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Quasi-Gaussian velocity distribution of a vibrated granular bilayer system
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We investigate using a discrete element method the kinetic properties of a system composed of a bilayer of
granular spheres submitted to a vertical vibration. For moderate dimensionless acceleration, no mixing between
layers is observed and the horizontal velocity distributions of the top-layer particles with are quasi-Gaussian.
The robustness of this phenomenon is examined for a variety of physical parameters (acceleration of the
bottom plate, mass ratio, layer coverage, etc.). A microscopic analysis of the simulation dynamics leads to a

simple picture of the underlying mechanisms.
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I. INTRODUCTION

Granular particle dynamics are dominated by dissipation
due to the inelastic collisions occurring between particles. In
order to maintain granular systems in a steady state, it is
necessary to provide kinetic energy continuously. In many
experiments, energy injection is provided at the boundaries
of the system: in dimension 3, inhomogeneities in tempera-
ture and/or density gradient are present, leading, for instance,
to convection [1] and pattern formation [2]. To minimize
these effects, it is tempting to consider two-dimensional (2D)
systems where a vibrating bottom plate supplies energy by a
sinusoidal vibration. However, even in the simplest case of
granular monolayers, a large variety of patterns occurs [3]:
for small dimensionless acceleration, heterogeneities are
present and a two-phase coexistence [4] was observed, as
well as clustering [5] or melting [6]. At high density, mono-
layer systems display glassy dynamics with for instance a
stretched intermediate scattering function [7,8]. When the ac-
celeration of the vibrating base is increased, the system be-
comes spatially homogeneous and the velocity distribution
displays less deviations from Gaussian. Thus, the way energy
is injected into these systems is of crucial importance for
their thermostatistic properties.

Recent experiments have attempted to control the mecha-
nism of energy injection in quasi-2D vibrated systems. They
have revealed that nonequilibrium steady states (NESS) can
display features surprisingly close to those observed in equi-
librium systems: Prevost e al. [9] investigated a monolayer
of steel beads on a base-plate subject to a sinusoidal dis-
placement in the vertical direction. The dimensionless accel-
eration of the vibrating plate is denoted I'=A(27f)?/g,
where g is the gravity, A is the amplitude of the oscillations,
and f is the frequency. When I'=1.5, the plate is rough and
the density is low, the velocity distribution is very similar to
a Gaussian. In their recent work, Reis et al. [10] claimed to
observe characteristic features of the stochastic thermostat
[11] on the velocity distribution of a vibrated granular mono-
layer. Baxter and Olafsen [12] experimentally studied a vi-
brated bilayer system, where the bottom layer was dense and
composed of dimer beads and the top layer was composed of
plastic beads. The base of the cell, a horizontal circular plate,
was vibrated sinusoidally in the vertical direction. The exci-
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tation was tuned from I'=1.75 to 2.25 such that the layers
were stable. As the density parameter, the coverage of the
top-layer ¢ was defined as the ratio of the number of particles
in the layer divided by the number of particles there would
be in a closed packed configuration: naming 7 the packing
fraction, ¢= 1/ M.y It was varied from ¢=0.2 to ¢=0.8. The
horizontal velocities of the light particles (second layer) were
monitored to build the velocity distribution function. Devia-
tions from Gaussian were quantified by the kurtosis F :é)%%,
which is equal to 3 for a Gaussian distribution. The experi-
mental results showed that the horizontal velocity distribu-
tions of the top layer were very close to Gaussian, (|F—3|
=0.05), within the parameters range presented above (accel-
eration, density, and particle size). Conversely, the horizontal
velocity distribution of the heavy-particle layer, as well as
the vertical velocity distributions remained strongly non-
Gaussian (|[F-3|=1).

The purpose of this paper is twofold: first to build a
simple but realistic model which captures the observed fea-
tures in the experiment of Baxter and Olafsen [12]; second,
to understand how the energy injection provided by the first-
layer particles can lead to quasi-Gaussian velocity distribu-
tions for the top-layer particles. With this objective, we ana-
lyze several microscopic quantities to get insight into the role
of the first layer. We also examine in detail the robustness of
this behavior by varying microscopic parameters of the sys-
tem. In addition we consider the situation where the particles
of the first layer are glued to the vibrating plate, mimicking
Prevost’s experiment [9].

II. MODEL

For the sake of simplicity, we have used simple spheres
instead of the flexible dumbbells used in experiments [12]
for the first layer. As the density of the first layer is very
high, we expect that the details of the interactions among
particles of the first layer are not relevant, except for prevent-
ing the penetration of light particles of the second layer into
interstitial regions, which may occur when the system is sub-
mitted to vibrations. Our simulation model thus consists of a
number N, of heavy spherical particles placed at the bottom
of the simulation cell and N, light spherical particles forming
the second layer. The parameters have been chosen as close

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.79.061306

ALEXIS BURDEAU AND PASCAL VIOT

as possible to the experimental system. The mass of the light
particles is M=22.9 mg, and the mass of the heavy spheres
is taken as one half of the mass of the real dimers, namely,
m=92.5 mg for the monomers. The diameters of light and
heavy particles are the same and equal to 3 mm, as in the
experiment. Periodic boundary conditions are used in the
horizontal directions. We checked that the role of the bound-
ary conditions is negligible for the properties of the steady
state by varying the size of the simulation cell. In this study,
the simulations were carried out on a system with 2500
spheres in the first layer. These spheres were initially placed
on a triangular lattice, with the packing fraction of the first
layer equal to 7=0.9 (or c=1).

The collisions between spheres, as well as the collisions
between spheres and the vibrating bottom, are inelastic. In
addition to collisions, the particles are subject to a constant
acceleration due to the (vertical) gravitational field. The vis-
coelastic forces are modeled by the spring-dashpot model
[13] which we briefly introduce now. Let & be the virtual
overlap between two spherical particles. The simplest force
along the line joining the two centers that takes dissipation
into account is a damped harmonic oscillator defined as

Fil:_kng_7n§’ (1)

where k,, is related to the stiffness of the material and v, is
related to the dissipation. This force model allows one to
very easily tune certain quantities in the simulation, espe-
cially the normal coefficient of restitution e,, which is con-
stant for all collisions at all velocities in our system. Rel-
evant values of ¢, and ¢, determine the values of k, and v,
independently of the velocities. The choice of the collision-
duration t,, naturally introduces a microscopic characteristic
time. The simulation time step is chosen as Ar=107> s and
the mean duration of a collision as #,=1073 s. We have veri-
fied that Ar=t,/100 gives accurate results.

In addition, we introduce a frictional force by taking the
tangential component of the force as F,=—min(|k,|,|uF,|),
where k, is related to the tangential elasticity and ¢ is the
tangential displacement since the contact was first estab-
lished. We used a ratio k,/k,=2/7 with u=0.25.

)

III. SIMULATION RESULTS

By choosing the normal coefficient €n, for the different
types of collisions, the normal force is then well defined. The
force model described above and the experimental setup lead
us to select five values of en, corresponding to the different
types of collision i in the system. We ran simulations for
various values of ¢, from 0.4 to 0.8 (see Fig. 1). For these
values the deviations of the velocity distributions from
Gaussian are small, but the granular temperature, defined as
T= %M(vz> (where v is velocity in the xy plane), varies by a
factor 3.

The best agreement of the observed T with a deviation
compatible with experiments is obtained for e,=0.5 for the
particles of the first layer, and we chose e,,=0.7 for the other
types of collisions. The value e,,=0.5 for the collisions within
the first layer corresponds to strongly dissipative collisions,
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FIG. 1. (Color online) Normalized velocity distributions of the
light particles for different values of €,=0.5,0.6,0.7 (for any type
of collision) at I'=2 and ¢=0.2, corresponding respectively to dia-
monds (black) and the dashed (red) and dotted (blue) curves. The
magenta solid curve is a Gaussian fit. The normalizing factor is the
root mean-squared velocity vo=\{v?).

but the first layer of our system is composed of monomers
instead of the dimers used in the experiment. We assume that
the dissipation occurring in a layer of composite dimers is
much more significant than in a layer of simple spheres. The
planar-temperature 7 decreases with increasing frequency
and with increasing coverage, as observed experimentally.
This result is related to the decrease in the amplitude of the
excitation in the first case, the light spheres being more likely
to sit on the lattice of the first layer, and to the increase in the
number of collisions in the second case.

Simulations were performed by increasing the coverage
of the top layer, namely, increasing the number of the light
particles, all others parameters being unchanged (I'=2, ¢,,, m,
and M). This is illustrated in Fig. 2 which shows the varia-
tion in the kurtosis of the light-particles velocity distribution
with the coverage. Note that when the coverage of the top
layer goes to zero, the flatness of the velocity distribution
approaches a value slightly below 3, which is due to the
existence of residual velocity correlations in the tracer limit.
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FIG. 2. Kurtosis of the light-particles velocity distribution as a
function of the coverage ¢ of the top layer, other parameters being
constant, ['=2 and f=50 Hz. The Gaussian character holds for
moderate densities.
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At high coverage, the deviations from Gaussian become
more significant. The remainder of our study is restricted to
coverages ¢=0.4.

It is worth noting that with the physical parameters, (I
=2 and ¢=0.4), the kurtosis of the heavy particles in the first
layer is always significantly higher than that of the light par-
ticles, i.e., |F —3| =1, whereas the values of the second layer
are very close to Gaussian ones, with |[F—3|=0.1.

We have studied the influence of the mass ratio M/m of
the two species on the velocity distributions in the range
[0.1,1]: when the mass of the light particles increases, the
kurtosis of the velocity distribution of the light particles in-
creases too. When the mass ratio exceeds 1/3, the kurtosis
becomes significantly larger than 3. Deviations from Gauss-
ian are observed even at low coverage: indeed, when the
light particles have a mass comparable to that of the heavy
particles, they have a non-negligible influence on the bottom-
layer dynamics. Due to this feedback effect, strong devia-
tions from Gaussian are observed even in the tracer limit. As
our interest is in velocity distributions as close as possible to
Gaussian, we do not pursue our investigation for higher cov-
erages.

In summary, our simulation model captures the main char-
acteristics of the velocity distribution for different values of
the coefficient of restitution, as well as for different densities
of the light particles. The rest of our study concerns both the
robustness of the phenomena with respect to the values of
the microscopic parameters and the origin of the minimiza-
tion of velocity correlations.

We first focus on situations where the dimensionless ac-
celeration is varied: an upper bound occurs at I'=2.3, where
the excitation is sufficient for ejecting particles of the first
layer. When such events occur, an irreversible mixing be-
tween layers is observed. Conversely, when decreasing I', the
flatness of velocity distribution displays small variations and
suddenly increases when the excitation becomes too small
(I'=1.35) (see Fig. 3). For light particles, the roughness of
the first layer is a key ingredient for obtaining a velocity
distribution close to a Gaussian profile. To measure its influ-
ence, we considered two other systems. We studied the same
system, but with top particles 1.5 larger than previous (i.e.,
d=4.5 mm), keeping the particle mass constant. This corre-
sponds to a system with lower roughness. We also examined
the case of glued particles for the first layer (reproducing the
experimental setup used in Ref. [9].

As shown in Fig. 3, the kurtosis is always significantly
higher in the first case, indicating that in this case the ran-
domization due to the bottom particles is not sufficient.
When the particles of the first layer are glued to the vibrating
plate, the kurtosis diverges at an acceleration I'=1.35, and
decreases monotonously with I' reaching a plateau at T’
=1.9. This shows that the surface roughness must be com-
bined with a “random” local movement of the heavy par-
ticles in order to have a velocity distribution whose kurtosis
is very close to 3. Although the surface roughness of the first
layer randomizes the direction of the postcollisional velocity
of the light particles, this mechanism alone is not sufficient
to lead to a very good Gaussian velocity profile. When the
heavy particles are allowed to move, the magnitude of the
light-particle velocity is modified randomly during a colli-
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FIG. 3. (Color online) Kurtosis of the light-particles velocity
distribution as a function of the dimensionless acceleration for cov-
erage of the top-layer ¢=0.2. Diamonds and triangles correspond to
the system with free and glued bottom particles, respectively.
Circles correspond to the system with top particles of diameter d
=4.5 mm but with the same mass, the bottom particles being
mobile.

sion. Combining these two mechanisms eventually allows
one to obtain the “best” profile.

The mobility of the light particles has been monitored
through the evolution of the coefficient of diffusion as a
function of I'. Close to the smallest acceleration, the coeffi-
cient of diffusion goes to zero, which corresponds to the fact
that light particles remain trapped in valleys of the rough
surface. For higher acceleration, the diffusion coefficient
evolves almost linearly (at low coverage): indeed, as illus-
trated in Fig. 4, at low coverage, the light particles collide
more frequently with the first layer than among themselves;
the collision frequency is given by the frequency of the vi-
brating plate. Between two collisions, the particles hop on
the surface and the mean-square displacement is roughly
given by v?/f, where v? is the mean-square horizontal veloc-
ity; this latter quantity being proportional to the dimension-

FIG. 4. (Color online) Trajectory of a particle of the top layer:
collisions with bottom particles and other top particles are displayed
in filled (red) and empty (blue) circles, respectively. Blue collisions
are on average separated by several red ones. This randomizing
process explains the nearly Gaussian character of the top-layer ve-
locity distribution.
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FIG. 5. (Color online) Dimensionless diffusion coefficient, D*
=D/(fd?), of the light particles as a function of the dimensionless
acceleration for a coverage of the top-layer ¢=0.2. Circles and dia-
monds correspond respectively to the system with free and glued
bottom particles.

less acceleration, one obtains a linear relation between the
diffusion coefficient and the acceleration (at a given fre-
quency). Similar behavior is obtained for larger top particles
and when the first particles are glued on the surface (see Fig.
5).

To verify the homogeneity of the top layer, we have moni-
tored the longitudinal and transverse velocity-correlation
functions [9], C; | (r)=2,. jv'i"lv'j“’i/ N,. Our results are very
similar to those obtained experimentally with the same sys-
tem [14] and indicate the absence of spatial correlations for
the velocities of the light particles and the presence of mo-
lecular chaos. It can be noted that our simulations agree ac-
curately with the experimental results given in [9], where
bottom particles are glued. This reveals that a rough surface
is a sufficient ingredient to kill spatial correlations, whereas
the mobility of the bottom layer is not crucial. Results are
shown in Fig. 6 for ¢=0.2: spatial correlations decrease ex-
ponentially on a typical distance which is always less than or
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FIG. 6. (Color online) Longitudinal (diamonds) and transverse
(circles) velocity correlations as functions of the distance r normal-
ized by the particle diameter d, at coverage ¢=0.2. A fit of the form
Cy, . *e""0 gives ry=1.1d for C; and r,=0.33d for C . A semi-log
plot of the curves is shown in inset.
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comparable to a particle diameter: this ensures the absence of
heterogeneity of the granular temperature in the system.

In addition, a very high packing in the bottom layer is also
a key ingredient for ensuring homogeneity of the top layer:
in a recent paper, Combs et al. [15] showed that if the pack-
ing fraction of the first layer is decreased, holes appear which
rapidly alter the Gaussian character of the velocity distribu-
tion. Indeed, light particles become trapped and the system
loses homogeneity. In the experimental setup, the packing
fraction of the first layer is high, which prevents the appear-
ance of defects in this first layer.

We also studied the velocity correlations in time: the ve-
locity autocorrelation function is not here a relevant quantity,
because it is a fast-decaying function and one cannot use it to
analyze in detail the influence of the thermostating effect of
the first-layer particles on the top-layer particles. We con-
sider here a more appropriate quantity based on the collision
statistics: the probability distribution of the scalar product of
the pre and postcollisional velocities of a given particle. It is
a measure of the correlations appearing between velocities
during a collision. It should be noted that this quantity is
different from the velocity correlation function as it depends
on events and not on time. It can be written formally as

P(z) =(8z—v-:vY), ()

where v and v* are the velocities of a particle before and
after a collision, and the brackets correspond to the statistical
average on particles.

This quantity is sensitive to the bath velocity distribution
and the collision rule and it decays more slowly than the
velocity distribution. In addition, for a homogeneous system,
if the restitution coefficients are independent of the velocity,
and if the dynamics can be described by a Boltzmann equa-
tion (Molecular Chaos assumption), an analytical expression
of this quantity can be obtained [16]. Assuming that the par-
ticle velocity distribution is Gaussian, and for hard inelastic
frictionless particles characterized by a constant normal co-
efficient of restitution e,, P(z) has a universal feature in the
sense that, for z<<0, P(z) is an exponential in any dimension
and its explicit expression is given as a function of physical
parameters, i.e., for collisions between particles of mass M,

P(z)=P(O)exp<12 V2(1+ei)+l—en%). (3)

+el

This distribution reveals to what extent precollisional and
postcollisional velocities are correlated through the collision
process. By sampling separately the two types of collisions
undergone by the light particles, we can evaluate and com-
pare their characteristics. Figure 7 displays the two distribu-
tions Py,(z) and P;(z) corresponding to the horizontal veloci-
ties. The subscripts /i and I/ denote the collisions between
heavy and light particles and those between light particles,
respectively. Py,(z) would be a simple exponential distribu-
tion (strictly speaking) if the light particles were reflected by
a flat surface but due to the randomizing effect of the bottom
layer, it is very similar to Pj(z). This clearly indicates the
similarity of the collision processes among the light particles
and between light and heavy particles: in the horizontal
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FIG. 7. (Color online) First-collision horizontal velocity distri-
butions P(z) with z=Mv-v*/T. The dotted (black) and dashed (red)
curves correspond respectively to collisions between light particles
and between heavy and light particles. The solid (blue) curve cor-
responds to the exponential decay predicted by Eq. (3) (shifted to
the left for clarity) for the dotted curve. The inset displays the
tenth-collision velocity distribution as well as the predicted P.(z)
(indistinguishable).

plane, the bottom layer behaves as a nearly Gaussian bath in
contact with the light-particles population, whereas the
heavy particles’ velocity distribution is far from being Gauss-
ian. We applied Eq. (3) to the collisions between light par-
ticles, with e, corresponding to the simulation value. The
result is displayed for z<<0 in Fig. 7, showing a very good
agreement with the simulation result.

More generally, one can define the nth-collision velocity
distribution P,(z), as the distribution of the scalar product
between the precollisional velocity and the postcollisional
velocity obtained after n collisions [16]. When 7 increases,
the correlations between the two velocities decrease rapidly
and the distribution becomes more and more symmetric. As-
suming that the velocity distribution is Gaussian, P.(z) is
known analytically: P..(z)=M exp(—|z|M/T)/2T, where T is
the granular temperature of the particles. We have also plot-
ted in the inset of Fig. 7 P,y(z) for the light particles. The
exact result for P.(z) agrees very well with the simulation
data for P o(z) except in the tail of the distributions. This
shows that the velocity correlations are fully suppressed after
few collisions (of any type). Note that the exponential decay
is associated with the existence of a quasi-Gaussian velocity
distribution.

IV. CONCLUSION

We have presented a simple simulation model, whose re-
sults are in very good agreement with the experimental find-
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ings of Baxter and Olafsen [12]. We have obtained strong
evidence that several ingredients are necessary in order to
obtain quasi-Gaussian horizontal velocity distribution for the
particles of the top layer: first, the acceleration of the bottom
plate must be sufficient for avoiding temperature heterogene-
ities in the system. Second, the mass ratio between light
particles in the top layer and heavy particles in the bottom
layer must be less than one third. If not, the velocity distri-
bution of the light particles deviates progressively from
Gaussian, even in the tracer limit. Third, the particles of the
two layers must be of comparable sizes, so that the first layer
appears as a rough surface for light particles and randomizes
the direction of the velocity of the light particles during a
collision with the bottom layer. Lastly, a rough surface (made
of glued particles) is less efficient than a bottom layer of
moving particles. We interpret this last characteristic as fol-
lows: during interspecies collisions, the amplitude of the ve-
locities of the light particles are changed more “randomly”
than in the case of a glued first layer.

In addition, the analysis of the collision statistics confirms
that the correlations in the velocities after collisions are well
described by the assumption of molecular chaos (Boltzmann
equation).

In granular systems, the dissipation during collisions leads
in general to strong deviations from Gaussian for the velocity
distributions. We have shown here that the bilayer system
minimizes these deviations and provides a well controlled
system for testing theoretical predictions obtained in the
framework of kinetic theories of homogeneous systems. To
list a few of these predictions, rotational and translational
granular temperatures are expected to be different for aniso-
tropic particles [17] and have been obtained within the as-
sumption of a Gaussian bath. Recent theoretical studies have
predicted the possibility of Brownian ratchets [18] or granu-
lar rotors [19] whose mechanism is connected to the exis-
tence of dissipative collisions; however, the effect depends
on the precise shape of the velocity distribution of the bath
particles [18]. The bilayer system provides therefore a refer-
ence system for investigating quantitatively these phenom-
ena. These examples underline the potential interest of per-
forming a more extensive experimental exploration of this
system.
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