as d,xzv‘"Dfx,,, where &, is the Gaussian white
noise with the mean as (& ,)=0 and the variance as
(&,:6.,)="06(t—1") and D is the one-dimensional phenomeno-
logical diffusion coefficient. The Fokker-Planck equation
corresponding to the temporal evolution of the probability of
finding the random walker at the lattice point x at time ¢
which started from the lattice point x=x at time =0 can be
written as d,P(x,¢ xO,O)z(D/Z)&ZXP(x,t Xg,0). Here the ini-
tial condition is given as P(x,0|x,,0)=d8(x—x,) and the
boundary conditions are given as [dPlio=[3 P>y
=[P],_y=0. The MFPT associated with the escape of such a
random walker through the lattice position N can be derived
from the corresponding backward-type Fokker-Planck equa-
tion xddiT(x)=—2 with the similar boundary conditions
[d,T]—o=[d,T],>n=[T],-y=0 as follows [12,13]:

T(xo) = D' (N* - xp). 3)

Here we have D:E;l_l(izw,-)zl by definition, where w.
=e.,¢p.,=(1/2). Since the three-dimensional diffusion-
mediated transitions are not allowed in the present case, one
should note that the rates of transitions associated with the
random walker under consideration in a dimensionless form
are defined as e. ;=1 and the probabilities associated with
these unbiased transitions are defined as ¢-.;=(1/2). When
the three-dimensional diffusion-mediated transitions are also
considered, then we have e ;=2r, where we have defined the
dimensionless rate associated with the three-dimensional
diffusion-mediated transition as r,. We measure the MFPT
T(x) in terms of the dimensionless number of steps which is
required by the random walker to find the lattice point N. In
spite of an unit-step size assumption, if the random walker
jumps on the linear lattice under consideration in an unbiased
manner with an average step size of &, then the MFPT that is
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required by such a random walker to escape only through the
lattice point N starting from the lattice point x, can be de-
rived as follows [14]. As we have already defined in the
previous sections, here the jump size k means that the ran-
dom walker can jump from its current position x to anywhere
in the range of positions x = k with equal probabilities which
are given as ¢;=1/(2k) for i==1,*2,..., =k Assume
that the current position of the random walker is x=(N—-1).
In the next step the random walker can jump to any one of
the possible positions (N-1)*i with equal probabilities
where i=1,2,...,k. Among such 2k numbers of possibilities
only one will be productive in the sense that the random
walker can escape only when it hits the absorbing point N.
Since all those trajectories hitting the lattice positions (N
—1)+i, where i=2,3, ...,k will be reflected back into to the
same lattice interval (0,N), the MFPT that is required by the
random walker to hit these positions will be added up to the
resultant MFPT with an appropriate weighting factors [14] as
m;=i/k. Upon summing over all the possible MFPTs with
appropriate weighting, we finally arrive at the following ex-
pression for the overall MFPT Ty(x,) where 0= x,<N:

k
Tr(xp) = DZIE (N + i) = x7]

i=1

=D;'T(xo) + 2N + (3/2)k(k + )2k + 1)1, (4)

Here D,=37*,(?w; where we have defined w;=(e;e;)
=1/(2k). Since the three-dimensional diffusion-mediated
transitions are not allowed in the present case, the unbiased
transition rates associated with the random walker of interest
are defined as ¢;=1 and the unbiased transition probabilities
associated with the random walker are defined as ¢;
=1/(2k). When x,=0 and the jump size k is also sufficiently
large, then we can obtain the following approximation for the
overall MFPT as Tx(0) =~3N?k2+2N+(3/4)k. Subsequently
upon solving &, Tx(0)=0 for the jump size k, we find the
critical or optimum value of the jump size k=k,. that is re-
quired to attain an overall minimum value of MFPT as fol-
lows [we denote this as k.(B)]:

k.(B) ~ 2N??. (5)

Here the one-dimensional diffusion coefficient which is a
function of the jump size k is defined explicitly as D
=67!(k+1)(2k+1). From Eq. (5) we learn that by manipulat-
ing the jump size variable k, one cannot decrease the MFPT
to zero. In other words, increasing the jump size variable k
beyond certain level will not be an effective measure of in-
creasing the efficiency or rate of the one-dimensional
diffusion-mediated search process. This also means that the
inequality condition given by Eq. (2) will be meaningful
only when k.(A) =<k.(B) since in case of Eq. (2) we actually
tune the one-dimensional jump size k to achieve the required
value of the enhancement factor €. One can derive the fol-
lowings from Eqgs. (2)—(5).

(a) At sufficiently larger jump sizes, the overall MFPT
Tr(x,) associated with the escape of the random walker only
through the lattice point N will be almost independent of the
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initial position x, of random walker on the linear lattice un-
der consideration.

(b) There is a lower limit in the MFPT that is required by
the random walker to escape only through the lattice point N
as limkﬁchR(x0)~2N beyond which it cannot be decreased
by increasing or manipulating the jump size variable k.

(c) Comparison of Egs. (2) and (5) suggests that when the
protein molecule searches for its specific site on DNA in a
reduced one-dimensional space, then the maximum achiev-
able enhancement (g) of the site-specific association rate
over the three-dimensional diffusion-controlled collision rate
limit is such that e =32. This inequality can be obtained by
solving the inequality {(e/4)"3N?3}={2N*3} for the en-
hancement factor ¢ that in turn follows from the inequality
condition k.(A)=k.(B) which is insisted on the one-
dimensional diffusion-mediated search process so that it is
meaningful. Here one should note that when the concurrent
dynamics of the DNA chain is also considered along with the
one-dimensional diffusion dynamics of the protein molecule
of interest, then we will obtain the inequality {(e/8)'*N?3}
={2N?3}. Subsequently upon solving this inequality for the
enhancement factor € we find that the maximum achievable
enhancement factor & will be such that e =64.

What are all the consequences of the observations (a)—(c)
in the context of site-specific interaction of a protein mol-
ecule with the DNA chain? One can consider the DNA mol-
ecule as a linear lattice on which the protein molecule of
interest searches for its specific site via one-dimensional dif-
fusion. We have shown in the earlier sections that the overall
site-specific association rate can be higher than that of the
three-dimensional diffusion-controlled rate only when the
rate of this one-dimensional search is faster than that of the
three-dimensional diffusion-controlled collision rate. From
the theory of random walks we learn that the one-
dimensional search rate can be increased by increasing the
jump size associated with the dynamics of the protein mol-
ecule on the DNA chain however only up to certain limit that
is given by the critical jump size limiting condition in Eq.
(5). Within this jump size limit, we learn from (c) that the
overall site-specific association rate can be increased only up
to ~32 times (~64 times upon including the concurrent dy-
namics of the DNA chain) higher than that of the three-
dimensional diffusion-controlled rate. However experiments
on the site-specific DNA-protein interactions showed an as-
sociation rate that is ~10? times faster than that of the three-
dimensional diffusion-controlled rate limit. This implies that
the protein molecule of interest might search for its specific
site on DNA possibly in a reduced d-dimensional space with
a dimensionality of d<<1. One also should note that the jump
size k is directly proportional to the degree of supercoiling or
condensation of the DNA chain. This means that the rate of
site-specific association of the protein molecule with the
DNA chain can be enhanced by manipulating the spatial or-
ganization of the DNA chain only up to certain limit.

III. RESULTS AND DISCUSSION

One can also derive the critical jump size limit from the
point of view of polymer confinement. Consider a linear
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FIG. 1. Dependency of the jump size k on the volume compres-
sion parameter 6 is shown in the upper panel. Here a polymer chain
of 500 units in length is embedded in a one-dimensional lattice box
with side length ranging from 10 to 70. We generalize the jump size
as sojourn distance of random walker before visiting same site
again via formation of self-intersection loops or ring-closure events.
We sampled 10° such polymeric trajectories which are all starting
from the left end of the lattice box and computed the average of
these self-intersection loop lengths. As we increase the compression
parameter 6, the average of the self-intersection loop length reaches
the limiting value as k(500,1,6>0.01)— k,(500,1)~2 X 500%3
when 6>0.01. Lower panel is the numerical derivative of the av-
erage of the self-intersection loop lengths. This simulation result is
inline with the critical jump size limit that is predicted by Eq. (5)
for a one-dimensional case when the compression parameter is such
that 6> 6.~ 0.01. Here both the variables k and 6 are in dimension-
less form.

polymer chain of N units in length which is “embedded” in a
hypothetical one-dimensional lattice box of M units in
length. Assume that this hypothetical polymer chain can self-
intersect without excluded volume effect and also M <N. We
insist this inequality constraint mainly to be consistent with
the fact that the length of the genomic DNA is higher than
the cellular dimensions. Now one can ask a question: what is
the average of the loop length associated with the self-
intersections of this embedded polymeric trajectory or trace
in the one-dimensional lattice box under consideration par-
ticularly in the limit towards (M/N)—? Here the self-
intersection loop length is the sojourn distance of the random
walker (polymer) before revisiting a site again, and 6
=(M/N) is the ratio of volume compression of the embedded
polymer chain. One also should note that the ends of this
one-dimensional lattice box are acting as reflecting bound-
aries for the embedded polymer. This problem can be easily
simulated. Figure 1 summarizes the results from such simu-
lation. The simulation settings are N=500, and M is iterated
over a range of values. Here the average of the self-
intersection loop length is taken over 10° such polymeric
trajectories. All the trajectories start from the left end of the
lattice box. Our simulation results demonstrate that when
(M/N)= 6, where 6,~0.01 is some critical value of this
volume compression ratio, the average of the loop length
associated with the self-intersections of the embedded poly-
mer is equal to the critical jump size limit given by Eq. (5)
for the case of one-dimensional random walk. When the
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polymeric trajectory is embedded in or projected on a one-
dimensional lattice box, then one can consider the jumps
with jump size k as the ring-closure events since a self-
intersection loop will be folded on itself upon projection.
Here the jump size k can be thought as the maximum sojourn
distance of the random walker along the one-dimensional
lattice box before revisiting a site again.

To check the validity of Eq. (5) in higher dimensions we
did random-walk simulations in various dimensions. We
again considered a polymer of N=500 units in length. We
embedded this polymer chain in cubical boxes of various
dimensions and side lengths in such a way that each mono-
mer or unit is confined in one volume unit of the
d-dimensional lattice box under consideration. For example,
in a three-dimensional lattice box, each step of the polymeric
trajectory is fixed along the highest diagonal of the unit cube
where the length of the diagonal is A\;=v3. In general for a
d-dimensional cube, each step of the polymeric trajectory is
fixed along the highest diagonal length \,=Vd so that each
polymeric unit occupies one volume unit in the
d-dimensional cubical lattice box with side M. Here we de-
fined the compression parameter as 6=Vjp/Vy, where Vy
=N=500 volume units and Vz=M¢ is the total volume of the
lattice box. For example, if we have a three-dimensional cu-
bical box with sides equal to 10 units in length in which a
polymer chain of 500 units in length is embedded, then we
have Vz=10® and Vy=500. As a result we have @
=10%/500=2 (#=1/5 for the two-dimensional and 6=1/50
for the one-dimensional cases) since each monomer of the
embedded polymer chain occupies one volume unit (it is a
single point in the one-dimensional, unit area in the two-
dimensional and unit volume in the three-dimensional cases
and so on). From the theory of DNA-protein interactions, we
learn that the protein molecule can jump to a distal site
mainly via ring-closure events [3]. In the random-walk ter-
minology we can consider the self-intersections of the poly-
meric trajectory of DNA as ring-closure events and the mean
value of the loop lengths of these ring-closures or self-
intersections can be thought as the average jump size k. As a
consequence, the jump size k should be a function of the
dimensionality d, length N, and compression parameter 6 as
k—k(N,d, ). We are particularly interested in the limiting
jump size as k(N,d, 6.) —k.(N,d) at large values of 6 as 0
=6,.. To check the existence of such a limit 6, in various
dimensions, we sampled the self-intersection loop lengths
over 10° numbers of independent trajectories which were all
starting from the origin (all with 500 steps in length), com-
puted the average of the self-intersection loop length and
plotted it as a function of the compression ratio 6. Figure 2
shows such a plot for various dimensions. We can summarize
the results of this simulation study as follows:

(a) When 6> 6., then we observed the limit k(N,d, 6
=0, — k. (N,d), where 6. is a function of the dimensionality
d. This critical value 6, seems (Fig. 3) to be dependent on the
dimensionality d in an exponential manner as 6, ¢?. For d
=3, we observed a critical compression ratio of 6.~ 100 ir-
respective of N (Fig. 4). This means that if the genomic DNA
is packaged inside a three-dimensional living cell with a vol-
ume compression ratio of §= 6.~ 100, then the protein mol-
ecules can locate their specific sites on DNA with a maxi-
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FIG. 2. Dependency of the average self-intersection loop lengths
or jump sizes via ring-closure events on the compression parameter
0 in various dimensions. Simulation results suggested that beyond
certain critical values of compression parameter #— 6. associated
with the polymer chain, the average of the self-intersection loop
length tends to a limit in all the dimensions where the value of this
limit is a function of the dimensionality d as k(N,d,6>86,)
—k,(N,d). We find this limit explicitly as k.(N,d)~2*¢N?3. In
this simulation, we have embedded a polymer chain of N=500 units
in length inside a d-dimensional lattice box with side length ranging
from 10 to 70 and computed k(N ,d, 6) in various dimensions. Here
both the variables k and 6 are in dimensionless form.

mum efficiency irrespective of the total size of the genomic
DNA.

(b) Direct observation (Fig. 5) and nonlinear least-squares
fitting results suggested a functional form k.(N,d)
~2'=4k (N, 1), where k,(N,1)~2N?? as in Eq. (5). One can
interpret this result as follows. From Eq. (5) we learn that
when a one-dimensional chain is embedded in a one-
dimensional lattice box, then the equilibrium value of the
MFPT is attained at the critical jump size k.(B)~2N?3.
When the same chain is embedded in a d-dimensional lattice

FIG. 3. Dependency of the critical compression ratio 6. on the
dimensionality d. Here a polymer chain of 500 units in length is
embedded in a d-dimensional cubical lattice box. An iteration over
0 is carried out at various dimensions. The value at which the de-
rivative of the average self-intersection loop lengths with respect to
0 vanishes is plotted as a function of the dimensionality d. Results
suggested an approximate functional relationship as 6, e9. Solid
line is a linear least-squares fitting with equation of type log;o(6,)
=—(1.7+0.3)+(1.2%+0.03)d with R*~0.98. Here both the vari-
ables d and 6, are in dimensionless form.
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110
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FIG. 4. This figure demonstrates that irrespective of the length
of the polymer chain, the critical compression parameter is invariant
in a given dimensional (d) space. Here the settings are dimension-
ality d=3 and polymer length N is iterated from 100 to 500. These
polymer chains were embedded in a cubic lattice box with sides
ranging from 10 to 70 and the average self-intersection loop lengths
were computed over 10° such polymeric trajectories which were all
starting from the origin. Here both the variables k& and € are in
dimensionless form.

box, then the degrees of freedom associated with each of the
one-dimensional jump will be increased to ~24! times than
that of the one-dimensional case. Particularly when a poly-
mer of N=500 units is embedded in a one-dimensional lat-
tice box, then we observed the critical jump size value of
k.(500,1)~126. When the same chain is embedded in a
d-dimensional lattice box, then the increase in the degrees of
freedom of jumps in turn reduces the required critical jump
size as ~2"1 % 126. Since k.(N,1)=k.(B) is a critical jump
size for the case of one-dimensional random walk as given in
Eq. (5), k.(N,3) can be thought as the observed or required
critical jump size when the same linear polymer chain in
embedded in a three-dimensional lattice box.

100
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k(500,3,0)
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0.0+

-0.2

d,k(500,3,0)
< S
&

FIG. 5. Dependency of the jump sizes on the compression pa-
rameter 6 in a three-dimensional lattice box. Here a polymer chain
of 500 units in length is embedded in a three-dimensional lattice
box with various side lengths ranging from 10 to 70. We sampled
10° such polymeric trajectories which were all starting from the
origin of lattice box and computed the average of these self-
intersection loop lengths. Lower panel is the numerical derivative of
the average self-intersection loop lengths which suggested that
dgk(500,3,60> 6.) —0. This simulation result suggested a critical
compression parameter of 6.~ 100 for the three-dimensional case.
Here both the variables k and 6 are in dimensionless form.
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FIG. 6. Dependency of the critical jump size for a fixed poly-
meric length on the dimensionality d. Here a polymer chain of N
=500 units in length is embedded in various d-dimensional cubic
lattices with sides ranging from 10 to 70. The critical jump sizes
were computed by averaging the self-intersection loop lengths over
10° polymeric trajectories which were all starting from the origin.
Results suggested a functional form as k.(N,d)~2'"%.N,1),
where k.(N,1)~2N??3, and subsequently we have the limiting con-
dition as k(N,d, 8,) — k(N ,d) ~2>"N?"3. Here both the variables k
and d are in dimensionless form.

(c) Here one should note that when the protein molecule
searches for its specific site on the DNA chain via a combi-
nation of one and three-dimensional-mediated diffusion pro-
cess, then the required one-dimensional jump size to achieve
an enhancement of & times over the three-dimensional
diffusion-controlled collision rate is given by Eq. (2) as
k.(A). Upon comparing the critical jump size k.(A) with the
critical jump size k.(B) which is given by Eq. (5), we can
conclude that the inequality k.(A) =<k .(B) should be true for
a meaningful and tunable range of jump sizes. We find from
the result (b) that this k.(B) transforms as k.(B) — 2!~ (B)
upon embedding the same polymer chain in a d-dimensional
lattice box. As a consequence of our earlier result (c) from
the theory section as x,,,=x,, the inequality k.(A)
=k (N,d) should be still true for an arbitrary d that is given
in an explicit form as {(s/4)"*N?*3}={22-IN?3}. From this
we get (8/4)!3 =224 When there is a change in the dimen-
sionality d at the right-hand side of this inequality, then there
will be a concurrent change in the enhancement variable € at
the left side of the inequality so that the entire inequality is
valid for all values of d and . Upon solving the inequality
(e/4)1*<2%"4 by taking logarithms at both the sides and
then inverting it for the dimensional variable d, we arrive at
the following generalized inequality condition (Fig. 6):

{2~ In|(e/4) 273} = 4. (6)

(d) We find from Eq. (6) that the reduced dimensionality d of
the search space that is required to achieve the enhancement
of £=90 over the three-dimensional diffusion-controlled col-
lision rate as observed in many experimental studies [15] is
d.~(1/2). For d=1 we have the inequality relationship as
&£ =32. Here one should note that when the concurrent dy-
namics of the DNA chain is also considered, then Eq. (6) will

become as {2—In|(s/8)(" 2)_1/3|}2d. As a result, the reduced
dimensional space (Fig. 6) that is required to achieve the
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observed enhancement factor of £=90 in the presence of
concurrent dynamics of the DNA chain is d,~0.83 and for
d=1 we have the inequality relationship as £ = 64. Here one
should note that the fractal dimension d, that is required for
achieving the enhancement factor £=90 could originate from
the sequence-dependent topology of the interaction energy
landscape of the DNA chain and the protein molecule of
interest. Here the interaction energy is the sum of energies
associated with all the bonding and nonbonding interactions
present in between the DBD of the protein molecule and its
recognition stretch sequence on the DNA chain. Since the
free energy associated with the interactions between the pro-
tein molecule and the DNA chain depends on the sequence,
we can conclude that the free-energy landscape or profile
associated with these nonspecific interactions might possess
some sort of self-similar and fractal properties along the
DNA sequence. We hypothesize that the protein molecule
that is diffusing along the DNA chain might be capable of
dynamically detecting or reading the information that is hid-
den inside this sequence-dependent fractal topology of the
interaction energy landscape. The following observations
seem to support our arguments indirectly. Firstly the struc-
tural studies on /ac-repressor have revealed the presence of a
significant amount of thermally driven conformational fluc-
tuations in its DNA binding domains (DBDs) especially
when this protein is nonspecifically bound with the DNA
chain. Upon finding the lac-operator sequence on the tem-
plate DNA which is its specific site, the DBDs of lac-
repressor changes its conformation to more stable one with
minimal degree of fluctuations [16]. This observation indi-
rectly suggests that the protein molecule of interest might
dynamically resonate with the sequence-dependent interac-
tion energy landscape of the DNA chain via thermally driven
conformational fluctuations. The efficiency of these ther-
mally driven conformational fluctuations in the DBDs of the
protein molecule to resonate with the sequence-dependent
interaction energy landscape of the DNA chain seems to be
strictly restricted by the second law of thermodynamics [17].
Apart from this observation, the sequence of the DNA chain
is also known to be following a self-similar fractal-type pat-
tern [18]. Further the self-similarity in the sequence pattern
of the coding exons seems [18] to be different from that of
the noncoding introns. Based on these observations, we fur-
ther speculate that this self similar fractal pattern of the se-
quence of the DNA chain might be strongly connected with
the thermally driven dynamic interactions of the protein mol-
ecule with the DNA chain. That is to say, the information
content that is hidden inside the self-similar fractal pattern of
the sequence-dependent interaction energy landscape of the
DNA chain might be playing critical roles in accelerating the
site-specific interaction of the protein molecule of interest
with the DNA chain beyond the three-dimensional diffusion-
controlled collision rate limit.

(e) On solving Eq. (6) for the enhancing factor & we find
the generalized inequality condition or scaling law as &
={2°C~9+2} This means that by reducing or manipulating
the dimensionality of the search space, the rate associated
with the site-specific interaction of a protein molecule with
the DNA chain can be enhanced to a maximum of ~28 times
over the three-dimensional diffusion-controlled collision

061920-8



PACKAGING EFFECTS ON SITE-SPECIFIC DNA-...

FIG. 7. Dependency of the number of times by which the rate of
site-specific association of the protein molecule with the DNA chain
can be enhanced over the three-dimensional diffusion-controlled
collision rate on a reduced dimensional space with dimensionality
of d in which the protein molecule of interest searches for its target
sitte. on DNA. The theoretically derived functional form is e
~232=d+2 (50lid line). When the concurrent dynamics of the DNA
chain is also considered, then our theory showed a functional form
as &~232D+3 (dashed line). This result suggests that the maxi-
mum achievable enhancement of the site-specific association rate
over the three-dimensional diffusion-controlled rate by reduction in
the dimensionality of search space is &y, ~25. When the concur-
rent dynamics of the DNA chain is also considered, then this maxi-
mum limit will become as g, ~2°. Here both d and & are in
dimensionless form.

rate. This follows from the inequality relationship & <28 for
the hypothetical limit d — 0. Here one should note that the
maximum achievable enhancement factor for the hypotheti-
cal limit as d—0 in the presence of concurrent dynamics of
the DNA chain under consideration is & <2° which follows
from the fact that (Fig. 7) e ={23@~9+3} under such condi-
tions.

The genomic DNA of E. coli can be thought as an em-
bedded linear polymer chain inside a closed three-
dimensional cellular lattice box (Fig. 8). From our theory we
can conclude that the critical compression ratio 6, that is
required to achieve the critical jump size condition in the
three-dimensional space should be such that 6,=100. We
should note that when the volume compression ratio is such
that .= 100, then the rate associated with the site-specific
interaction of a protein molecule with the DNA chain will be
a maximum. Using the E. coli cellular model system for
which a detailed cellular statistics is available, we show that
the nature has designed the volume compression ratio of the
living cells inline with our theoretical predictions as follows
(Fig. 8). From literature we find that [19] the average total
volume of an E. coli cell is Vo~1.0X107'% m? The
average volume occupied by the genomic DNA and all the
other specifically and nonspecifically bound DBPs is Vj;
~1.6X 107" m3, whereas the total size of the E. coli ge-
nome is Ng~4.6X 10% bps [20]. Here the genomic DNA of
length L;~1.6X 1073 m is confined inside a cylindrical
shaped cellular box with a length of I,~2X10™® m and a
width of w,~0.8X 10® m. For convenience we can mea-
sure these dimensional quantities in terms of bps using the
transformation rule 1 bps=~3.4X 107! m. According to this
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DNA
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FIG. 8. Total volume of E. coli bacterial cell is V~1.0
X 10718 m3. Volume occupied by the genome and bound DBPs is
Ve~1.6X107" m® and size of the genome is Ng~4.6
% 10® bps. Here genomic length of L;~1.6X 107 m is confined
inside a cylindrical-shaped cellular volume with length of [.~2
X 107% m and width of w.~0.8 X 107 m. Dotted line is the ap-
proximate boundary of the total volume occupied by the genomic
DNA and all the specifically and nonspecifically bound DNA-
binding proteins under normal cellular conditions. Using these val-
ues, we found the volume compression ratios as =Vs/Vy~ 180
and 0=V5/ Vi~ 1124. These results demonstrate that the volume
compression ratio for the genomic DNA of E. coli is closer to or
beyond the critical value that is required to maximize the rate site
specific interaction of a protein molecule with the genomic DNA for
the three-dimensional case as 0=V/Vy~ 180> 6,(3).

rule we have the transformed values as V.-~2.54
% 1010 bps® and V;~4.07x10° bps’. If we consider the
genomic DNA as a cylindrical shaped object with diameter
of D;,~5 bps and length of N;~4.6X 10° bps, then the
total volume occupied by only the genomic DNA is Vj
=m(D,/2)*N;~22.6 X 10° bps®. Using these values, we can
find the compression ratio € that is the ratio between the total
volume occupied by both the genomic DNA and DNA-
interacting proteins and the volume of only the genomic
DNA as 6=V;/Vy~ 180. Similarly we can also find that the
ratio between the total cell volume and the volume occupied
by the genomic DNA as o=V;/Vp~1124. These results
demonstrate that the compression ratio for the genomic DNA
of E. coli is closer to or beyond the required critical value
that is required for the three-dimensional case as 0=V;/Vy
~ 180> 6.. In other words, the extent of packaging of the
genomic DNA inside this bacterial cell satisfies the criteria
60— 6. to achieve the critical jump size limit that in turn is
required to achieve a maximum site-specific association rate.
This result is in line with our theoretical predictions. This
also means that the extent of packaging of the genomic DNA
inside the E. coli bacterial cell under physiological condi-
tions is such that the efficiency associated with the searching
of the protein molecule for its target site on the genomic
DNA is a maximum.

IV. CONCLUSIONS

In this paper, we have shown that the rate of site-specific
association of a protein molecule of interest with the DNA
chain could be ~10? times higher than that of the three-
dimensional diffusion-controlled collision rate limit
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~10% mol™! s~ only when the protein molecule of interest
searches for its specific site on the DNA chain in a reduced
dimensional space with a dimensionality of d,<<1. Upon tak-
ing the concurrent dynamics of the linear DNA chain that is
embedded in a d-dimensional space into consideration along
with the one-dimensional diffusion dynamics of the protein
molecule on the DNA chain, we derived the generalized scal-
ing law &~232-9%3 where & is the number of times by
which the rate of site-specific association of the protein mol-
ecule with the DNA chain can be enhanced over the three-
dimensional diffusion-controlled collision rate limit and d is
the dimensionality of the search space. Using the analogy
between the self intersection loop length in the theory of
random walks and the ring-closure events in the theory of
site specific interactions of a protein molecule with the DNA
chain, we further showed that the extent of packaging or
volume compression of the genomic DNA inside the living
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cell is in such a way that the efficiency of the protein mol-
ecule in the process of searching for its specific site on the
genomic DNA is a maximum. Our simulation results sug-
gested that the volume compression factor € which is the
ratio between the total volume of the living cell and the
volume occupied only by the DNA chain along with other
bound protein molecules should be such that #=100 for an
efficient site specific interaction of a protein molecule with
the linear DNA chain that is embedded in a three-
dimensional space. Our theoretical and simulation results
agreed well with the E. coli cellular system.
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