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Numerical solution of the Penna model of biological aging with age-modified mutation rate
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In this paper we present results of numerical calculation of the Penna bit-string model of biological aging,
modified for the case of a-dependent mutation rate m(a), where a is the parent’s age. The mutation rate m(a)
is the probability per bit of an extra bad mutation introduced in offspring inherited genome. We assume that
m(a) increases with age a. As compared with the reference case of the standard Penna model based on a
constant mutation rate m, the dynamics of the population growth shows distinct changes in age distribution of
the population. Here we concentrate on mortality g(a), a fraction of items eliminated from the population when
we go from age (a) to (a+1) in simulated transition from time (7) to next time (7+1). The experimentally
observed g(a) dependence essentially follows the Gompertz exponential law for a above the minimum repro-
duction age. Deviation from the Gompertz law is however observed for the very old items, close to the
maximal age. This effect may also result from an increase in mutation rate m with age a discussed in this paper.
The numerical calculations are based on analytical solution of the Penna model, presented in a series of papers
by Coe et al. [J. B. Coe, Y. Mao, and M. E. Cates, Phys. Rev. Lett. 89, 288103 (2002)]. Results of the
numerical calculations are supported by the data obtained from computer simulation based on the solution by

Coe et al.
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I. INTRODUCTION

Biological aging means that older individuals have higher
mortality rate than the younger ones. In the simplest descrip-
tion, population dynamics may be described in terms of
number of individuals n(a,r) at age a and at time ¢. The sum
over a yields the current population n(z),

n(t) = 2 nla,1). (1)

Usually we are interested in the equilibrium state, n(a)
=n(a,t— ). Mortality g(a) is defined as the percentage of
items eliminated when we go to the next time step: r— (¢
+1), a—(a+1). We have

g(a) =1-n(a+ 1)/n(a) = én(a)/na(a), (2)

where dn(a) is the number of items eliminated at age a. In
the discrete time model, the transition from time (¢) to the
next time step (#+ 1) results from the balance between death
rate p and birthrate b. If p and b were the only model pa-
rameters (constants), then only unacceptable trivial cases
would turn up either n=0 for p>b or else we get unlimited
population growth n— oo, The Verhulst factor [ 1] restores the
balance within a finite population n. The basic idea is to
replace the death rate parameter p with a suitable function of
population n, so that p becomes larger for overpopulated
habitat. In the simplest logistic model, the death rate p
(known as the Verhulst factor) is assumed to be proportional
the current population n(z),
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p(t) =n(?)/N. (3)

At equilibrium, logistic model yields population n and mor-
tality g(a) as follows:

n/N=gq(a)=b/(1+b), 4)

which results in an age-independent mortality ¢(a)=n. This
disagrees distinctly with demographic data that are supposed
to follow roughly the Gompertz law of exponential increase
in g(a) with age a,

qla) o e, (5)

for a above a minimum reproduction age R. Therefore, it is
necessary to include in the model some other elimination
mechanisms to be consistent with the Gompertz law. Vast
literature on biological aging indicates many possible factors
that may contribute to the process of aging. Oxygen radicals,
which may damage the genome, programmed cell death after
certain number of cell divisions where telomeres are partly
lost during each division, or mutation accumulation is often
named as a possible reason for aging. For review of models,
theories, and selected data on population evolution, biologi-
cal aging, population speciation, and other aspects of modern
concepts the reader is invited to consult, for example,
Stauffer et al. [2].

In this paper we concentrate on the Penna model [3,4] of
population evolution which belongs to mutation accumula-
tion theory, the most popular foundation of biological aging
concept. This model of biological aging yields results which
basically agree with the Gompertz law. In asexual version of
the Penna model, the genome of a newly born, represented
by a computer word with bit value “1” for the bad mutation
and “0” for no mutation, is inherited from parent. The baby’s
age a=0 and its genome are not just a copy of parent’s—it
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may acquire at the moment of birth some extra “bad”
mutations—each bit may randomly be set to one with prob-
ability m. In the evolution rule leading from time (¢) to
(t+1), we count all 1’s in the genome of the individual of age
a, from bit position 0 to bit a on entry to the new era, mark-
ing them as active. The actual number of activated mutations
u(a) will be checked against some threshold value T of
maximum number of bad mutations at which genetic death
occurs. The above recipe is executed in computer experiment
in the following sequence:

(1) get current Verhulst factor p=n(t)/N;

(2) scan the population and eliminate each item with
probability p;

(3) if the item survives, check for u(a)=T to apply ge-
netic death;

(4) if the item is still alive, consider the offspring produc-
tion with rate b, providing ¢ =R, the minimum reproduction
age, and

(5) the child’s inherited genome that gets more bad muta-
tions with probability m per bit; already mutated bits stay 1;
finally,

(6) increase the item’s age a by 1, which completes the
t—t+1 transition rule.

The essence of the Penna model is the mutation accumu-
lation mechanism that results in a constant deterioration of
the baby genomes. This may lead to population extinction
unless the genetic death toll is compensated by sufficiently
high birthrate b, above a critical value. A stable n>0 solu-
tion corresponds to some dynamic balance. In the standard
Penna model, we have a set of input parameters
(m,T,b,R,N), where m is the number of bad mutations per
genome’s bit passed over at the moment of birth to the baby,
T is the threshold value for activated bad mutations, b is the
reproduction rate, R is the minimum reproduction age, and N
is the environmental capacity.

The outcome of calculations is the normalized population
distribution n(a)/N from which the mortality distribution
q(a) [Eq. (2)] may be extracted. We also get the overall
mortality g=0dn/n, with on being the number of members
eliminated at all ages. Mortality may be split into several
components due to Verhulst factor and genetic death. Obvi-
ously the m=0 case yields no genetic death contribution with
increasing mutation rate m; the genetic death contribution
increases at the cost of lower death rate due to Verhulst fac-
tor. Relative contributions of the two elimination mecha-
nisms are shown in Fig. 1. For a given m >0, an increase in
b acts in the opposite way and, for larger b, the Verhulst
component prevails as seen in Fig. 2. This is so since the
larger birthrate that helps to create a new population before
mutations that will occur during the next generation would
destroy the population.

The above algorithm makes a direct computer simulation
of the population evolution. Probabilistic character of the
algorithm is responsible for the fluctuations in n(a), so to get
more accurate numbers we need big enough population on
order of 10°. Also, the number of iterations must be suffi-
ciently large to reach a stable solution, usually 10* iterations.
(Yet, in some aspects of population structure it is necessary
to execute a seriously greater number of iterations. This re-
sults from different characteristic time scales for different
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FIG. 1. Normalized mortalities ¢ due to mutations (increasing
line) and Verhulst factor (decreasing line) as functions of mutation
rate m for b=0.1, T=1, and R=0.

quantities—to get a total population n(z) at equilibrium, we
need only 103 iterations; for mutation distribution among
older individuals or to see speciation effect we need 10° or so
time steps.)

However, the observed deviations in demographic data of
calculated mortality g(a) from the reference exponential Go-
mpertz law are both important and interesting. A better fit is
obtained with Makeham modification that adds a small con-
stant to exponential increase. This improves the agreement
for the younger items. In the opposite region of the oldest
members, an anomalous plateau in late-life mortality can be
often observed (see [5-7]). The standard Penna model is very
flexible and it may easily be modified to include new ingre-
dients for a better match with demographic data. Some in-
herited mutations may have positive effect in the youth and
bad influence for old individuals—the antagonistic pleiot-
ropy [8,9], which also may be incorporated into the Penna
model. Threshold 7 parameter is sometimes modified to re-
place a sharp genetic death at certain age with a less deter-
ministic scenario. In [10], fluctuations in T come from mu-
tations already activated at birth time [7,11]; use a smooth
probability trial function of genetic death. Sexual against
asexual reproduction [4], effect of population migration [12],
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FIG. 2. Normalized mortality g due to mutations (decreasing
lines) and Verhulst factor (increasing lines) as functions of birthrate
b. The left figure is for mutation rate m=0.01; the right one is for
m=0.03.
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and tracing back to numerous species in the past and its
severe reduction in the evolution process [13] are few ex-
amples of many implementations of the Penna model.

In this paper we intend to explore the model by assuming
a specific m(a) dependence in order to account for the effect
that older individuals may produce less healthy children. The
paper is organized as follows. Section II describes the Penna
model with the modification proposed, numerical results are
given in Sec. IIl, and Sec. IV contains the summary and
conclusions.

II. MODEL

In the Introduction we described a direct computer simu-
lation in the Penna model. Simpler asexual version that may
be solved analytically is proposed by Coe ef al. in a series of
papers [11,14-16]. Population structure is given by a func-
tion n(a,l,r)—the number of individuals at age a of genome
length / at time 7. The genome length / is defined as the bit
position with critical 1 for the deadly number 7 of bad mu-
tations.

The main outline of their calculations, leading to iterative
procedure for n(a,l,r) with a self-consistency condition for
stationary solution, is described below. The analytical solu-
tion of Coe et al. comes from the fact that we can reduce
some sums (geometrical series) to elementary functions, pro-
vided that all model parameters (m,T,b,R,N) are constant.
The same algorithm may also be applied if some of the pa-
rameters are not fixed, for example, when we modify bad
mutation rate m as a function of parent’s age a; in such case
we estimate the values of relevant sums by means of com-
puter summation. We refer to these results as numerical so-
lution. In this paper we get full consistency of analytical and
numerical solutions in trial runs when we reduce the pro-
posed m(a)=m(0)+sa to a constant m by putting slope
s=0. As additional tests, also direct computer simulations
were carried out.

In analytical solution, we consider contributions to the
new population structure at time 7+ 1, coming from the as-
sumed population distribution n(a,l,t) at time t. This is
given by the following map:

(1) New

n(a+1,U',t+1)=n(a,l,t)o, 1 =1, (6)

where
o=1-n(t)/N (7)

is the survival rate as dictated by the Verhulst factor of a
system with environmental capacity N and n(z) is the total
population on entry to the next evolution time step. This
makes (a) Verhulst elimination to appear as the first action in
each evolution step and (b) no mutations take place for
grown-up items since we assumed ['=/ only. Age is being
increased by 1. [At this stage we may expand the concept of
environmental capacity N to N(a,l) dependence, which we
will not consider here.]

(2) Next we allow for the offsprings birth. In case of no
mutations we have n(0,l,t+1)=n(a,l,t)ob for birthrate b.
This means that the baby’s genome has the same length as
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parent’s since babies get genomes inherited from parents.
However, for mutation rate m>0, we introduce g(I') func-
tion which modifies n(0,!,t+1)=n(a,l,t)ob to

n(0,I',t+ 1) =n(a,l,t)abg(l") (8)

to account for possible mutations imposed onto child’s ge-
nome on top of the inherited one. Mutation-free case is re-
covered for g(I’) in the form of Kronecker delta, g(I')= 6.
The approach of Coe et al. is equivalent to the proposed
form of g(I’) as

(1) g(I")=(1 —m)lrm, for [’ <, which reflects the probabil-
ity that the first [’ bits, from bit O to bit I’—1, would not
catch bad mutations and bit I’ receives the bad 1;

(i1) g(l’):(l—m)”-l, for I'=1I, which states that all bits
from bit O to bit /'=/ get no mutations; and

(iii) g(I")=0, for I'>1, since child cannot have longer
genome than parent’s one.

[Note that m may be seen as a-dependent m(a), as it is
proposed in this paper; we also might complicate b as
b(a,l,N,T,etc.), which, however, we did not try to do.]

The above procedure makes the map of transformation of
the population structure {n(a,l,7)} at time ¢ to {n(a,l,r+1)}.
Numerical solution is obtained as the above computer itera-
tive procedure, leading to a stable solution after sufficiently
big number of iterations. Analytical solution of Coe et al. is
obtained as the fixed point of the above map for the case of
constant parameters (m,T,b,R,N), for which sums of geo-
metrical series are expressed explicitly.

To get analytical solution for n(a,l), we start with an aux-
iliary u(/)=n(0,1) distribution function of just-born babies of
the assumed steady population, from which we may recover
n(a,l),

n(a,l) =u(l)o”, 9)
where
o=1-n/N (10)
and
n=2n(a,l). (11)
a,l

The recursive procedure [Eq. (12)] yields the u(l) series with
an arbitrary multiplication factor. This factor must be ad-
justed, so that when u(l) is substituted to Egs. (9) and (11),
Eq. (10) is fulfilled,

<l+1>
T-1)1-¢"!

ml_a

y ePUFI=T) _ bx(o,R,1)
ePH2D _py(o,R, 1+ 1)(1 =T+ Te P)’
(12)

u(l+ 1)/u(l) =

of - o
1-0

x(o,R,I) = , (13)
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FIG. 3. Maximum genome length L as a function of mutation
rate m. Figure on the left is for birth rates b=0.1 (upper line) and
b=0.2 (lower line). The right figure shows L as a function of birth
rate b for mutation rates m=0.01 (upper line) and m=0.03 (lower
line). The plots are for =1 and R=2.

eP=1/(1-m). (14)

The sum in Eq. (11) runs over a from a=0 to a=L and the
maximum genome length L is given from recursive formula
(12), so that numerator is still positive. The minimum ge-
nome length / must be 7, so the sum over / runs from /=T to
[=L, with the maximum value depending on parameters m,
T, b, and R (see Fig. 3). It is obvious that mutations reduce
genome length in consecutive generations. This leads to
shorter maximal genome length L for larger mutation rate m,
and m=0 limit brings unlimited genome length. For a given
mutation rate m per bit for a born item, a higher birthrate b
results in a lower number of iteration steps necessary to pro-
duce a given number of babies and, therefore, lower number
of mutations introduced to population. It may also be noticed
that for m>0, L as a function of b starts from small, yet
nonzero critical value of b necessary to compensate genetic
deaths (see [17] for details).

The above analytical result of Coe et al. may be checked
against numerical calculations described above if the model
parameters are kept constant. In this paper, most of the cal-
culations were done for single 7=1 mutation threshold and
minimum reproduction age R=0. We modified the mutation
rate m per bit per time step as parent’s age a-dependent
value, m(a), which increases with age a. This may be seen as
an attempt to account for the known fact that older individu-
als give birth to less fit babies. In the model we may associ-
ate the bad mutation rate m with a. The simplest linear de-
pendence of the form

m(a) =m(0) + sa (15)

was adopted and different slopes s >0 were tried to examine
the deviations of g(a) from the case s=0. Thus we replace
single parameter m in the standard approach s=0 with a set
of two (m(0),s). However, for each choice of s we adjust the
mutation rate m(0) of the new born items, so that we recover
the same total population n. (It seems reasonable to make
choice of any alternative set of model parameters in a way
that leads to the same population if we intend to compare
results of two different sets of model parameters.) In other
words, we may use an effective mutation rate Mesr that re-
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FIG. 4. Example of influence of age-modified mutation rate,
m(a)=m(0)+sa, on mortality g(a) for effective mutation rate m,,
=0.01 and birthrate b=0.1. The left figure is for standard Penna
model s=0; the right figure is for s=0.001, where points with error
bars are obtained from direct simulation.

places m in the reference s=0, yet producing the same popu-
lation n. So, the two sets of parameters (m(0),s) and (m,,0)
give the same n. Assumption of linear dependence of m(a)
has already been applied in [18] where the mutation rate was
simplified to m(0)=0, m(a)=sa. This form of m(a) depen-
dence, however, does not keep n fixed and their conclusions
may be different quantitatively from results of this paper.
Berntsen’s calculations [18] were based on computer simu-
lations.

In our calculations we replace the set of the Penna model
parameters (m,T,b,R,N) with (m(0),s,T,b,R,N). We re-
strict our attention to values of 7=1 and R=0. We scan
me=0,0.01,0.03 and 5=0,0.001,0.002. The limiting case
[m(0)=0, s=0] stands for the reference logistic model. Two
birthrate values b=0.1 and b=0.2 were used.

As far as analysis of the results of calculations is con-
cerned, we concentrate on normalized population n/N, maxi-
mum genome length L, and mortality distribution function
q(a). We also split the death rate into its components due to
genetic death resulting from the bad mutations and from the
Verhulst factor responsible for the limited environmental ca-
pacity.

III. RESULTS

As we mentioned earlier, calculations were done for 7
=1, R=0, m,;=0,0.01,0.03, 5=0,0.001,0.002, and b
=0.1,0.2. The computer simulation part was carried out for
environmental capacity N=107 (10 000+1121) iterations for
which population distribution reaches equilibrium, apart
from statistical fluctuations. The effect of fluctuations is re-
duced by taking averages over last 1121 steps.

For the assumed age dependence of the mutation rate,
m(a)=m(0)+sa, one gets the normalized steady-state popu-
lation n/N<1 as a function of (m(0),b) which, by defini-
tion, may be represented by an effective m,, with the same n
as for the set (m,;,0). Checking whether mortality g(a)
=1-n(a+1)/n(a) follows the exponential Gompertz law de-
pendence for R<<a<L is usually considered to be a good
evaluation of the validity of the model for population dynam-
ics. As it was mentioned earlier, important conclusion from
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FIG. 5. Example of changes in mortality g(a) for different birth-
rates: b=0.1 of bigger maximum genome length L and b=0.2 of
smaller L. Horizontal lines refer to logistic cases. The left figure is
for effective mutation rate m,;=0.01 and s=0.001; the right one is
for m,;=0.03 and s=0.002. Horizontal lines refer to logistic cases
m,=0 with g=b/(1+b) and L— <. Points with error bars repre-
sent direct simulation results.

the standard Penna model is that essentially it meets this
expectation. The observed mortality g(a), however, shows
some deviations from the Gompertz law for the oldest mem-
bers.

In Fig. 4 we compare mortality g(a) for s=0 and s> 0 for
which mutation rate is larger for older items. It can be seen
that serious changes in mortality distribution g(a) take place
for s>0. Solid lines are obtained from numerical calcula-
tions based on the exact analytical solution of Coe er al.
executed here as an iterative self-consistent solution of the
map [Egs. (6)—(8)]. Points with error bars on the right plot
come from direct simulations. As the simulation is nondeter-
ministic, the numbers fluctuate. The errors for population
n(a) at age a were estimated as 1/\n(a) and confirmed by
magnitude of fluctuations of results for mortality g(a) in sev-
eral runs. Less precise agreement between crosses and the
solid line for larger a is due to poorer statistics as population
at old ages n(a) is greatly reduced, leading to larger fluctua-
tions in g(a).

Another example is given in Fig. 5. The deviation of mor-
tality distribution ¢g(a) from the standard Penna model due to
s>0 is rather small for higher birthrate » and more visible
for higher mutation rate m,s. Also population distribution
characteristics n(a) and n(/) in Fig. 6 are strongly influenced
by s>0. For example, shift of maximum of n(/) for larger
values comes from the fact that s >0 brings smaller m(a) for
younger members of the population, which are in majority.
Therefore smaller m must produce longer genomes. For the
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FIG. 6. Influence of age-modified mutation rate s>0 on popu-
lation distribution n(a), declining lines, and genome length (lines
with maximum) n(l) for effective mutation rate m,;=0.01 and
birthrate »=0.1. The left figure is for standard Penna model s=0;
the right figure is for s=0.001.

oldest members, say close to maximum of n(l) around a
=40, we get sa=0.04 which gives about four times higher
mutation rate in offsprings produced by parents in this age
group of population members—and so in this group we ob-
serve the most serious changes in distribution functions.

In Tables I and II we summarize results reflecting some
population characteristics: normalized population n [and cor-
responding n(sim) population from simulation], maximum
genome length L, or percentage of genetic death rate mut due
to mutation against the Verhulst death rate vrh from limited
environmental capacity. Population estimates from numerical
calculation and simulation agree. Obviously, the population
is larger when b grows, and it decreases with increasing mu-
tation rate. The change in slope from s=0 to s>0 pushes
maximum genome length L to larger values, yet the ratio of
genetic to Verhulst death rate remains intact. This ratio, how-
ever, shows the same tendency as in the case of the standard
Penna model s=0 (Fig. 2 in the Introduction) if we change b
or mutation rate m,.

As it may be expected, with increasing mutation rate, the
genetic death becomes dominant and it decreases for bigger
b. This results from the fact that the increase in birthrates,
when population grows, leads to higher death rate from lim-
ited environmental capacity.

IV. SUMMARY AND CONCLUSIONS

The aim of this paper was to see how the possible in-
crease in the bad mutation rate of babies born by older par-

TABLE 1. Population n, genome length L, and mortality (mut+vrh) for birthrate b=0.1.

b m(0) s n n(sim) L mut+vrh Remarks
0.1 0.0000 0.000 — 0.0909 0.0917 e 0.000+1.000 Logistic case
0.1 0.0100 0.000 — 0.0582 0.0594 32 0.359+0.641 Standard
0.1 0.0010 0.001 — 0.0582 0.0597 49 0.359+0.641 p>0
0.1 0.0000 0.002 — 0.0000 0.0000 No solution
0.1 0.0300 0.000 — 0.0125 0.0147 27 0.863+0.137 Standard
0.1 0.0114 0.002 — 0.0125 0.0118 32 0.863+0.137 p>0
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TABLE II. Population n, genome length L, and mortality (mut+vrh) for birthrate b=0.2.

b m(0) s n n(sim) L mut+vrh Remarks
0.2 0.0000 0.000 — 0.1667 0.1681 o0 0.000+1.000 Logistic case
0.2 0.0100 0.000 — 0.1338 0.1355 19 0.197+0.803 Standard
0.2 0.0009 0.002 — 0.1338 0.1350 30 0.197+0.803 p=>0
0.2 0.0300 0.000 — 0.0855 0.0876 15 0.487+0.513 Standard
0.2 0.0202 0.002 — 0.0855 0.0862 17 0.487+0.513 p>0

ents may account for the reported changes in mortality dis-
tribution g(a) of the oldest individuals. The proposed
increase in mutation rate m(a) with parent’s age a offers
possible explanation. The deviation of calculated g(a) from
the Gompertz law shows the right tendency, and the degree
of the deviation from negligible to quite noticeable one de-
pends on the model parameters. The slope s> 0 also changes
the proportion of genetic deaths in the population. We con-
clude that the proposed modification, perhaps well grounded
from the point of view of the known fact that old parents
may have less healthy children, seems to be a good direction
for future studies of the anomalies in the Gompertz law. The

Penna s=0 model does not reflect observed deviations of
g(a) from the Gompertz law for the oldest population mem-
bers; the s>0 modification brings possible explanation of
the changes in g(a), especially for higher ages a.
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