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Thin liquid films with floating active protein machines are considered. Cyclic mechanical motions within the
machines, representing microscopic swimmers, lead to molecular propulsion forces applied to the air-liquid
interface. We show that when the rate of energy supply to the machines exceeds a threshold, the flat interface
becomes linearly unstable. As a result of this instability, the regime of interface turbulence, characterized by
irregular traveling waves and propagating machine clusters, is established. Numerical investigations of this
nonlinear regime are performed. Conditions for the experimental observation of the instability are discussed.
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I. INTRODUCTION

Molecular machines are protein molecules which can
transform chemical energy into ordered internal mechanical
motions �see, e.g., �1��. The classical examples of such ma-
chines are molecular motors, kinesin and myosin, where in-
ternal mechanical motions are used to transport cargo along
microtubules and filaments. Many enzymes operate as ma-
chines using internal conformational motions to facilitate
chemical reactions. Other kinds of machines, operating as
ion pumps or involved in genetic processes, are also known.
Moreover, artificial nonequilibrium nanodevices, similar to
protein machines, are being developed �2�.

The cycles of protein machines are powered by chemical
energy supplied with the adenosine triphosphate �ATP� mol-
ecules. In each cycle, one ATP molecule is converted into
products �ADP and phosphate�. The products leave the pro-
tein before the next ATP molecule binds to it, initiating the
next cycle. The binding of ATP, its conversion into the prod-
ucts, and release of the products induce internal mechanical
motions that represent various processes of conformational
relaxation �3,4�. When the sequence of such internal motions
is completed, the machine returns to its initial state. As the
“forward” part of the cycle, one can consider internal protein
motions in the protein complex with the attached ligands
�ATP or products�. The “reverse” part of the cycle corre-
sponds to the final conformation relaxation in the ligand-free
protein, after release of the products. For our analysis below,
it is important that the forward and reverse motions inside
the cycle cannot be reciprocal �that is, following the same
trajectories with the reversed time direction� because they
correspond to processes in different physical objects, the
ligand-enzyme complexes, and the free proteins.

Recently, much attention has been attracted to microscale
swimmers operating at low Reynolds numbers. Generally, it
can be shown that any physical object, cyclically changing
its shape in such a way that the internal forward and back
motions are different, propels itself through the liquid �5,6�.
Elementary models of such swimmers, constructed by join-
ing together mobile links �5,7� or by connecting a few
spheres by several actively deformable links �8–10�, have
been considered. Typically, the concept of molecular swim-

mers is applied to explain the active motion of bacteria and
other micro-organisms �11,12�. However, individual macro-
molecules that operate actively as machines are also capable
of self-motion �13�.

If a swimmer is attached to some support, preventing its
translational motion, it exhibits force acting on the mechani-
cal support. The generated force is, in first approximation,
equal to the stall force which needs to be applied to a swim-
mer to prevent its translational motion. When many swim-
mers are attached to a distributed support, their collective
operation produces mechanical pressure acting on the sup-
port. This situation is, for example, encountered for molecu-
lar machines representing active protein inclusions in bio-
logical membranes. It has been shown that the combined
effects of the mechanical forces generated by the machines
and their lateral motions inside the membrane can lead to
membrane instabilities �14�.

The aim of this paper is to investigate a different situation
involving molecular machine populations. We consider hy-
pothetical machines which are floating on top of a thin liquid
layer and, thus, represent active surfactants �Fig. 1�. Because
the considered surfactant molecules are microswimmers,
they generate local pressure applied to the liquid-air interface
and proportional to their local concentration. Additionally,
they are subject to surface diffusion and, as surfactants, also
modify local surface tension. Our main analytical result, sup-
ported by numerical simulations, is that if the surface density
of machines is sufficiently high and if the rate of supply of
chemical energy to the machine population exceeds a thresh-
old, the equilibrium flat interface becomes unstable and hy-
drodynamical flows inside the liquid layer spontaneously de-
velop. This instability is accompanied by spatial
redistribution of floating machines and their collective mo-
tions over the surface. It leads to the emergence of a special

FIG. 1. �Color online� Sketch of a thin film with floating mo-
lecular machines generating propulsion forces.

PHYSICAL REVIEW E 79, 061906 �2009�

1539-3755/2009/79�6�/061906�8� ©2009 The American Physical Society061906-1

http://dx.doi.org/10.1103/PhysRevE.79.061906


kind of surface turbulence. Such phenomena can provide the
basis for active microfluidics, where hydrodynamical mo-
tions in liquid layers are induced and controlled by molecular
machines located at the surface.

The next two sections are devoted to the derivation and
the stability analysis of a model of such molecular swimmers
attached to the surface of a thin liquid film. A collection of
numerical results is presented in Sec. IV. Finally, the model
and numerical results are discussed, and some estimates of
the forces of such molecules are given. The possible experi-
mental realization is also discussed.

II. FORMULATION OF THE MODEL

The population of identical molecular machines floating
on the surface of a thin liquid film will be considered. These
machines perform cycles of conformational changes �with a
characteristic time tc� enabled by the supply of energy
through ATP molecules present in the liquid. We are inter-
ested in macroscopic collective effects and do not specify the
details of machine operation. It will be assumed that, on the
average, each machine generates a force which is applied to
the air-liquid interface. This average force acts along the nor-
mal direction �we consider relatively low protein concentra-
tions where azimuthal orientational ordering is absent, the
planar orientations of individual surfactant molecules are
random, and, after averaging, the force in the lateral direc-
tions vanish�. The asymmetry of the air-water interface pro-
duces the alignment of the particles in one direction.

Each machine cycle is initiated by binding of an ATP
molecule and the average force is proportional to the cycle
frequency. Assuming that the binding of ATP molecules fol-
lows the Michaelis-Menten law, the average force per ma-
chine molecule is

f = f0
�ATP�

KATP + �ATP�
. �1�

Here, f0 is the maximal force under the ATP saturation con-
ditions, �ATP� denotes the ATP concentration in the liquid,
and KATP is the characteristic concentration at which satura-
tion begins.

Because of the cycles, the floating machines produce ad-
ditional pressure acting on the air-liquid interface. This pres-
sure pm is proportional to the local surface concentration of
the machines and the average force generated by an indi-
vidual machine, i.e., pm= fmc, where fm is the force per mol
of molecules �fm= fNA where NA is the Avogadro number�.
Note that the machines are still sufficiently well separated
from one another and possible synchronization effects of
their cycles �cf. �15�� are therefore neglected.

Before proceeding to the detailed formulation of the
model, we want to outline the origin of the expected surface
instability. Suppose that the average force, generated by ma-
chines, is directed upward and, therefore, the machines are
pulling the liquid up in the vertical direction �Fig. 2�a��. If
machine concentration is increased in some region, the pull-
ing pressure is higher in this region, inducing local rise in the
liquid film thickness. This however leads to lateral hydrody-
namical flows which are directed inward and bring even

more machines into the region. As a result, the positive feed-
back, responsible for the instability, is established. The same
positive feedback operates when initially a local decrease in
the machine concentration has been present, leading to a lo-
cal decrease in the film thickness. Note that surface diffusion
of floating machines and capillary forces are acting in the
opposite direction, suppressing the instability. Thus, it is ob-
served only if the average force f generated by a machine is
large enough, setting a threshold in terms of the energy-
supply rate �i.e., of the ATP concentration in the solution�.
The instability is not possible when the force is downward
directed, thus inducing local depressions of the liquid layer
�Fig. 2�b��. Then, in contrast to the previous case, hydrody-
namical flows remove machines from the depression, restor-
ing the equilibrium flat film.

The temporal evolution of the surface concentration field
c is described by the following equation:

�tc + �� �u�c� = d�2c , �2�

where u� is the lateral fluid velocity and d is the surface
diffusion.

Floating proteins represent surfactants and reduce the sur-
face tension of the interfaces �see �16��. To take this effect
into account, we assume that the surface-tension coefficient
� decreases linearly with the machine concentration,

� = �0 − �cc . �3�

Hydrodynamical flows, induced by the gradients in ma-
chine concentration, should be further considered. We as-
sume that the liquid layer is so thin that the lubrication ap-
proximation, typically employed in microfluidics �17�, is
justified. As shown in Appendix A, the evolution equation
for the local height h of the interface has the form

�th =
1

�
�� �h3

3
�� p −

h2

2
�� �� , �4�

where the local pressure is p=−��2h− pm and � is the vis-
cosity of the fluid. Determining the lateral flow velocity at
the interface �see Appendix A� and substituting it into the
evolution equation for the surface concentration, a closed set
of two partial differential equations is obtained.

Explicitly, the considered dynamics of thin films with ac-
tive surfactants is described by the following equations:
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FIG. 2. �Color online� Mechanisms of �a� instability develop-
ment for upward directed propulsion forces and of �b� instability
damping for downward directed propulsion forces.
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�th = −
1

�
���h3

3
��� ��0�

2h − �cc�2h + fmc���
+

1

�
�c�� �h2

2
�� c� , �5�

�tc = −
1

�
��	c

h2

2
�� ��0�

2h − �cc�2h + fmc�
 +
1

�
�c�� �ch�� c�

+ d�2c . �6�

Note that we have assumed that the active surfactant is in-
soluble �17,18�.

For subsequent analysis, it is convenient to write these
equations in the dimensionless form. The �equilibrium� liq-
uid layer thickness h0 will be used as the length unit, time
will be measured in units of �h0 /�0, and local concentration
c in units of the equilibrium machine concentration c0.
Changing the variables as T= ��0 /�h0�t, H=h /h0, X=x /h0,
and C=c /c0, we obtain

�TH = −
1

3
�� �H3�� ��1 − AC���2H� + BC�� +

A

2
�� �H2��� C�� ,

�7�

�TC = −
1

2
�� �CH2�� ��1 − AC���2H� + BC�� + A�� �CH�� C�

+ D�2C . �8�

The new model equations include only three dimension-
less parameters,

A =
�cc0

�0
, B =

fmc0h0

�0
, D =

d�

�0h0
.

The parameter A specifies the characteristic strength of float-
ing machines as the surfactant species �decreasing the local
surface tension of the interface�. The parameter B specifies
the magnitude of the pressure generated by the cycling mo-
lecular machines; it is controlled by the rate of energy supply
to the system. Finally, D is the dimensionless diffusion co-
efficient of floating machines.

Comparing the last terms in Eq. �8�, we notice that
spreading of floating machines, induced by changes in the
surface tension, has the same functional form as surface dif-
fusion. If relative variations in the film thickness and ma-
chine concentration are small �H
C
1�, the effective dif-
fusion coefficient of this process is A. Our estimates below in
Sec. V indicate that the genuine diffusion constant D of
floating machines is typically much smaller than the effective
diffusion constant A. Having this in mind, we retain the
terms including the coefficient D in our analytical investiga-
tions but set D=0 when numerical simulations of the model
are performed. Results with nonzero diffusion coefficient
have also been obtained but they are very close to the results
with D=0.

As shown in Appendix A, the dimensionless horizontal
�U� � and vertical �W� velocities of the liquid film at height
Z=z /h0 and horizontal spatial location X can be found as

U� �X,Z� = − A�� CZ +
1

2
�B�� C + �� ��1 − AC��2H���2HZ − Z2� ,

�9�

W�X,Z� = −
1

2
A�2CZ2

+
1

2
�HZ2 −

Z3

3
��2�BC + �1 − AC��2H�

− Z2�� H��B − A�2H��� C + �1 − AC��� �2H�
�10�

when the fields C and H are known. Both velocities vanish at
the bottom of the liquid film, at Z=0, because of the no-
penetration and no-slip boundary conditions imposed there.

III. LINEAR STABILITY ANALYSIS

The model always has the stationary uniform state
C=H=1. To perform the linear stability analysis of this
state, small perturbations H=1+�H exp�iKX+ST� and
C=1+�C exp�iKX+ST� in the form of plane waves with the
wave number K are introduced. Linearizing evolution equa-
tions with respect to small perturbations �H and �C and
solving the linearized equations, growth rates S=S�K� of
such perturbations are obtained,

S�K� = −
1

2
�A −

B

2
+ D�K2 −

1

6
�1 − A�K4

�
K2

2
�	1

3
�1 − A�K2 − A +

B

2
− D
2

+ 2�1 − A��A

2
−

B

3
�K2�1/2

. �11�

It can be easily checked that in the absence of the energy
supply �B=0�, both rates are real and negative, so that the
equilibrium flat film is stable as should be expected. When
the parameter B is increased, the instability develops at
B=Bc where

Bc = 2�A + D� . �12�

Above the instability threshold, traveling plane waves with
the wave numbers K near K=Kc�B�,

Kc�B� =
�3

2

�B − Bc

�1 − A
, �13�

and the frequencies near �=�c�B�,

�c�B� �
3

16
�2B − 3A

�B − Bc�3/2

1 − A
, �14�

are growing. The fastest growing mode with K=Kc and
�=�c is characterized by the growth rate
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Re�Sc�B�� =
3

32

�B − Bc�2

1 − A
. �15�

Figure 3 shows dependences Re�S�K�� and Im�S�K�� at three
values of the parameter B below and above the instability
boundary. While the fastest growing mode at B�Bc is
always oscillatory, with Im�S�K���0, above the instability
boundary the system also always has some standing growing
modes with the wave numbers K smaller than Kc. As the
boundary is approached from above, both the wave number
Kc and the frequency �c decrease and vanish at B=Bc. The
region with two real modes S1�K� and S2�K� always lies be-
low Kc; it shrinks and vanishes at B=Bc. Similar long-
wavelength instabilities have previously been discussed for
other conservative systems �see �19��.

IV. NUMERICAL INVESTIGATIONS
OF THE NONLINEAR REGIME

To investigate the behavior of the system in the nonlinear
regime above the instability onset, numerical simulations

have been performed. Equations �7� and �8� were integrated
using the semi-implicit method �see Appendix B� for a one-
dimensional system using periodic boundary conditions. As
the initial condition, the flat interface with a uniform ma-
chine distribution was chosen and small random initial per-
turbations were applied.

Our main observation is that the instability development
results in the emergence of a complex spatiotemporal regime
which can be described as interface turbulence. This regime
is characterized by spontaneous appearance of traveling ma-
chine clusters �i.e., of spatial regions where the local ma-
chine concentration is increased� and of the accompanying
local interface modulations.

Figure 4 gives an illustration of the turbulent regimes ob-
served at different distances from the instability threshold.
The local film thickness H is displayed here in grayscale
depending on the spatial coordinate �the vertical axis� and
time. In the slightly supercritical regime at B=0.42, the tran-
sient development of standing waves is first observed, which
is then followed by the emergence of an irregular pattern of
traveling and colliding waves. At larger deviations from the
critical point, the transients are faster and the irregular wave
dynamics appears soon after the instability onset. The char-
acteristic spatial scale of the turbulence decreases with the
control parameter B, consistent with the predictions of the
linear stability analysis. The characteristic velocity of travel-
ing waves is also growing with B.

Figure 5 shows snapshots of computed turbulent patterns
at different deviations from the instability threshold. Both the
interface profiles and the corresponding concentration distri-
butions are presented here. Again, a decrease in the charac-
teristic wavelength of the irregular spatiotemporal patterns
under an increase in the control parameter B can be noticed.
Moreover, we see that the characteristic amplitude of the
waves grows with B. To illustrate the directions of wave
propagation, arrows are placed in the insets of this figure,
where examples of colliding and traveling waves are shown.
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FIG. 3. �Color online� Real �solid line� and imaginary �light
line� parts of the growth rate S as functions of the wave number K
of the perturbation for �a� B=0.38, �b� B=0.4, and �c� B=0.42.
Other parameters are A=0.2 and D=0.

FIG. 4. �Color online� Interface turbulence. Space-time diagrams display the local film thickness H �thicker regions correspond to bright
and thinner regions to dark colors� depending on the spatial coordinate and time for �a� B=0.42, �b� B=0.44, �c� B=0.46, and �d� B
=0.48. Other system parameters are A=0.2 and D=0. Numerical integrations for a one-dimensional system of length
L0=512 �with �x=1� and the total time interval of T0=5�105 �with �t=0.01�.
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These arrows indicate the directions in which the respective
concentration and interface profile maxima are shifting at the
next time moment. Note that the motions of machine clusters
�i.e., of the local concentration maxima� are typically guiding
the motions of surface bumps.

Temporal transients leading to turbulent patterns are char-
acterized in Fig. 6. To construct it, we have determined the
maximum and the minimum values Hmax and Hmin of the film
thickness as a function of time, starting from the initial mo-
ment. Their difference �H�T�=Hmax�T�−Hmin�T� �where T is
the dimensionless time� can be chosen to describe the ampli-
tude of the developing patterns. As seen in the two top panels
in Fig. 6, this amplitude first grows �exponentially� and then

undergoes saturation. The transient is shorter for the larger
deviation from the threshold �B=0.46� and then the final
mean amplitude of the turbulent pattern is also larger.

To estimate the characteristic wave number K0�T� of the
developing spatial patterns, their Fourier transforms were
computed and the positions of dominant maxima in the spa-
tial power spectra were determined at different time mo-
ments. As seen in the two bottom panels in Fig. 6, these
wave numbers do not significantly change during the tran-
sients. The characteristic wavelengths of the developed tur-
bulent patterns are therefore not much different from those of
the critical modes.

Figure 7 shows temporal dependences of the height H�T�
and the concentration C�T� at a fixed point of the system in
the final turbulent state. The characteristic time of the oscil-
lations is clearly different for the two values of the control
parameter. Both properties fluctuate around some mean val-
ues. The fluctuations are more rapid farther away from the
instability threshold.

Finally, Fig. 8 displays the dependence of several selected
statistical properties of the final turbulent state on the devia-
tion �B=B−Bc from the critical point Bc. The characteristic
wave numbers K0 and amplitudes �H have been computed
as described above. Time averages of these properties and
statistical dispersion of the data are shown in Fig. 8. The
characteristic transient times Tc �Fig. 8�c�� have been esti-
mated by fitting the initial computed time dependence for
�H�T� to the exponential law, �H�T�
exp�T /Tc�. The char-
acteristic frequency �0 of the patterns �Fig. 8�b�� is esti-
mated by computing their temporal power spectra and deter-
mining the positions of the dominant maxima.

Solid curves in Fig. 8 correspond to the analytical depen-
dence predicted by the linear stability analysis Eqs.
�13�–�15�. Kc and �c can be directly obtained from Eqs. �13�
and �14�, respectively, and the transient time is determined
by the rate of growth as Tc=1 /Re�Sc�B�� from Eq. �15�. For
the mean amplitude �H of the patterns, the quadratic fit
�H
�B1/2 has been applied. We see that the statistical
properties of nonlinear patterns in the developed turbulence
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of two waves �d� and the motion of a single wave �e�. Arrows in the
insets indicate the directions of motion of the distribution maxima.
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regime are still in good agreement with the respective pre-
dictions based on the linear stability analysis.

V. DISCUSSION AND CONCLUSIONS

Can predicted interface instabilities be experimentally ob-
served? This question has both chemical and physical as-
pects. On the chemical side, it is known that proteins may
indeed represent surfactants and thus float at the air-water
interface �see, e.g., �16��. Although we cannot give a specific
example here, it seems plausible that some protein machines
also belong to this class. Moreover, other protein machines,
including molecular motors, can probably be made floating
by chemical modification, i.e., by attaching to them a hydro-
phobic group.

The physical question is whether the propulsion forces
generated by individual protein machines would be sufficient
to induce the considered interface instability. According to
Eq. �12�, the instability is reached when B�Bc with
Bc=2�A+D�. Taking into account the definitions of dimen-
sionless properties A, B, and D, the instability condition im-
plies that the propulsion force f , generated by a single ma-
chine, must exceed the threshold

fc =
2

NA
��c

h0
+

d�

c0h0
2� , �16�

where h0 is the film thickness, c0 is the surface concentration
of floating machines, d is their surface diffusion constant, �
is the liquid viscosity, NA is the Avogadro number, and �c
specifies the surfactant capacity of the considered biomol-
ecules �the surface-tension coefficient � depends as
�=�0−�cc on their concentration c�.

For numerical order-of-magnitude estimates, we
choose ��10−2 g cm−1 s−1 �the viscosity of water� and

d�10−7 cm2 s−1 �characteristic diffusion constant of large
biomolecules in water solutions �20��. Furthermore, based on
the experimental data given in Ref. �16�, we take
�c�107 g cm2 s−2 mmol−1.

Both terms in Eq. �16� are inversely proportional to the
liquid film thickness h0 and the smaller critical forces are
therefore expected for the thicker layers. Note, however, that
this result is based on the lubrication approximation for thin
liquid films, requiring that the film thickness is much smaller
than the characteristic wavelength of the flow patterns. As
we have seen, the characteristic wavelength of the interface
turbulence in the considered system depends on the distance
from the critical point �cf. Eq. �13�� and, in principle, can be
arbitrarily large sufficiently close to the instability threshold.
Taking into account experimental limitations, making it very
difficult to work too close to the threshold, we choose how-
ever h0=1 mm as the characteristic maximum film thick-
ness.

The concentration c0 of floating proteins enters only into
the second term in Eq. �16�. This term, depending on surface
diffusion of floating machines, can be neglected in compari-
son with the first term if the condition c0	cd with

cd =
d�

�ch0
�17�

holds. Substituting numerical values, we get
cd=10−18 mol /cm2. Thus, already, for very low surface con-
centrations of proteins, effects of their diffusion can be ne-
glected in the considered problem.

Neglecting diffusion effects, the critical propulsion force
of a single machine is estimated as

fc =
2�c

NAh0
. �18�

Note that it does not depend on the protein concentration.
Substitution of the numerical values into Eq. �18� yields

fc=3�10−5 pN. Can a single molecular machine generate
the hydrodynamical propulsion force of that magnitude?

Direct measurements of molecular propulsion forces are
still not available. It is known that molecular motors, such as
myosin or kinesin, can generate mechanical forces of about 1
pN �21–23�, but these data refer to the molecules moving
along microtubules and filaments, and not to the swimmers.

For a simple example, we consider the elementary three-
body Purcell swimmer �5�. Its characteristic propulsion ve-
locity is about V=�L /
, where �L is the displacement per
single cycle and 
 is the characteristic time of the cycle �cf.
�7,24��. The viscous friction force of an object of linear size
L that moves with velocity V through the liquid is by the
order-of-magnitude f0=6��LV. Thus, propulsion at velocity
V=�L / tc would require the propulsion force about
f0=6��L�L / tc. Choosing L�50 nm, �L=0.1L, and

=1 ms and considering water as the liquid, we obtain for
the molecular propulsion force the rough estimate of
f0=10−3 pN. Similar estimates are obtained for other known
elementary swimmers. Note that the actual average propul-
sion force f of a machine additionally depends on the fre-
quency of machine cycles and the angle with respect the
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FIG. 8. Statistical properties of the interface turbulence at dif-
ferent deviations from the instability threshold: �a� characteristic
wave number, �b� characteristic frequency, �c� characteristic inverse
transient time, and �d� mean amplitude of the patterns. Dots show
mean values; bars indicate statistical dispersion of numerical data.
Solid curves show analytical results Eqs. �13�–�15� corresponding
to the linear stability analysis predictions �see the text�. Dashed
curve shows a fitting power law �see the text�. The same system and
simulation parameters are as in Fig. 6.
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interface; therefore, according to Eq. �1�, this gives the esti-
mate of the maximum propulsion force under the energy-
supply saturation conditions and the most efficient orienta-
tion of the machine.

While molecular propulsion forces are quite small, ac-
cording the above estimates they would still be sufficient to
induce the film instability and lead to the interface turbu-
lence. Therefore, we conclude that the experimental observa-
tion of the predicted effects is principally possible.

The experiments aimed at detecting instabilities of thin
liquid layers induced by floating actively operating machines
would allow one to directly estimate actual propulsion forces
generated by particular biomolecules. Investigations of such
nonequilibrium hydrodynamical systems would be very im-
portant from the perspective of active microfluidics, where
active motions in thin liquid layers are produced by floating
biomolecular propellers.

In this study, we have explicitly considered the fluid layer
instabilities induced by floating microswimmers representing
nanoscale molecular machines. However, our analytical re-
sults are more general and also applicable to the experimen-
tal situations where floating microswimmers represent larger
objects, such as entire bacteria or micro-organisms. Similar
experiments can probably be performed with artificially pro-
duced microswimmers, such as magnetic microspheres pow-
ered by alternating magnetic fields �25,26�.
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APPENDIX A: HYDRODYNAMIC EQUATIONS

We consider the situation when the film thickness h0 is the
smallest characteristic length of the system. In this case, the
lubrication approximation can be used which corresponds to
an expansion in the small parameter �=h0 /
, with 
 being
the characteristic wavelength of the patterns in the lateral
direction. Hydrodynamical equations in the lubrication ap-
proximation are simplified and take the form �see, e.g., �17��

��zzu� = �� p ,

�zp = 0, �A1�

with the incompressibility condition

�� u� + �zw = 0. �A2�

Here, w is the vertical component of the fluid velocity and u�
is its horizontal component; �� is the differential operator
acting only on the horizontal coordinates. Note that, as fol-
lows from these equations, pressure p is constant along the
vertical direction.

The boundary conditions at the bottom of the film, in
contact with the solid support, are

w = u� = 0 at z = 0.

At the free air-liquid interface z=h, the balance of horizontal
and vertical forces should separately hold, implying that

��zu� = �� � , �A3�

p = − ��2h − pm, �A4�

where � is the surface-tension coefficient and pm is the ad-
ditional pressure produced by floating active molecules.

Conservation of the total film volume implies, moreover,
that the equation

�th + ����
0

h

u�dz� = 0 �A5�

should hold.
Integrating Eqs. �A1� and taking into account the bound-

ary condition �A4�, the horizontal velocity of the flow can be
determined,

u� =
1

�
	�� p� z2

2
− hz� + z�� �
 . �A6�

The vertical velocity is then obtained by using the incom-
pressibility condition

w = −
1

2�
	�2p� z3

3
− z2h� − z2�� p�� h + z2�2�
 . �A7�

Substituting these expressions into Eq. �A5� and integrating
over z, the final form of the interface equation is derived,

�th =
1

�
�� �h3

3
�� p −

h2

2
�� �� . �A8�

APPENDIX B: NUMERICAL INTEGRATION
METHOD

While simple explicit Euler methods are frequently em-
ployed in numerical investigations of nonlinear reaction-
diffusion models, such methods easily become numerically
unstable when hydrodynamical microfluidics equations are
considered. Therefore, a specially constructed numerical in-
tegration method has been employed in our study. Below, its
brief description is provided.

There are two nonlinear differential equations to solve:
one for the thickness H and the other for the concentration C
of the surfactant. We define vector U� = �H ,C� and formally
write both equations as

�tU� = F�U� � . �B1�

The matrix operator F can be decomposed as
F=LU� +N�U� � into its linear �LU� � and nonlinear �N�U� ��
parts. They are defined as
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L = � �F�U� �

�U�
�

U� =U� 0

, N�U� � = F�U� � − LU� . �B2�

To compute U� �t+�t� at the next time step t+�t, the mixed
semi-implicit method is employed,

U� �t + �t� − �tLU� �t + �t� = U� �t� + �tN�U� �t�� . �B3�

Thus, the implicit method is used to determine the contribu-
tion from the linear part in time t+�t and the explicit method
is employed to compute the nonlinear part contribution.

Applying the inverse matrix operator �1−�tL�−1 to both
sides of this equation yields

U� �t + �t� = �1 − �tL�−1�U� �t� + �tN�U� �t��� .

Recombining some terms and using F=LU� +N�U� �, the final
finite-difference equation is obtained

U� �t + �t� = U� �t� + �t�1 − �tL�−1F�U� �t�� .

The calculation of the inverse differential matrix operator
�1−�tL�−1 is most conveniently performed by transforming
the equation to the Fourier space. Here, it is important that
the term F�U� �t�� is determined before applying the Fourier
transformation.

Our simulations using this numerical method have been
performed only in the one-dimensional case, H=H�x , t� and
C=C�x , t�. In two dimensions, the method becomes compli-
cated and such simulations have not been undertaken.

�1� F. Jülicher, A. Ajdari, and J. Prost, Rev. Mod. Phys. 69, 1269
�1997�.

�2� E. R. Kay, D. A. Leigh, and F. Zerbetto, Angew. Chem., Int.
Ed. 46, 72 �2007�.

�3� L. A. Blumenfeld and A. N. Tikhonov, Biophysical Thermody-
namics of Intracellular Processes: Molecular Machines of the
Living Cell �Springer, Berlin, 1994�.

�4� Y. Togashi and A. S. Mikhailov, Proc. Natl. Acad. Sci. U.S.A.
104, 8697 �2007�.

�5� E. M. Purcell, Am. J. Phys. 45, 3 �1977�.
�6� A. Shapere and F. Wilczek, Phys. Rev. Lett. 58, 2051 �1987�.
�7� L. E. Becker, S. A. Koehler, and H. A. Stone, J. Fluid Mech.

490, 15 �2003�.
�8� A. Najafi and R. Golestanian, Phys. Rev. E 69, 062901 �2004�.
�9� D. J. Earl, C. M. Pooley, J. F. Ryder, I. Bredberg, and J. M.

Yeomans, J. Chem. Phys. 126, 064703 �2007�.
�10� R. Golestanian and A. Ajdari, Phys. Rev. E 77, 036308 �2008�.
�11� D. Saintillan and M. J. Shelley, Phys. Fluids 20, 123304

�2008�.
�12� S. Sankararaman and S. Ramaswamy, Phys. Rev. Lett. 102,

118107 �2009�.
�13� R. Golestanian and A. Ajdari, Phys. Rev. Lett. 100, 038101

�2008�.
�14� S. Ramaswamy, J. Toner, and J. Prost, Phys. Rev. Lett. 84,

3494 �2000�.
�15� V. Casagrande, Y. Togashi, and A. S. Mikhailov, Phys. Rev.

Lett. 99, 048301 �2007�.
�16� C. J. Beverung, C. J. Radke, and H. W. Blanch, Biophys.

Chem. 81, 59 �1999�.
�17� A. Oron, S. H. Davis, and S. G. Bankoff, Rev. Mod. Phys. 69,

931 �1997�.
�18� A. De Wit, D. Gallez, and C. I. Christov, Phys. Fluids 6, 3256

�1994�.
�19� M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851

�1993�.
�20� S. Kim and H. Hu, J. Phys. Chem. 96, 4034 �1992�.
�21� J. T. Finer, R. M. Simmons, and J. A. Spudich, Nature �Lon-

don� 368, 113 �1994�.
�22� M. E. Fisher and A. B. Kolomeisky, Proc. Natl. Acad. Sci.

U.S.A. 96, 6597 �1999�.
�23� M. E. Fisher and A. B. Kolomeisky, Proc. Natl. Acad. Sci.

U.S.A. 98, 7748 �2001�.
�24� D. Tam and A. E. Hosoi, Phys. Rev. Lett. 98, 068105 �2007�.
�25� A. Snezhko, I. S. Aranson, and W.-K. Kwok, Phys. Rev. E 73,

041306 �2006�.
�26� P. Tierno, R. Golestanian, I. Pagonabarraga, and F. Sagués,

Phys. Rev. Lett. 101, 218304 �2008�.

SERGIO ALONSO AND ALEXANDER S. MIKHAILOV PHYSICAL REVIEW E 79, 061906 �2009�

061906-8


