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Separation of suspended particles in microfluidic systems by directional locking in periodic fields
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We investigate the transport and separation of overdamped particles under the action of a uniform external
force in a two-dimensional periodic energy landscape. Exact results are obtained for the deterministic transport
in a square lattice of parabolic, repulsive centers that correspond to a piecewise-continuous linear-force model.
The trajectories are periodic and commensurate with the obstacle lattice and exhibit phase-locking behavior in
that the particle moves at the same average migration angle for a range of orientation of the external force. The
migration angle as a function of the orientation of the external force has a Devil’s staircase structure. The first
transition in the migration angle was analyzed in terms of a Poincare map, showing that it corresponds to a
tangent bifurcation. Numerical results show that the limiting behavior for impenetrable obstacles is equivalent

to the high Peclet number limit in the case of transport of particles in a periodic pattern of solid obstacles.
Finally, we show how separation occurs in these systems depending on the properties of the particles.
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I. INTRODUCTION

The transport of suspended particles in a two-dimensional
(2D) periodic lattice of obstacles has recently attracted sig-
nificant attention as a means of separating particle species in
microfluidic devices. A driving force induces particles to
move through the system. Depending on the properties of the
particles and the direction of the driving force 6 with respect
to the lattice orientation, the particles move through the lat-
tice in commensurate phase-locked trajectories. That is, for a
range of driving-force angles single species of particles will
have an average trajectory in one of the lattice directions
(p,q), whose angle is given by a=arctan(g/p). Further, that
average trajectory angle will remain fixed over a range of
driving-force angles. When the driving-force angle is outside
that range, the particle trajectories will jump to a new fixed
angle. The relation between the direction of motion « and the
angle of the driving force 6 depends on the properties of the
particles. Consequently, the system has the potential to sepa-
rate different species of particles, with the advantage that
different particles migrate at different angles (vector chroma-
tography), allowing for continuous fractionation [1,2].

These microfluidic systems can be broadly classified into
two groups depending on the nature of the energy landscape
that is experienced by the suspended particles. In one group,
the particles move through a periodic array of solid ob-
stacles, such as in the separation devices based on determin-
istic hydrodynamics pioneered by Austin’s group [3-6]. In
terms of the corresponding energy landscape, the array of
obstacles can be considered as a periodic array of hard-core
repulsive potentials. In the second class of systems, particles
move through smooth potential landscapes, with soft interac-
tions between the particles and an external field. Examples
include the optical fractionation methods pioneered by Gri-
er’s group, where colloidal particles are transported through
an array of holographic optical tweezers [7-11].

Phase-locking behavior is common to transport through
periodic structures in many systems [12-16] as well as to
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nonlinear dynamical systems in general. Original work by
Reichhardt and Nori [12] showed in fact the presence of
phase locking, Devil’s staircases and Farey trees in driven
vortex lattices with periodic pinning, and predicted that simi-
lar phenomena would be observed in colloids driven past
optical-trap arrays. In the transport of particles in periodic
systems Lacasta er al. [17] studied a 2D periodic arrange-
ment of wells (or traps) in a square lattice by means of nu-
merical simulations of the corresponding Langevin equation.
Numerical results showed the presence of periodic trajecto-
ries and lateral migration, in that the particles moved, on
average, at an angle « different from the orientation angle of
the driving force 6. They also showed the presence of phase-
locking in the a vs 6 curve, with clear plateaus at large
Peclet numbers. In fact, the authors identify the observed
migration as a deterministic phenomenon [18].

A separate study [19] investigated periodic landscapes
that present either repulsive (obstacles) or attractive (traps)
centers located on a square lattice. In both repulsive and
attractive cases, they observe similar phase-locking behavior,
with the corresponding plateaus in the « vs 6 curve becom-
ing evident at large Peclet numbers (large Peclet numbers
correspond to low temperatures in Refs. [17] and [19]).

On the other hand, separable potentials, which can be
written as a sum of periodic fields in each of the two princi-
pal directions of a square lattice [ 18], do not exhibit the same
complex behavior, as clearly shown by Pelton er al. [10].
Experimental work using optical tweezers has also demon-
strated the presence of periodic trajectories and locked-in
states [7,10]. However, these experiments displayed a differ-
ent type of locking in the presence of Brownian motion, in
which the trajectories become commensurate only in a sta-
tistical sense and only some of the locked-in states are cen-
tered on commensurate directions (a hopping model for the
observed dynamics is proposed by Gopinathan and Grier
[9D).

Conversely, and in agreement with the discussed numeri-
cal results at high Peclet numbers, recent simulations and
experiments on the motion of non-Brownian spherical par-
ticles through periodic arrays of obstacles clearly show that
deterministic systems exhibit analogous phase-locking dy-
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namics and periodic trajectories into commensurate lattice
directions [20]. Phase-locking dynamics has also been ob-
served in more complex transport systems, including the mo-
tion of an overdamped particle through a periodic potential
under time-periodic driving forces [14,15,21] and the dy-
namics of a particle driven through a deformable colloidal
lattice [16].

In contrast to a significant number of experiments and
simulations, there are few studies that present analytical re-
sults for the transport of particles in irreducible two-
dimensional systems. Pelton er al. [10] studied the over-
damped motion of a single particle in a periodic landscape.
In the one-dimensional (1D) case (linear fringes) they
showed the existence of locked trajectories for driving forces
that are not strong enough to drive the particles over the
energy barrier. They also showed that the behavior in sepa-
rable (reducible) 2D potentials is analogous to the locking
observed in 1D systems. Gleeson et al. [22] studied irreduc-
ible 2D periodic potentials and derived an iterative method
for calculating the average velocity of the particles in inverse
powers of the external force and particle’s diffusivity.

In this work, we are interested in the deterministic limit
(small diffusivity) for relatively small forces, i.e., driving
forces for which the effect of the potential landscape is not
negligible. Therefore, we consider both the deterministic
evolution as well as the high Peclet number limit for finite
forces. In particular, we consider a quadratic, continuous
model for the 2D periodic potential that corresponds to a
piecewise-continuous, linear-force model. This simple model
offers the interesting combination of an irreducible but solv-
able potential that captures the nontrivial transport phenom-
ena exhibited by 2D periodic systems, including directional
locking and the universal behavior of dynamical systems
near a bifurcation point.

II. TRANSPORT OF COLLOIDAL PARTICLES THROUGH
PERIODIC LANDSCAPES

A. Equation of motion: High-friction limit

The equation of motion for a Brownian particle traversing
a periodic force field is the Langevin equation [23], which in
the high-friction limit takes the form [24]

X P+ Fy(x) + £0), (1)

where F(x) is the periodic force field, F is an external driv-
ing force, and &(r) is the Langevin force describing the fluc-
tuating force exerted by the fluid on the colloidal particle.
The friction constant vy is given by 67 ua, where a is the
radius of the colloid and w is the viscosity of the fluid. The
Langevin force is represented by a Gaussian distribution
with zero mean, (&(1))=0, and & correlation, (&()&(s))
=2ykT5(t~s) ;. Here, we shall focus on a spatially uniform
external force, Fy(x) =F, and, for convenience, we choose a
coordinate system with the x axis oriented along the direction
of the force, Fy(x)=Fge, (see Fig. 1).
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FIG. 1. (Top) Potential landscape with quadratic, repulsive cen-
ters on a square lattice. (Bottom) Schematic view of the system,
with circles representing the repulsive centers. e; and e, are the
principal vectors of the square lattice. A unit cell is represented by
the dashed line. F|, is oriented along the x axis and @ is the angle
between the force and e; (in this case is #=25°). Solid line shows a
locked trajectory that moves in the (2,1) lattice direction, indicated
with a solid arrow at the bottom of the system. « is the angle
between this asymptotic direction and e;: a=arctan(1/2)=26.56°.

B. Periodic potential: Piecewise-linear model

We consider the case in which the periodic force can be
derived from a potential field, F(x)=—VV(x). Here, we shall
model the two-dimensional, periodic landscape as a
piecewise-smooth potential that is composed of repulsive
centers of size R (obstacles) located in a square lattice with
lattice spacing L>2R. Specifically, we consider the periodic
landscape shown in Fig. 1 which, in the unit cell, is given by

F
-2 +y?-R») r=R
V(x,y)=] 2R )

0 r>R,

where the center of the coordinate system coincides with the
center of the cell, r is the radial position, r>=x*+y?, and F,,,,
gives the magnitude of the repulsive force. Since we have
chosen to align the x axis with the external force the obstacle
lattice will be, in general, rotated with respect to the coordi-
nate system. We shall refer to the rotation angle between the
x axis of the coordinate system and the principal axis of the
square lattice e, as the forcing angle 6 (see Fig. 1). We shall
also nondimensionalize our variables using u.=F ../ y as the
characteristic velocity, F,,, as the characteristic force, and R
as the characteristic length. The new variables become x’
=X7Y/Fpax X' =X/R, and r' =r/R. The boundary of the repul-
sive centers is at r’=1 and we define the relative separation
between the repulsive centers as €=L/R. For simplicity, we
do not use the primes to refer to the nondimensional vari-
ables in what follows.
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III. DETERMINISTIC TRANSPORT: EXACT SOLUTIONS

The trajectories in the deterministic limit are obtained
from Eq. (1) by neglecting the effect of thermal fluctuations.
Thus, outside the quadratic regions, the particles follow a
straight line that is parallel to the x axis. On the other hand,
inside the parabolic regions, the equations of motion become

) av
X=——+f=x+f, r<l|,
ox

y:__:y’ r<I, (3)

ay
with f=F,/F . the ratio of the driving to the maximum
repulsive force.

We can include the external force in a modified potential
field as V,(x,y)=V(x,y)+x f. This modified potential is
also an inverted parabola, but with its center shifted to x,
=(—f,0). It is clear then that the family of curves perpendicu-
lar to the equipotential lines, i.e., the particle trajectories in-
side the circle, are also straight lines, with center at x,. The
same result can be obtained from direct integration of Egs.
(3).

When f>1 the x component of the velocity is always
positive and all the trajectories are unbounded. Then, we can
define the migration angle « of the particles as the
asymptotic angle that the trajectory of the particles forms
with the principal axis of the lattice e, i.e., =6 means that
the particles move collinearly with the external force; a=0
means that the particle moves parallel to the principal direc-
tion of the square lattice (see Figs. 1 and 2).

Let us note that we are in the deterministic and high-
friction limits and therefore two independent trajectories can-
not cross each other in real space. In addition, we consider
two-dimensional trajectories in the plane and thus for a given
value of the forcing angle 6 all the trajectories must have the
same migration angle «. Therefore, we can obtain a single
valued a vs 6 curve by determining the angle of a single
trajectory as a function of the forcing angle.

A. Analytical solutions in the unit cell

In general, a global trajectory can be segmented into a
number of successive collisions between the colloidal par-
ticle and the repulsive centers. In addition, we can classify
each trajectory passing through a unit cell in terms of its
incoming impact parameter by which we define in the present
coordinate system as the y coordinate of the particle when it
enters the unit cell [see Fig. 2(a)]. For by> 1 the trajectories
are straight lines parallel to the x axis and do not interact
with the obstacle at the center of the cell. For 0<b,<1, on
the other hand, we have three different cases. For impact
parameters larger than a maximum value,

—
? (4)
it can be shown from Egs. (3) that the radial component of

the velocity is negative outside the circle and positive inside
it
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(b)

FIG. 2. (Color online) (a) Schematic view of a unit cell for a
rotation angle 6. b, is the incoming impact parameter for the tra-
jectory shown with the solid line. We also show the incoming im-
pact parameter for the next collision and the corresponding shift by
B. € is the ratio between center size R and center-to-center distance
L. The center for the collision trajectories is (—f,0). The critical
impact parameters are b, which corresponds to a collision trajec-
tory ending at (0, = 1), and b,,, which corresponds to a collision
trajectory tangent to the parabolic center. (b) Schematic view of the
three types of trajectories: Trajectory A for incoming parameters
b.<b,<b,,, B for 0<by<b,., and C for b, <by<1. €, is the
maximum value of the incoming parameter for a given forcing di-
rection 6. The region between €, and €_ corresponds to the trajec-
tories crossing the top (bottom) of the unit cell.

xflr <0 for r>1
F= )

xflr+r>0 for r=1 & b,<by<lI.

In our piecewise approximation, this means that the particle
will move around the circle with r=1 until it separates at the
top of the circle and then follows a straight line parallel to
the x axis. A trajectory of this type is shown in Fig. 2(b): the
incoming particle enters the circle at the point C; with im-
pact parameter by<-b,, and therefore leaves the circle at
C,=(0,-1). The maximum value of the impact parameter,
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b,,, corresponds to the point on the circumference for which
its tangent passes through the center of the effective poten-
tial, (—=f,0), as shown in Fig. 2(a).

For impact parameters smaller than b,, there is a critical

value,
2.1
b= (j;+ 1>, ©)

such that for b.<b,<b,, the particle enters the repulsive
centers, but the separation from the circle still occurs at the
top (or bottom for negative values of the impact parameter,
see below). Such a characteristic trajectory is shown in Fig.
2(b): the particle enters the circle at the point A; and follows
a straight line with center at (—f,0). Then, the particle
reaches the point A, on the circumference of the circle,
which belongs to the region above b,,. Thereafter, the trajec-
tory becomes identical to those described for by,>b,,, with
the particle separating from the circle at the top (point Aj).
We will refer to collisions with incoming parameter larger
than b, as irreversible in that, independent of the exact value
of the impact parameter, all the incoming trajectories col-
lapse into a single outgoing trajectory, with outgoing impact
parameter by=1.

Finally, for impact parameters smaller than the critical
value, 0 <b,<b,, the particle enters the circle [e.g., point B,
in Fig. 2(b)], moves in a straight line, and leaves the circle on
the positive side of the x axis (point B,). The outgoing im-
pact parameter (or y coordinate) in this case is given by

(2= Dby
b= . 7
Py -211-8 7

B. Poincare map and saddle-point bifurcation

In Fig. 2(b) we showed the different types of trajectories
that a particle follows depending on the impact parameter.
For each one of these trajectories, we also show the impact
parameter that the particle will have in its next collision in a
neighboring unit cell (see points A|, B}, and C;). If the out-
going impact parameter b= b(b) is defined as the y coor-
dinate of the point where the particle leaves the cell, then the
next incoming parameter will be by=b~B, with B
=¢{ sin(#), as shown in Fig. 2(a). Therefore, for positive val-
ues of the incoming impact parameter, the impact parameter
for the next collision is given by

~1)b
S v ),0 =B 0<by<b,
L4 (P21 b @
" l1-p b, <by<1
bo- B 1<by<dt,,

where €,=(€/2)[cos(6)+sin(#)] is the maximum possible
value of the incoming impact parameter [see Fig. 2(b)]. The
symmetric conditions apply to negative values of the impact
parameter, with the only difference being that those trajecto-
ries leaving at the bottom of the cell come into the next cell
from the top, that is,
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by=bs—B+2€,=bs+ L cos(0) —{,<by<-¢{_.

)

We can then investigate the global trajectories by studying
the above transformation of the impact parameter, which is
in fact a Poincare map of the impact parameter into itself
by=M(bg) [25]. Our objective is to compute the migration
angle « as a function of the forcing angle 6. We showed
before that for a given 6 all the trajectories have the same
migration angle. Therefore we can investigate single trajec-
tories using the Poincare map to determine the asymptotic
direction of motion. This is particularly simple in the case of
periodic trajectories.

Let us define a periodic trajectory to have period ¢ if the
particle goes through ¢ different collisions before repeating
its motion (note that all periodic trajectories are commensu-
rate with the obstacle lattice) [26]. This corresponds to g
successive collisions with different incoming impact param-
eters before the sequence repeats itself. Periodic trajectories
with period ¢ correspond to fixed points bj of the g-times
composed map of the impact parameter, for which b;
=M'9(b}). In Fig. 3(a) we present the map of the impact
parameter into itself for increasing values of 6. We also show
the intersection points with the diagonal, which correspond
to fixed points of period g=1 (the incoming collision param-
eter is always the same). The presence of fixed points with
g=1 indicates that the trajectory remains locked at @=0 for
sufficiently small forcing angles. In fact, for small forcing
angles there is only one stable fixed point, located in the
region of irreversible collisions (impact parameters between
b. and 1). The fixed point corresponds to by=1-p (b in the
figure). The other fixed point is unstable, since the local
slope of the map is greater than 1 [26]. As the forcing angle
increases, the map is shifted down by an increasing amount,
B=1¢ sin(6), and the fixed point moves to the left in the map,
corresponding to smaller impact parameters. Eventually, the
fixed point reaches the critical impact parameter bj=b,, as
indicated in the figure (b3). For larger forcing angles, the
stable fixed point is given by (b} in the figure)

by(B) =~ g + é\/ZfZ— 24 LB+ (- N5

(10)

The corresponding collision not only penetrates the parabolic
regions but is also no longer irreversible. However, these
trajectories are still locked into the =0 overall motion. Fi-
nally, as the forcing angle increases, the map goes through a
tangent bifurcation for B,=¢ sin(6,)=1/f (b} in the figure)
when the stable and unstable fixed points meet at a single
point b;=bg(,), where the diagonal is tangent to the map
(this bifurcation is sometimes also referred to as a saddle
node bifurcation [27]).

Although in the vicinity of the bifurcation point the be-
havior is universal, the existence of irreversible collisions
changes the global dynamics of the map, which in general
leads to periodic trajectories (note that chaos is not possible
for two-dimensional flows in general [26,28]). For example,
for angles slightly larger than 6, the map exhibits the uni-

061404-4



SEPARATION OF SUSPENDED PARTICLES IN ...

a) / |
1.0 b by

05— 4 T 7 —

0.0 —

b’y

-0.5 — —

1.5 T T T == T — T T T
N :

0.0
05— ; —

-1.0— —

b’y

FIG. 3. (Color online) (a) Poincare map of the incoming colli-
sion parameter into itself for different forcing angles 6. (€=2.5; f
=2.0; b,,= \53/2; b.=0.6; B,=0.5; 6,=11.54°.) The map has always
the same form but is shifted down by a constant amount A3
={ sin(6). The fixed points corresponding to increasing forcing
angles are b}, a fixed point in the region of irreversible collisions,
b3, a fixed point that corresponds to successive collisions with by
=b,, b}, a fixed point corresponding to reversible collisions, and b},
a fixed point at the bifurcation angle 6=6,. The last map has no
fixed points corresponding to g=1. (b) A trajectory is shown for a
forcing direction 8=0.55> ;. The trajectory has a periodicity ¢
=9. Only one of the collisions leads to the particle crossing the
top-bottom boundary of the unit cell and therefore the direction of
the trajectory is (8,1) .

versal intermittent behavior associated with tangent bifurca-
tions, with long-lived intervals of quasiperiodic motion of
period g=1, as the impact parameter goes across the b
~ b}, region [27] (see Ref. [29] for a discussion of the corre-
sponding renormalization-group approach in a generic tan-
gent bifurcation, and Ref. [30] for a more recent perspective
on tangent bifurcations in the context of Tsallis statistics).

However, the behavior outside this quasiperiodic region is
also periodic due to repeated irreversible collisions. A typical
trajectory with such intermittent behavior is shown in Fig.
3(b). The trajectory is quasiperiodic with g=1 for by~ b,
On the other hand, outside the near critical region, the tra-
jectory is also periodic after two irreversible collisions, with
period g=9 as shown in Figs. 3(b) and 4.

In general, there are two types of irreversible collisions,
which we may call positive and negative ones, with +1 and
—1 as the outgoing impact parameters, respectively, indepen-
dent of the value of the incoming parameter. Therefore, a
trajectory becomes periodic whenever a second positive or
negative collision occurs, which again highlights the com-
mensurate nature of the periodic orbits.
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0.0

b’y

-0.5

FIG. 4. (Color online) Poincare map of the incoming collision
parameter into itself and compositions of the map of different or-
ders g=1, 2,3, 5,7, and 9. The forcing angle is the same as in Fig.
3(b), with B=0.55>B,. (€=2.5; f=2.0; b,=\3/2; b,=0.6; B,
=0.5; 6,=11.54°.) It is clear that only ¢=9 has fixed points, as
shown in Fig. 3(b) by following an individual trajectory.

We can still use the Poincare map to determine the phase-
locking behavior for all forcing angles. In the g=9 periodic
trajectory shown in Fig. 3(b), for example, the particle goes
through the bottom-top periodic boundary condition only
once, which means that its asymptotic migration angle will
be arctan(1/8), as shown in Fig. 5. Figure 5 also shows the
behavior near the critical angle 6, and the entire 6 vs «
curve, which exhibits the typical Devil’s staircase structure
[31]. We also show some of the observed locking angles and
their ordered structure, in which they form a Farey tree [32].

C. Limiting behavior

In Fig. 6 we present the impact-parameter map for differ-
ent magnitudes of the external force. In the limit of large
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FIG. 5. Migration angle as a function of the forcing angle (same
system as in Figs. 3 and 4). The critical forcing angle corresponding
to a tangent bifurcation is shown with the dashed line. Inset shows
the bifurcation region in more detail. Open circle corresponds to the
forcing angle #=12.71°, 8=0.55> B,, ¢=9, and directional locking
into the (8,1) direction, also discussed in Figs. 3 and 4
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FIG. 6. Poincare map of the incoming impact parameter into
itself for various relative magnitudes of the external force f. The
dimensionless lattice parameter is €=2.5.

external forces the repulsive centers have negligible influ-
ence on the trajectories and the map tends to the identity
relation b)=b,, with both b,— 1 and by—by. On the other
hand, for small forces, that is for forces f~ 1, all collisions
become irreversible, in that b.— 0 for f— 1. Figure 6 shows
that the map of the impact parameter tends to a piecewise-
continuous map with only two regions: the region of unper-
turbed trajectories for |bo|>1 and the region of irreversible
collisions for |by| < 1. This is a particularly interesting limit,
in that it corresponds to impenetrable repulsive cores which
could model, for example, the transport of a tracer particle
through an array of impermeable obstacles in the limit of
high Peclet numbers, as we investigate in more detail in the
next section.

IV. STOCHASTIC TRANSPORT: HIGH PECLET
NUMBER BEHAVIOR

In this section we investigate the stochastic transport of
colloidal particles in the periodic landscape discussed in Sec.
II B, i.e., we consider diffusive transport in addition to the
purely convective motion considered in the deterministic
case. We will show that, at relatively high Peclet numbers,
the average motion of the particles exhibits directional lock-
ing equivalent to that observed in the deterministic case.

In the presence of diffusive transport, the effective migra-
tion angle is given by the angle between the average velocity
of the particles and the periodic lattice [33]. We first solve
the Fokker-Planck equation for the probability density asso-
ciated with the stochastic motion of the colloidal particles
given by Eq. (1). The Fokker-Planck equation in nondimen-
sional variables reduces to

3 d 1
—P(x,0) + f—P(x,t) - —V?P(x,)) =0, r>1, (11
P (x )+fax (x,1) Pe (x,1) r (11)

where the Peclet number is given by Pe=F,,R/Dvy, with D
the diffusivity of the colloidal particle. The asymptotic dis-
tribution of colloidal particles in the unit cell, P,(x), corre-
sponds to the steady-state solution of Eq. (11) above inside
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FIG. 7. Average migration angle calculated from Eq. (12) for
different forcing angles. The periodic landscape is described in Sec.
II B. The dimensionless parameters are £=4.0 and f=1.0.

the unit cell, with continuity in the probability density and
probability flux at the boundary of the repulsive centers and
periodic boundary conditions imposed on the boundary of
the unit cell [34]. We can then obtain the components of the
average migration velocity, (U;), as well as the migration
angle « from their ratio [34],

KU N )
tan(a) = " fo dx{—D(?me(x)}

¢ P -1
X f dy[me(x)—Dan(x)}

0
(12)

We obtained the stationary solution for the probability
distribution using standard numerical methods. For all cases
we computed the steady-state probability distribution using a
finite element method with over 3 X 10° degrees of freedom
and an element size smaller than 1073 X R surrounding the
obstacle boundary. In Fig. 7 we present the results for the
average migration angle as a function of the forcing angle for
different Peclet numbers. It is clear that, as the Peclet number
increases and the convective transport becomes dominant,
the relation between the migration and the forcing angle
tends to a structure similar to those observed in the determin-
istic case, consisting of plateaus and steps. In fact, we show
that the average effective angle exhibits, in the limit of high
Peclet numbers, the same directional locking as that pre-
dicted in the deterministic case (represented by horizontal
lines in Fig. 7).

In Fig. 8 we present the asymptotic probability distribu-
tion in the unit cell for different Peclet numbers. We can see
that, as the Peclet number increases and convective transport
becomes dominant, the probability flux is dominated by a
stream that leaves the obstacles from the bottom of the circle
and is parallel to the force (x axis). This is consistent with
our interpretation in the deterministic case. Note that the so-
lutions presented here correspond to the limiting case f
=1.0 and, therefore, there is no penetration into the obstacles
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FIG. 8. (Color online) Asymptotic distribution of particles in the
unit cell for different Peclet numbers. The dimensionless parameters
are €=4.0 and f=1.0. The forcing angle is #=arctan 0.15~=8.53°.
The plot at the center shows the concentration profile on a line
along the y axis (perpendicular to the external force). Dashed line in
the plot marks the intersection with the tangent at the bottom of the
circle. Both lines are shown in the probability plot corresponding to
Pe=500.

in the analogous deterministic case, as discussed in Sec.
Ic.

The plot in Fig. 8 shows the concentration profile on a
line that is perpendicular to the forcing direction. It is clear
that, as the Peclet number increases, the probability flux fo-
cuses on a narrow region that streams from the bottom point
of the obstacle. In fact, the probability maximum in the
cross-section plot in Fig. 8 tends to the point at which the
tangent to the circle parallel to the force intersects the cross-
section line (indicated by a dashed line in the plot).

In the plots corresponding to Pe=100 and 500 we can see
the re-entrance of the probability stream on the left boundary
of the unit cell, as well as its collision with the obstacle. We
can estimate the width of the probability peak to validate that
it corresponds to diffusive spreading in the direction perpen-
dicular to the convective motion. For this we follow the ap-
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FIG. 9. Migration angle as a function of the forcing angle. Open
symbols correspond to the parabolic repulsive centers with nondi-
mensional lattice spacing €=4.0, f=1, and Pe=1000. Solid symbols
correspond to numerical simulation in the case of solid, nonperme-
able obstacles for the same lattice spacing and Peclet number.

proximations done in the case of geometric ratchets [35], in
which diffusion along the direction of the external force is
neglected. In this case,

2 DAl ~ L) _t

(Ay*) =2DAr 2<2U D_Pe’ (13)
where €/2 is the distance between the streaming point and
the cross-section measurement. This estimate agrees well
with the numerical results. For example, for Pe=500 the pre-
vious equation predicts Ay ~0.09 and the width of the peak
is 0,~0.06.

Finally, in Fig. 9 we compare the results of our model to
the case of impermeable solid obstacles (no-flux boundary
condition). We discussed in the previous section that, in the
limit of f~ 1, all collisions are irreversible (b.=0 for f=1)
and do not penetrate the obstacles. In this case we expect the
dynamics to be similar to that in the case of solid obstacles.
This is only approximate, given that in the presence of dif-
fusion, there is a nonzero probability of finding the particles
inside the repulsive regions. Figure 9 shows that, in fact, the
migration angles obtained in our model are very similar to
the migration angles obtained in the case of solid obstacles
for the same, relatively large, Peclet number.

V. RELEVANCE TO MICROFLUIDIC DEVICES

In previous experimental work we have shown the possi-
bility to separate particles using differences in the value of
the bifurcation angle [36]. In dimensional variables, the bi-
furcation angle is given by L sin(6,)=R/f, which shows its
dependence on the properties of the particles. Specifically,
the properties of the particles could come into play through
the force ratio f or through the effective size of the repulsive
centers R.

In the case of optical lattices, both the magnitude of the
repulsive force as well as the characteristic size of the repul-
sive centers depend on the particle size [10]. In fact, our
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results for the bifurcation angle are analogous to the calcu-
lation by Pelton er al. [10] for the critical angle to escape a
single barrier. Our results can then be used to investigate the
behavior at angles above the bifurcation.

Finally, we can model the transport of suspended particles
in a pattern of solid obstacles using the limiting case f~ 1
discussed in Sec. III C. In this case, sin(6,)=R/L, which
depends on the size of the particles through the effective size
of the obstacles, R=R,y+a, where R, is the size of the ob-
stacles and a is the radius of the particles. In this trivial
approximation the bifurcation angle can also be obtained by
straightforward geometrical considerations. The size depen-
dency implies that larger particles will become unlocked
from the a=0 direction at larger angles of the driving force,
as observed in experiments.

Consider, for example, the separation of particles of two
different sizes, a;=4 um and a,=6 wm, in a lattice of
(solid) cylindrical obstacles of radius Ry=5 um and with a
lattice constant L=25 um. Let us assume that the particles
are driven at an average velocity of U~10 um/s, which
corresponds to a large value of the particles Peclet number,
Pe~ 103. (Note that for common driving forces, such as elec-
trophoretic fields and pressure-driven flows, the fields would
not be uniform unless the obstacles are permeable, as dis-
cussed in detail in Ref. [33]. Alternative one could consider
gravity or centrifugal force fields or the case of particles
driven through optical-trap arrays with a uniform velocity
and in the limit f~1.) Then, considering only hard-sphere
interactions (excluded volume effects) between the spheres
and the obstacles the corresponding effective sizes of the
obstacles are R{=9 um and R,=11 um for particles of radii
a; and a,, respectively. Similarly, the dimensionless length
depends on the size of the particles. Specifically, €,=25/9
and €,=25/11, which results in different bifurcation angles
for the two type of particles, 6,;=21.1° and 6,,=26.1° for
sizes a; and a,, respectively. Therefore, for a driving force
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oriented at any angle 6 relative to the obstacle lattice such
that 6,; < < 6,,, the particles will separate. In particular,
the small particles will move in the lattice direction (2,1)
with a;=26.56° and the large particles will be locked at a,
=0°.

VI. SUMMARY

We have shown that the transport of particles in a periodic
lattice of repulsive centers exhibits analogous behavior to
that observed in microfluidic systems. The simplicity of the
parabolic repulsive potentials allowed us to integrate the tra-
jectories explicitly and to demonstrate the existence of peri-
odic trajectories that are commensurate with the obstacle lat-
tice. We also showed that the motion can be determined by
means of a Poincare map of the incoming impact parameter
into itself, which shows that there is a tangent bifurcation at
the critical forcing angle for which the locking becomes dif-
ferent from a=0. The entire migration-angle vs forcing-
angle curve exhibits the characteristic Devil’s staircase type
of structure common to phase-locking systems. Finally, we
showed that the limiting behavior for f~1 is equivalent to
the high Peclet number limit in the case of transport of par-
ticles in a periodic pattern of solid obstacles. Therefore, our
previous results provide insight into the separation problem
in the case of periodic potential landscapes as well as in the
case of periodic patterns of solid obstacles. In fact, we dis-
cussed a straightforward application of our results to calcu-
lating the bifurcation angle in both solid and optical lattices.
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