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The physical properties of granular materials have been extensively studied in recent years. So far, however,
there exists no theoretical framework which can explain the observations in a unified manner beyond the
phenomenological jamming diagram. This work focuses on the case of static granular matter, where we have
constructed a statistical ensemble which mirrors equilibrium statistical mechanics. This ensemble, which is
based on the conservation properties of the stress tensor, is distinct from the original Edwards ensemble and
applies to packings of deformable grains. We combine it with a field theoretical analysis of the packings, where
the field is the Airy stress function derived from the force and torque balance conditions. In this framework,
Point J characterized by a diverging stiffness of the pressure fluctuations. Separately, we present a phenom-
enological mean-field theory of the jamming transition, which incorporates the mean contact number as a
variable. We link both approaches in the context of the marginal rigidity picture proposed by Wyart and others.
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I. INTRODUCTION

A. Granular media

Granular materials are ubiquitous in everyday life, such as
sand, salt, rice, or as the breakfast cereal in your bowl. They
are also of fundamental importance in industrial processing,
from the transport of coal to drug manufacturing. The shape
of the surface of the Earth is largely determined by the ero-
sion of rock to sand and dust and the patterns they form
subsequently. If we want to truly understand the world we
live in, understanding granular materials must be part of our
efforts. Yet, our grasp of the behavior of granular matter is
limited �1–4�. A consensus about what the important ques-
tions in the field are, and on suitable approaches to answer
them, has only started to emerge in the last few years �5,6�.

The chief obstacle that hinders our understanding is that
granular matter is fundamentally out of thermal equilibrium
since the typical interaction energies of the particles are
many orders of magnitude larger than kbT. Therefore, granu-
lar materials are effectively at T=0 from a conventional
point of view. This means that in equilibrium, the system
does not explore the space of states available to it, thus lead-
ing to a breakdown of ergodicity. It also implies that the
Boltzmann ensemble is irrelevant, and we are left without
the framework of equilibrium statistical mechanics to guide
our understanding.

Since granular systems do not equilibrate spontaneously,
the method of preparation of granular packings matters, i.e.,
granular materials are history dependent. A steady state can
only be achieved through highly controlled experimental
conditions such as repeated tapping �7� or compression �8�.
This complicates the study of granular materials since it is
far from clear if a universal framework is even possible.

B. Toward a nonequilibrium theory

Despite the obstacles described in Sec. I A, some progress
has been made toward a nonequilibrium theory of granular

materials. Most theoretical work has attempted to extend
concepts such as temperature or entropy from the thermody-
namic context to the granular context.

It has been recognized that granular packings and granular
systems under shear or other forms of agitation share several
important properties of glassy systems. Like granular mate-
rials, glassy materials have fallen out of equilibrium in the
sense that thermal fluctuations are too small to allow the
system to undergo rearrangements on short time scales.
Some model glass formers, like Lennard-Jones fluids, are
structurally similar to granular packings. A common concept
that has emerged for both systems is the idea of a rugged
potential energy landscape with a myriad of energy minima.
For glassy systems, these are termed the inherent structures
�9� in which the system spends a long time before escaping
over an energy barrier to a different one via an activated
process. For granular systems, the potential energy minima
correspond to packings in mechanical equilibrium, and the
dynamics are provided by tapping or slow shearing. For situ-
ations where the deformation is gradual enough for the sys-
tem to move by going through a sequence of separate rear-
rangements �the quasistatic shear limit�, Bouchaud’s trap
model for glasses �10� has been adapted to include shearing
as the soft glassy rheology �SGR� model by Sollich �11�.

The liquid to solid phase transition in granular media is
also known as the jamming transition. It is controlled by
parameters including an external driving force like shaking
or shearing, but that do not include temperature. This transi-
tion shares some of the properties of the glass transition. In
the glass transition the system changes from a liquid to a
disordered solid without an obvious change in microscropic
structure, unlike for the conventional liquid-solid transition
where the system goes from a state of high symmetry �the
liquid phase� to a state of lower broken symmetry �the crys-
talline solid� �12�.

These similarities have prompted Liu and Nagel to pro-
pose �5� a unified phase diagram for glassy and granular
materials, as well as related materials such as foams,
bubbles, and colloids. Glassy materials are in the
temperature-density plane of the diagram. The transition be-
tween a granular solid and a granular liquid with increasing
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shear is in the density-shear plane. The packing fraction axis
shared by both types of materials is characterized by granular
packings in mechanical equilibrium or alternatively glassy
systems at zero temperature.

The properties of the phase transition depend on how the
phase boundary is approached. Along the packing fraction
axis, reducing the density of an isotropic jammed assembly
of grains leads to a point at which both the bulk modulus and
the shear modulus, i.e., the resistance of the system to uni-
form compression and shear, vanish �13,14�. The transition
point has been termed Point J in �5�, and it has some of the
features of a critical point, though it is not obvious that Point
J has any bearing on the glass transition �15�.

O’Hern et al. �14� found power-law scalings and appar-
ently universal properties when J is approached from the
high-density limit, and scaling, as well as a divergent length
scale, has also been observed by Drocco et al. �16� and Ols-
son and Teitel �17� when J is approached from the low-
density limit. Experimentally, the microscopic properties of
static packings, such as the force and contact number distri-
butions, as Point J is approached along the packing fraction
axis have been studied by Majmudar et al. �18�.

For spherical particles, Point J can be linked to the under-
lying microscopic properties of the granular packings. For
spherical granular materials with purely repulsive short-
range interactions, Point J is identical to the isostatic point,
the point where the number of degrees of freedom is equal to
the number of constraints imposed by the intergranular
forces �14�. In the frictionless case, the jamming thresholds
of different configurations converge with increasing system
size to a single packing fraction �14� which is identical to
random close packing �RCP�, the highest packing fraction
that can be attained by random packings of hard grains �19�.
In the frictionless case, three-dimensional packings of
spheres have �J=0.63, while for two-dimensional �2D�
packings of disks �J=0.84. Introducing friction lowers the
jamming threshold, and in the infinitely frictional limit, ran-
dom loose packing is recovered �20�.

A majority of experimental studies of the jamming transi-
tion probe the transition as a function of the shear rate, where
the phase boundary is crossed at finite positive pressure. In
this case, only the shear modulus vanishes at the transition
and the nature of the transition is different from the compres-
sion case. The signature of this transition is intermittent jam-
ming and unjamming with large-scale stress fluctuations and
pronounced dilatancy effects �6�. A different type of jamming
occurs in systems where there is a sustained motion of the
grains, and kinetic energy plays a role. These transitions are
characterized by the appearance of large-scale spatiotempo-
ral fluctuations in the particle motion �21,22�. These fluctua-
tions have been termed dynamical heterogeneities after the
very similar behavior which is observed in supercooled liq-
uids �23�. Further analysis using tools developed for the
glass transition, like the self-intermediate scattering function,
has revealed a growing length scale as the jamming transi-
tion is approached �24–26�.

C. Granular statistical mechanics

Going further in the analogy to thermodynamics and or-
dinary statistical mechanics, several attempts have been

made to build a framework equivalent to equilibrium statis-
tical mechanics for granular materials.

The first attempt was by Oakeshott and Edwards �27� who
replaced the energy conservation law for thermal systems
with a volume conservation law for granular packings. Oake-
shott and Edwards made the microcanonical assumption that
all states at the same free volume V are accessed with the
same probability. For a subsystem of the full packing with
volume v, one then obtains a canonical distribution for the
probability to access the state �,

P� = exp�− v�/��V�� , �1�

where the Lagrange multiplier � or the compactivity plays
the role of temperature. � is the best known example of a
granular temperature for static packings �see �28� for a re-
view�.

The validity of the Edwards ensemble has been investi-
gated for experimental and simulated grain packings. Some
studies have been direct investigations of the free volume
distribution in packings �29–32�. A lot of the tests have been
indirect, generally through the fluctuation-dissipation theo-
rem �FDT� �12� �see �33,34��.

Other out-of-equilibrium temperatures, mostly based on
the fluctuation-dissipation theorem, have been proposed in
the context of dynamical granular media. One study �35�
measured several of them in a simulated system of a two-
dimensional sheared foam and found that the different tem-
peratures agree with each other, showing that effective tem-
peratures are a useful concept for driven granular systems.

In recent years, it has become more common to apply the
Edwards equiprobability hypothesis to force configurations
on static granular packings �see, e.g., �36–38��. An equiva-
lent approach to the case of the volume can be taken, and a
force-based canonical ensemble is then introduced. The re-
sulting granular temperature has been dubbed the angoricity
by Blumenfeld and Edwards �39�.

D. This work

Here we derive the conservation law responsible for the
force ensemble from first principles and show the conditions
under which the canonical ensemble is valid �see also our
previous work �40��. We construct and examine a statistical
mechanics-like framework in which Point J and the proper-
ties of jammed systems can be studied. We restrict our atten-
tion to packings on the density-shear plane of the jamming
phase diagram, where we find a conservation law upon
which we base an ensemble in which stress plays the role of
energy. From there, we use the basis laid out by the ensemble
to develop a field theoretical model for jammed packings,
which predicts a diverging stiffness at the jamming transi-
tion. Finally, we discuss an empirical mean-field theory de-
rived from the analysis of simulated packings.

Section II derives a conservation law for the force-
moment tensor, i.e., the volume integral of the stress tensor,
from the boundary property shown in �40,41�. This forms the
basis for the derivation of the stress ensemble, where the
force-moment tensor plays the role of energy from first prin-
ciples. We derive a tensorial analog of temperature, the an-
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goricity, which is related to stress fluctuations rather than
energy. The concept of angoricity has been introduced ear-
lier. To avoid any confusion, we precisely define our usage of
the term in this paper. We also discuss the case of an isotro-
pically compressed system where we can simplify the en-
semble to a scalar stress variable and a scalar temperature.
The stress ensemble has been numerically tested in �40�, and
we provide a summary of the results. Finally, we discuss an
exact model of the jamming transition compatible with the
universal equation of state found in the simulation.

Section III builds a field theoretical model of granular
packings based on the scalar stress function appropriate for
isotropic compression. Based on symmetry arguments and on
comparison to simulation results, we find that the packings
can be described by a Laplacian field theory with a stiffness
that depends on the compression. The stiffness diverges at
the jamming transition, so that the entropy defined by the
number of packings available vanishes. Finally, we discuss
shear fluctuations in the context of the field theory.

Section IV combines the equation of state found empiri-
cally with the form of the density of states. It incorporates
another empirical relation linking stress and contact num-
bers, which has also been derived from a stability argument,
to define an effective free energy. We study the predictions of
the effective free energy for the jamming transition and find
that the theory admits divergent fluctuations at Point J; but
only if formulated in terms of a variable u measuring the
deviations from the stability line. We conclude by showing
that the simulated system indeed shows a divergence in the
fluctuations of u as Point J is approached.

II. STRESS ENSEMBLE

In this section, we derive from first principles an en-
semble based on the conservation of the total force-moment
tensor for static packings of granular materials under given
boundary conditions. This stress ensemble provides a formal
basis of the force network ensemble �FNE� used in �36,38�.
We have already presented a derivation of the ensemble in
�40�, however the derivation below has been improved by
taking into account the general formalism for nonequilibrium
temperatures presented by Bertin et al. �42�, and it has been

generalized to the full force-moment tensor �̂.

A. Conserved quantities in stable grain packings

The total stress tensor of a granular packing with volume
V and only contact forces can be written as �41�

�̂ =
1

V
�
�ij�

r�ijF� ij �
�̂

V
, �2�

where the sum runs over all the contacts in V, the F� ij are the
contact forces between grains i and j, and the r�ij are the
distances between grain centers and contact points. The ex-

tensive quantity �̂, the total force-moment tensor, depends
only on the boundary conditions of the packing which deter-
mine �̂ and the total volume V. This fundamental result is
ultimately a consequence of force balance, and it can be

demonstrated in a more formal way as shown below:
Ball and Blumenfeld �41� showed that local force balance

in a two-dimensional granular packing can be incorporated
through the definition of a vector height field, h��, on the
loops � dual to the contact network. With this definition, the
stress tensor associated with an area A can be written as a
boundary term that only involves the boundary vectors d��b

and the boundary height field h�b �see also Fig. 1 in �40��. In
three dimensions, the same result can be obtained by a con-
tinuum approach involving a tensorial equivalent of the

height field Ŵ=�� �	̂, where 	̂ is the Beltrami stress tensor
known in continuum mechanics �43� �see also Sec. III�.

The global force-moment tensor is then �the first expres-
sion is for two-dimensional systems, while the second ex-
pression is for three-dimensional systems�

�̂=2D �
bound

d��b
h��b

=3D	
�V

Ŵ� n�dA , �3�

which is the global equivalent to writing the stress tensor as

the curl of the height field �̂=�� �h� ��̂=�� �Ŵ in three di-
mensions�.

The fact that �̂ can be written as a boundary integral
implies a conservation principle for force-balanced static
grain configurations: each rearrangement of the grains within
a region of packing, as long as it does not affect the bound-

ary of the region, will not change the total force moment �̂
of the region.

The force-moment tensor is an extensive quantity, it is
additive if we neglect boundary effects, as is the case for
energy in thermodynamics, and it is conserved for any dy-
namics which keeps the boundary conditions of a granular

packing intact. We now use �̂ to define a canonical en-
semble, equivalent to the Boltzmann ensemble, where it

plays the role of the energy �incidentally, �̂ also has the
dimensions of an energy�.

An example of rearrangements which conserve the total
force-moment tensor is the wheel moves, introduced by
Tighe et al. �36�, on the triangular lattice.

B. Derivation of the canonical stress ensemble

1. Counting the number of states

The first step toward constructing an ensemble equivalent
to the Boltzmann ensemble is to define a density of states.

The total force-moment tensor �̂ of a compact area AN with
N grains is not affected by internal rearrangements. Hence
we can partition the phase space of all the possible force- and
torque-balanced packings on AN �the blocked states� into sec-

tors M�̂ with the same total force-moment tensor �̂. We then

count the number of states in each sector M�̂, 
N��̂�. This
number includes all the possible geometric configurations of
the grains and will thus always be greater than one even at
the isostatic point.

In a thermal system, 
N�E�, the total number of configu-
rations at a given energy, would form the basis of the micro-
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canonical ensemble. A fundamental assumption underlying
thermodynamics and equilibrium statistical mechanics is that
the system is ergodic such that all states with a given energy
are visited equally. The probability of finding a state is then
just a flat measure in state space, i.e., p� 
E=1 /
N�E�, and we
can then identify the density of states as �N�E�=
N�E�.

For granular systems, the dynamical processes which
move the system from one blocked state to the next are de-
termined by the external driving mechanism used and not by
thermal fluctuations. With a purely local dynamics, which
does not involve the boundary, we can only access states
within the same sector. Therefore it is natural to define again
a microcanonical ensemble through counting all the states
within the sector. However, there is no guarantee that the
chosen dynamics connects all the states within this sector,
nor that detailed balance holds, or that the system is ergodic
on long time scales �e.g., history dependence in frictional
packings�.

This means that it is not automatic that the states will be
sampled with a flat measure, as in the thermal case. There-
fore, the density of states for M�̂ is not only dependent on

the number of states 
N��̂� at that �̂ but also on the fre-
quency ��

�dyn� with which each state is accessed by the dy-
namics chosen to create the packing. The quantity equivalent
to the density of states is then given by

���̂� = �
��M�̂

��
�dyn�. �4�

One may wonder what the precise meaning of a tempera-
ture is in this context. The angoricity defined below controls
spatial fluctuations, but temporal fluctuations only if the sys-
tem is ergodic, which is a possibility only for driven systems.
The thermodynamic interpretation of the temperature as con-
trol variable for the macroscopic state of the system is intact.

2. Preconditions

We develop the ensemble along the same lines as for a
thermal system �44�. Bertin et al. �42� showed that intensive
quantities, which can be interpreted as nonequilibrium tem-
peratures, can be defined in a system in steady state as long
as there is an additive conserved quantity in the system. The
conserved quantity plays the role of energy and leads then to
a temperature variable conjugate to it. We follow their
method of derivation below.

For mechanically stable granular packings, �̂ is the addi-
tive quantity that replaces the energy. The following results
are dynamics dependent and stay valid for any dynamics
which satisfies Eq. �5� but only as long as the same dynamics
are used in the preparation of any systems we wish to com-
pare �e.g., in steady state�. Whether different types of dynam-
ics can give rise to the same density of states, and if so,
which classes do, is a question which we address at the end
of this section.

Consider a system S which contains N grains, with total

force-moment tensor �̂. We partition the system into two
compact subsystems S1 and S2 with grain numbers N1 and N2

and total force-moment tensors �̂1 and �̂2, respectively.

Since �̂ is additive, we always have �̂= �̂1+ �̂2.

3. Microcanonical ensemble

If we fix the total force-moment tensor �̂ in S, the condi-

tional probability of finding a force-moment tensor �̂1 in

subsystem S1 is defined by P��̂1�= P��̂1 
 �̂�P��̂�. Then we
can use the definition of the density of states �Eq. �4�� to
write the conditional probability as

P��̂1
�̂� =�N��̂�−1 �
��M�̂

��
�dyn�
��̂�1

− �̂1�
��̂�2
− ��̂ − �̂1�� .

If the frequency with which the subsystems are accessed
factorizes, i.e., if

��
�dyn� = ��1

�dyn���2

�dyn�, �5�

the conditional probability becomes

P��̂1
�̂� =
�N1

��̂1��N2
��̂ − �̂1�

�N��̂�
�6�

as a function of the densities of states of the subsystems.
Equation �5� is the central assumption in the derivation of the
stress ensemble, and it is conceptually equivalent to requir-
ing that the dynamics choose state �1 of S1 independently of
state �2 of S2. Since the subsystems interact through their
shared boundary only, we expect the correction to Eq. �5� to
scale as O�1 /�N1�, where N1 is the number of grains in S1.
However, if the system is correlated over length scales �
��N1, we expect Eq. �5� to break down as well. We discuss
the validity of this assumption and how we have tested it at
the end of this section.

The most probable value �̂1
� at a given �̂ is found by

setting the derivative of the conditional probability with re-

spect to �̂1 to zero. Since �̂1 is a tensor, this needs to be done
for each component separately. We use the logarithmic de-
rivative to simplify the calculation,

0 = � � ln �N1
��̂1�

��̂1
ij

�
�̂1

ij�

+ � � ln �N2
��̂ − �̂1�

��̂1
ij

�
�̂1

ij�

,

where we have replaced the derivative in the �N2
term by

��̂2
ij =−��̂1

ij. The first and the second terms are then opposites
of each other, and we define the microcanonical equivalent
of the inverse temperature �ij by

�̂ij = � � ln �N1
��̂1�

��̂1
ij

�
�̂1

ij�

= � � ln �N2
��̂2�

��̂2
ij

�
�̂−�̂1

ij�

. �7�

We will show below that �̂ij acts indeed like an inverse tem-
perature in that it is independent of the partitioning of S.

4. Canonical ensemble

To define the canonical ensemble, we consider the same
system S, but we divide it now into one very small partition
Sm, with m�N, and the remaining SN−m �note that we still
need m�1 for the factorization of the density of states to
hold�. We focus our attention now on the small partition
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where the total stress can fluctuate while the full system S

with fixed �̂ acts as a reservoir, similar to the thermal case.
We still have

P��̂m
�̂� =
�m��̂m��N−m��̂ − �̂m�

�N��̂�
.

Taking the logarithm of both sides, we can expand �N−m

��̂− �̂m� to first order in �̂m and find that

ln P��̂m
�̂� = ln �m��̂m� − �
i,j=1

d
� ln �N��̂�

��̂ij
�̂m

ij . �8�

We define the canonical inverse temperature tensor by

�̂ij =
� ln �N��̂�

��̂ij
�9�

and then the sum in Eq. �8� becomes the total contraction

�̂ij�̂m
ij =Tr��̂T�̂m�. The order of the indices is irrelevant since

�̂ is a symmetric tensor and so is �̂ through its definition.
The canonical probability distribution for the total force-

moment tensor �̂m is then

Pcan��̂m� = P��̂m
�̂� =�m��̂m�
e−Tr��̂�̂m�

Z��̂�
. �10�

The canonical partition function

Zm��̂� = 

i,j�i

	 d�̂m
ijPcan��̂m� �11�

acts as a normalization.
The angoricity defined by Blumenfeld and Edwards �39�

is related to the inverse of �̂. In its original definition, the
angoricity is defined as the derivative of the stress tensor
with respect to the entropy. From Eq. �9�, �̂ is the derivative
of the entropy with respect to the force-moment tensor. In the
interest of controlling the proliferation of terms associated
with temperaturelike quantities for granular materials,
we refer to the inverse of �̂ as the angoricity. The modified
Boltzmann factor for the granular system is then

exp�−Tr�T̂−1�̂m��. Finally we show that the inverse granular
temperatures in the canonical ensemble and in the microca-
nonical ensemble are equal. If we repeat the derivation of Eq.
�7� using form �10� of the canonical distribution we obtain

� � ln P��̂1
�̂�

��̂1
ij

�
�̂1

ij�

= � � ln �N1
��̂1�

��̂1
ij

�
�̂1

ij�

− �̂��̂�ij = 0.

So the microcanonical inverse temperature equals the ca-
nonical inverse temperature and is independent of the parti-
tioning of the system.

5. Special case of an isotropic system

A lot of experimental and simulation effort has been de-
voted to systems under hydrostatic pressure �13,14,45�

caused by fixing the volume of the system in the absence of

shear. Let �=Tr��̂� be the trace of the force-moment tensor.
The extensive variable � is related to the intensive pressure
by �= pA, where A is the area of the system. This makes �
the internal virial of the system �46�. Then we can write the
force-moment tensor for an isotropic system in the absence

of shear as �̂= �
2 Î �47�. It is natural to simplify the formalism

to a single scalar variable �. Since the trace is additive, � is
still a conserved additive variable and the microcanonical
and canonical ensemble derivations are the same as above.
The key results are the definition of �,

� =
� ln �̃N���

��
, �12�

and the form of the canonical distribution,

Pcan��m� = P��m
�� = �̃m��m�
e−��m

Z���
, �13�

with the partition function

Z��� =	 d�Pcan��m� . �14�

We now show that � is related to the tensorial inverse tem-

perature �̂ by �̂=�Î: if we consider Eq. �9� for an isotropic

system, the density of states �N��̂� must be symmetric under

�̂12→−�̂12 since no direction of shear is preferable to an-

other. Therefore, �N��̂� has an extremum at �̂12=0, so that

the logarithmic derivative with respect to �̂12 vanishes for
the shear-free system and we obtain �12=0 �and by extension
�21=0 since �̂ is symmetric�. Likewise, the density of states
must be invariant under rotations, so that the derivatives with

respect to �̂11 and �̂22 are the same: �11=�22=�. Then the

Boltzmann factor exp�−Tr��̂�̂�� becomes exp�−���. The

density of states for �m, �̃m��m�, can be related to �m��̂m�
by using Pcan��m�=��̂m

Pcan��̂m�
��m−Tr��̂m�� and we
obtain

�̃m��m� = 

i,j�i

	 d�̂m
ij�m��̂m�
��m − Tr��̂m�� . �15�

C. Discussion

It is important to ask if there are important differences
between angoricity and temperature. The most important dis-
tinction between a granular system and a thermal system is
that the granular system has to be driven to change configu-
rations. There is no simple equivalent to the thermal agitation
which serves as a temperature bath for equilibrium systems
and which gives a natural value for the temperature.

A granular system that is slowly sheared, so that it
changes configurations based on the imposed strain, seems to
come close to a thermal system. The external load resulting
from the shearing sets the scale of the granular temperature,
and the off-diagonal parts of 1 /� can then be seen as a mea-
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sure of the strength of the perturbations that the shear inflicts
on the force chains. In this picture, the system stays in a
force- and torque-balanced configuration until the load on a
force chain becomes too large, upon which the system rear-
ranges itself into another configuration in mechanical equi-
librium. Over time, the packing visits a large number of con-
figurations in a stress landscape analogous to the energy
landscape for glassy systems. The dynamics of an equivalent
system to the one described here, but in an energy landscape,
is the subject of the soft glassy rheology �SGR� theory �11�.
Recent work based on a toy model of activated dynamics in
a stress landscape �48� has been compared to experiments
�49� as a test of the stress ensemble. The adaptation of the
full SGR to the stress ensemble is in preparation �50�. All of
the above derivations can be performed in an equivalent
manner for the volume as the extensive conserved variable.
The question on how the frequencies ��

�dyn� with which the
different microstates are accessed depends on the experimen-
tal or simulation protocol poses itself both for the stress en-
semble and the Edwards ensemble.

In the Edwards ensemble paradigm, this question was ex-
plored by Gao et al. �51� for very small disk packings N
�14 by enumerating all the states and measuring their fre-
quencies for two different protocols. The same states were
found with both methods but, as expected, with different
frequencies. Thus the microcanonical equiprobability as-
sumption is violated in this case, and there is no reason to
expect a different result for the stress ensemble.

We still have to investigate the validity of Eq. �5�, the
factorization of the density of states. This is a nontrivial as-
sumption since it breaks down if there are correlations be-
tween the subsystems we consider. For a volume-based en-
semble derived along the same lines as above, Lechenault et
al. showed experimentally that even for subsystems of size
m�100, there are corrections to Eq. �5�.

A method to investigate the stress ensemble is similar to
the approach taken for the Edwards ensemble. Where for the
Edwards ensemble the system is repeatedly compactified at
the same volume �7�, so that after each compression it enters
a new configuration, we can create a new system with the
same boundary stresses at each step. We now give a sum-
mary of our previous �40� tests of the ensemble on simulated
packings which are created from a random initial state and
then relaxed until they reach mechanical equilibrium.

D. Summary of simulation results

We have tested the stress-ensemble formalism on simu-
lated packings of frictionless disks with either harmonic or
Hertzian interactions in two dimensions �40� using the algo-
rithm of O’Hern et al. �14�. We first rescaled the � distribu-
tions of different configurations to test the form of the ca-
nonical distribution �Eq. �13��. We find that we are able to
perform the rescaling for any subsystem larger than m�3
and that the equation of state ���� we extract close to the
unjamming transition ��z�=ziso=4 also becomes m indepen-
dent above this value. From this we conclude that the factor-
ization property �Eq. �5�� which underlies Eq. �13� is valid
for m�3.

For the systems with harmonic interactions, we have also
fitted the density of states ���� to the form

���� � �ma with a = 2 + c�z − ziso�2, �16�

with c=2.8�0.5 �see Fig. 1�.
Together with the thermodynamic relation �= � ln���

�� this
form leads to an equation of state over the full jammed
range,

� =
1

���
�2 + c��z� − ziso�2� . �17�

The numerical density of states shows deviations from the
form consistent with Eq. �17� for m�16. It is likely that this
is a more sensitive test of Eq. �5�, and the correlation length
���16=4 we can associate to this result is of the same order
of magnitude as our results in the field theory section.

E. Partition function at ziso

The results deduced from simulations �Eqs. �16� and �17��
depend on the specific force law, much like the density of
states of a solid depends on the detailed microscopic inter-
actions. Close to the jamming transition z=ziso, however, we
can derive the form of the density of states ���� and the
equation of state ���� by counting the number of degrees of
freedom only. This indicates that the coarse-grained proper-
ties of packings of frictionless spheres are universal, i.e.,
independent of force law and simulation protocol, as Point J
is approached.

15 20 25 30 35
−8

−7

−6

−5

−4

−3

−2

x = NΓ
m

/Γ
N

lo
g

(P
m

,p
(Γ

m
))

φ =
0.838−0.844

〈 z 〉 ≈ z
iso

a=2

φ = 0.95
〈 z 〉 ≈ 5.2
a=5.75

4 4.5 5 5.5

2

4

6

8

10

12

<z>
a

m=8
m=12
m=16
m=24
m=32
m=48
m=64
m=96
m=128

a = 2+2.8(<z>−4)2

(b)

(a)

FIG. 1. �Color online� Top: distribution of � for a subsystem
size m=24 out of N=4096 and fit using Eq. �16� for the density of
states. Bottom: fit coefficient a as a function of the contact number,
with the fit which leads to Eq. �16�.
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1. Counting the states

If we use the definition of the density of states �Eq. �4��,
with Eq. �13� in the canonical partition function �Eq. �14��,
we are able to write

Z��� = �
�

��
�dyn� exp�− ���� , �18�

where we sum over all packings consistent with force and
torque balance and with the force law respected �this last
condition has to be modified for frictional packings�. We
only consider packings of frictionless spheres, so the torque
balance constraint is automatically satisfied.

We can then formally separate the sum over configura-
tions � into a sum over all geometric configurations �rij� and
a sum over all force configurations �Fij�, with 
 functions to
enforce the force-balance �f.-b.� and the force-law �f.-l.� con-
straints,

Z��� = �
�rij�

�
�Fij�

��
�dyn� exp���

�ij�
rijFij�
�f.-b.�
�f.-l.� .

�19�

For the frictionless packings, at the isostatic point, the
number of degrees of freedom of the grains �dN� is equal to
the number of forces that constrain them, N�z� /2. Equating
these gives the isostatic contact number, ziso=2d. It also
shows that for a given geometry, there exists one and only
one force configuration, and that the specific form of the
force law becomes irrelevant.

There is a one-to-one correspondence between a geomet-
ric configuration and a force configuration, so that we can
eliminate the sum over the �rij� and write

Z = �
�Fij�

��
�dyn� exp�− ��

�ij�
rij��Fij��Fij� . �20�

At the isostatic point, the mean force tends to zero, and the
overlap �or deformation� of the grains becomes negligible.
Therefore, the dependence of �rij� on �Fij� can be neglected,
rij→r0, assuming that the system is monodisperse for sim-
plicity.

The simplest measure ��
�dyn� with which the space of states

is sampled we can choose of course the flat measure ��
�dyn�

=1. Although not necessarily correct, this simple approxima-
tion allows us to treat the problem analytically and we are
able to extract the correct density of states �see below�.

If we choose a flat measure, no interaction terms between
the different forces remain in Eq. �20�. Then the partition
function can simply be written as a product,

Z = 

k=1

Nziso/2 	
0

�

dFk exp�− �r0Fk� = � 1

�r0
�Nziso/2

. �21�

2. Connection to the simulation result

The partition function can be rewritten as a function of the
scalar force moment �= pA�i=1

Nziso/2riFi. We insert this equa-
tion as an identity into Eq. �21� and obtain after switching
the order of integration

Z��� = 	
0

�

d�
1

r0
e−�� 


i=1

NZiso/2	 dFi
� �
i=1

Nziso/2

Fi −
�

r0
� .

We then perform the force integral by enforcing the

-function and then integrating over the other remaining
forces with the constraint FNziso/2� �0,� /r0�,

Z��� = 	
0

�

d�
e−��

r0


i=1

NZiso/2−1 	
0

�/r0−�k=1
i−1 Fk

dFi.

The remaining integrations describe the volume of a piece of
the Nziso /2−1-dimensional hypercube, with volume Ad

= 1
d! �

�

r0
�d �52�.

After dropping the prefactor the partition function is given
by

Z��� = 	
0

�

�Nziso/2−1e−��. �22�

This form is consistent with the simulation result for the
density of states at the isostatic point �ziso=4 in 2D�, ����
=�2m, in the limit m�1. Either by using the thermodynamic
relations �= � ln���

�� on Eq. �22� or ���=− � ln Z
�� on Eq. �21�,

one can also obtain the universal equation of state

� =
Nziso

2���
, �23�

which matches Eq. �17� for �z�→ziso. We have obtained the
same equation of state for packings of disks with Hertzian
interactions close to ziso �53�, showing that this result is in-
dependent of the interaction law. The deviations from this
form at small m that we observe the simulations confirm that
the assumption ��

�dyn�=1 breaks down at very small scales.
However, the agreement we obtain at larger m shows that

on a coarse-grained level, some of the properties of an isos-
tatic packing can be understood through a simple model
which assumes a flat measure in configuration space. Count-
ing the number of degrees of freedom is then sufficient to
explain the form of the equation of state and the density of
states �basically, the “thermodynamics” of the system�.

3. Distribution of the forces

Equation �21� also predicts the single-force distribution in
the canonical ensemble if we assume a flat measure ��

�dyn�

=1. From the form of the equation, we see that the probabil-
ity to find a given force configuration is P��F1 . . .FNziso/2��
=
k=1

Nziso/2exp�−�r0Fk�. Since this is a pure product distribu-
tion, we deduce the single-force distribution

P�F� � exp�− �r0F� � exp�−
ziso

4

F

��F��� , �24�

i.e., a pure exponential. We have used the equation of state as
well as the definition of the ensemble average of the forces
��F��= ��� /Nr0 in the second equality.

We emphasize that the canonical stress ensemble does not
imply an exponential form for P�F� except at the isostatic
point if we assume a flat measure. An exponential distribu-
tion emerges at the isostatic point because for a flat measure
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the forces are independent random variables at this point.
Similarly, in an ideal gas, the Boltzmann distribution, e−�E,
becomes an exponential distribution of energies because the
energy E is a sum of single-particle energies. For interacting
systems, e−�E does not imply an exponential distribution of
single-particle energies.

Equation �24� is not a robust prediction since any devia-
tion from the flat measure will have an especially strong
effect on a single-particle quantity like the force distribution.
With interactions, a calculation of P�F� is challenging as any
one-body distribution is difficult to calculate for interacting
systems �54�. The statistical mechanical framework that we
lay out in this paper is much more amenable to calculating
correlation functions and response functions, and this is the
task we focus on in this paper.

A situation in granular materials that is very different
from thermal systems is that, numerically or experimentally,
we do not have access to the canonical force distribution.
Instead, by rescaling the force distributions by the spatial
mean �F�=� /Nr0 of the forces �instead of the unknown en-
semble average ��F���, we can measure the microcanonical
force distribution. O’Hern et al. established the algorithm
used in our tests �40� in �14�, where Fig. 16 �top� in �14�
shows the microcanonical force distribution that can be ob-
tained for the simulated system. It clearly decays faster than
exponential. It is tempting to use the results derived above
for the flat measure and to translate them to the microcanoni-
cal ensemble. However, in doing so, we would neglect all
correlations between individual forces which are clearly im-
portant at the single-grain level.

4. Other theoretical approaches

Kruyt and Rothenburg �55� and Metzger and Donahue
�37,56� used a maximum-entropy approach with a multicom-
ponent Lagrange multiplier very similar to �̂ to enforce that
the total stress is conserved and so work in the canonical �
ensemble as well. The authors assume a product distribution
for the forces and calculate the force distribution given the
distribution of contact angles and distances between grains.
The result for the normal forces decays faster than exponen-
tial.

Another approach to the problem is the force network
ensemble �FNE� introduced by Snoeijer et al. �57�, which
uses the decoupling of forces and the positions of the grains
for very stiff grains. For a hyperstatic packing with �z�
�ziso, the FNE is then a microcanonical ensemble which
assumes that for given a mean force �F� and a given geom-
etry, all the configurations of positive compatible with force
and torque balance are equally likely.

Tighe et al. �36� simulated the FNE on the strongly hy-
perstatic �z�=6�ziso triangular lattice and found a force dis-
tribution that decays faster than exponential for a system
under isotropic compression but an exponential decay for a
sheared system. Recent work by Tighe et al. �58� introduces
a second conserved quantity based on the height field to
obtain a Gaussian tail for an isotropic system.

Snoeijer et al. �38� derived an analytical force distribution
in the FNE for an isotropically stressed triangular lattice, as
well as for a general geometry. They obtain a density of

states which scales as �F�D, where D�N��z�−ziso� is the
number of excess force degrees of freedom in the system.

5. Experimental results

Measuring the force distribution inside a packing of
grains is a challenge. Only two methods have so far been
successful.

Majmudar et al. �13,18� used quasi-two-dimensional
packings of photoelastic disks between cross polarizers and
extracted the stresses from optical measurements. For isotro-
pic compression, they found that the distribution of the nor-
mal force components decays faster than exponentially,
while the tangential force components follow an exponential
distribution. If the system is subjected to pure shear, the dis-
tribution of the normal forces acquires an exponential tail
while the tangential forces are not affected. The measure-
ment is scaled by the spatial mean �Fn� of the normal forces,
which relates this result to the microcanonical � ensemble,
as explained above in the context of the simulated data.

Brujić et al. �59� as well as Zhou et al. �45� measured the
interparticle forces using confocal microscopy on index
matched suspensions of droplets. Again, the results are given
scaled by the mean force in the configuration. Brujić et al.
have evidence for an exponential tail in the force distribu-
tion, while Zhou et al. focused on quantifying force chains.

Experiments on quasistatically sheared systems in a Cou-
ette geometry have also produced force distributions �60,61�,
however the theoretical results above do not apply to dy-
namical systems.

III. BUILDING A FIELD THEORY

By considering a field theory, we take a different route
from the approach generally taken in the continuum mechan-
ics community. The focus there is to find a constitutive rela-
tion which links the stresses to the microscopic geometry of
the packing. There is a considerable body of work on the
subject in the mathematical and engineering literature �see,
e.g., �62� and references therein�. Ball and Blumenfeld �41�
derived a constitutive relation for isostatic packings, though
it can only be expressed at a microscopic level.

A field theory, however, uses a path integral over all the
possible configurations for stable packings. It coarse grains
the microscopic details of each packing into a continuous
field which is sufficient to describe the macroscopic proper-
ties of that packing. Then we only need to combine symme-
try arguments with a perturbative expansion in the fluctua-
tions of the field around its mean to obtain the weight of a
configuration in the path integral.

Here, we calculate correlations of the stress based on a
minimal field theory that takes into account the essential fea-
tures of a frictionless granular packing. The field theory is
dominated by a Laplacian leading term which is multiplied
by a stiffness which controls the behavior of the system as
jamming is approached. We discuss the implications for the
jamming transition. The field theory also predicts the corre-
lation functions of the shear, which we test on simulated
data.

This field theory is related to our earlier proposal for a
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field theory �63� but, in this work, we have focused only on
stress correlations, and we have reassessed some of our as-
sumptions based on information from simulations and ex-
periments. The predictions from the earlier field theory re-
lated pressure to deviation from isostaticity and its
predictions for the jamming transition have been fitted to
experimental data by Majmudar et al. �18�.

A. Airy stress function

To write down a field theory of granular packings, we
need to identify a field which incorporates as many of the
constraints placed on the system as possible, such that they
do not have to be imposed separately. The intuitive choice of
the pressure p�x�=��x� /A�x� as a field is misleading since
force and torque balance are not guaranteed for all possible
configurations p�x�. Instead, we use the Airy stress function
	, which incorporates force and torque balance constraints
in two dimensions �41,43,53� and which is related to the
stress by

�̂�x� = �� � h� = �� � �� �	 �i.e., �ij = �ik� jl�k�l	� ,

�25�

such that the pressure is given by p=Tr��̂�=�2	. The Airy
stress function has been widely used in studying 2D elastic-
ity and especially the role of defects �12�. In its traditional
usage, 	 is obtained by minimizing the elastic energy. As
will be seen from our analysis below, the field theory pre-
sented here has an entropic basis, and the role of 	 is very
different. After expressing the path integral in function of 	,
the only remaining constraint is then that for purely repulsive
granular packings, the local pressure has to be strictly posi-
tive. For three-dimensional systems, 	 has to be replaced by

a two-tensor 	̂ known as the Beltrami stress tensor �43�. We
do not consider this case here.

B. Minimal field theory

We will work in the microcanonical ensemble, where the
total stress � of the system and its contact number z are
fixed. The key quantity to predict is therefore the microca-
nonical partition function Z�� ,z� which is related to the ca-
nonical Z��� by

Z��� =	 d�dzZ��,z�exp�− ��� . �26�

In a first step, we limit our investigations to two-dimensional
isotropic packings under pure compression, such that the to-

tal force-moment tensor �̂ can be written as �̂= �
2 Î.

Let � be the deviation of the Airy stress function 	 from
the one for a system with uniform pressure p=� /A. Then the
local stress tensor can be entirely written as a function of the
second derivatives of �,

�̂ =
�

2A
Î + 
� =

�

2A
�1 0

0 1
� + � �y

2� − �x�y�

− �x�y� �x
2�

� .

�27�

From Eq. �25� we see that the Airy stress function admits a
“gauge invariance” of the form

��x,y� → ��x,y� + ax + by + c , �28�

that is, we have the freedom to choose two arbitrary con-
stants while constructing the microscopic � of a packing: the
position of the origin for the fluctuations of h� and �. This
means that all physical quantities need to be at least second
derivatives of �. The field theory has to honor this symmetry
and therefore can only contain terms with at least second-
order derivatives of �.

Here, we consider only systems under an isotropic com-
pression, and hence the system has to be �statistically� iso-
tropic. All the terms in the action have to honor this symme-
try as well. Then we write �the � and z dependences are
through the coefficients A and B�

Z��,z� =	 D�

�exp�−	 dxdyA Tr�
�̂�2 + B Tr�
�̂2� + ¯� .

�29�

In terms of the Airy stress function the two leading terms are
given by A��2��2+B���x

2��2+ ��y��2+2��x�y��2�2.
To extend this formalism to anisotropic systems, we need

to decompose the stress tensor into a bulk term and the de-
viatoric stress 
�ij

dev=
�ij −
1
d
ij
�kk. The coefficients multi-

plying the terms in the action are then analogous to the bulk
and shear modulus of elasticity theory �64�.

The similarity of the above to the free energy formalism
one writes in elasticity theory �12,47� is due to the same
combination of a tensorial quantity and symmetry arguments.
The two are in fact fundamentally different: first of all, elas-
ticity theory is written as a function of the strain from a
given reference geometry. The elastic free energy is then
used to determine the properties of the system if the refer-
ence geometry is disturbed. For a granular system, there is
no reference geometry and the strain is ill-defined. Instead,
Eq. �29� sums over all possible geometries and forces at a
given �� ,z�. Moreover, while in an elastic system the Lamé
coefficients as well as the bulk and shear modulus are mate-
rial constants, in this formalism they crucially depend on the
imposed stress �see below�. There is strong evidence that the
bulk and shear moduli for granular and related systems de-
pend on the imposed pressure and shear stress �14�.

In Fourier space, all the lowest-order terms are propor-
tional to q4
�q
2, so that we can condense A and B into one
coefficient K and we write

Z��,z� =	 D� exp�−	 d2q

2�2 �K + A2q2 + A4q4 + ¯�
�q
2

+ ��q�
�q
4 + ¯� . �30�

We have only investigated second-order correlation func-
tions of the different components of the stress tensor in q
space. Since any eventual fourth order interaction terms
��q�
�q
4 �or higher� will just renormalize the Ak coefficients
in the second-order correlation functions �52�, we are unable
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to probe them. Assuming possibly renormalized coefficients,
we obtain a correlation function for the fluctuations of the
local pressure 
p= p−� /A=�2�,

�

pq
2� = q4�
�q
2� =
1

A0 + A2q2 + A4q4 + ¯

. �31�

C. Simulation results

We investigate the correlation functions S�q� of the local
pressure pg= 1

Ag
�i=1

zg rgiFgi to find out if they are of the type
expected from Eq. �31� and to determine the dependence of
the coefficients on � and z, as well as their interpretation. To
obtain the data, we interpolate the discrete pg onto a grid of
size �N��N and then take the two-dimensional fast fourier
transform �FFT� of the field. We then calculate the two-
dimensional structure factor 

pq�
2 on the two-dimensional q
grid and finally take a radial average.

The first observation is that the structure factor has an
overall scaling form

S�q� = �2s�q� . �32�

Figure 2 shows the limit K=limq→0 S�q� from the lowest five
radial q points �see Fig. 3� as a function of �, with a �−2

scaling over 4 orders of magnitude. We only observe devia-

tions in the limit of large � �and z�, far away from the jam-
ming transition.

To test if �

pq
2� has the form �Eq. �31��, we rescale by �2

and investigate the radial s�q�, which is then only param-
etrized by z. We group configurations with similar z and
average over the s�q� to improve statistics �typically, about
20 configurations are averaged over�. With N=1024 and a
system size of L�L grain diameters �L=32–37, depending
on packing fraction�, we can investigate the range of q from
2�
L to

�2Ngrid

2
2�
L , where Ngrid=32 is the size of the grid we use

for 
p.
The dots in Fig. 3 show the structure factor obtained for

N=1024 for all z. The low-q values of s�q� decrease with
increasing z, while the tail of the function does not change.
We were able to fit all the curves to Eq. �31� with three fitting
parameters, and the results led us to write the following
form:

s�q� =
1

k0�a�z� + �2
2q2 + �4

4q4�
. �33�

The lines in Fig. 3 shows the fitted curves, while Figs.
4�a� and 4�b� show the parameters k=k0a�z�, �2, and �4.

The following picture emerges: the two length scales �2
and �4 are very nearly independent of the contact number z
and are on the order of the grain size, with �2=1.05�0.2 and
�4=0.7�0.05. This suggests that they reflect the purely mi-
croscopic properties of the system, like the distribution of
grain sizes, which do not influence the behavior of the sys-
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tem at larger scales. The q-independent term in the denomi-
nator, however, depends on z and is responsible for the sup-
pression of the low-q fluctuations with increasing contact
number. The z dependence is quadratic,

k�z� = k0�2 + c̃�z − ziso�2� with c̃ = 4� 0.5, �34�

with a coefficient of the same order of magnitude as the c of
the equation of state �17�.

The full second-order correlation function is then given
by

S�q� =
�2

K0

1

�2 + c̃�z − ziso�2� + �2
2q2 + �4

4q4 . �35�

D. Origin of the stiffness

Section III C has shown that the behavior of the system at
large length scales is dominated by the first term in the field
theoretical model, 
�2�
2. The length scales present in the
system are on the order of the grain diameter and remain
small when the jamming transition is approached. There is
no evidence of a growing static length scale in the system
when the jamming transition is approached. This is consis-
tent with our observations in the ensemble section, where we
found that for length scales larger than approximately four
grain diameters, the density of states factorizes and the ap-
proximation of a flat measure in configuration space be-
comes valid. It is possible that there is a length scale unre-
lated to the pressure in the system or a length scale that the
finite size simulations are not sensitive to. Interestingly, the �
field is critical and has power-law correlations, independent
of the distance from jamming �see also Sec. III E�.

In the FNE, where by definition there are no correlations
between the particles, it has been shown that the pressure
correlations are flat and that the correlations of the Airy
stress function decay as �1 /q4, consistent with a field theory
with only the stiffness K and no higher-order terms �65�.

Our analysis raises many questions about the behavior of
static granular packings near jamming �or more appropriately
unjamming�. It is surprising that the simulations show no
crossover to usual elasticity theory and that the 	 field re-
mains critical even away from jamming. Usual elasticity
theory would lead to a unique solution for 	 at a given �
and z.

Can we understand why the form of the field theory is so
very different from the common universality classes encoun-
tered in statistical mechanics? For example, in the �4 model
the phase transition occurs when the mass term vanishes
compared to the gradient term and higher-order terms �12�.
In our case, the mass term is absent because of the gauge
invariance, and the � field is always critical.

We need to understand the coefficient of ��2��2,

K�z� =
K0

�2 �2 + c̃�z − ziso�2� , �36�

and how it is related to the jamming transition at ��=0,z
=0�.

We can predict the scaling of the stiffness K�� ,z� with �
if we take into account the constraint that the local pressure

p�r� has to be positive for all r. The argument below was
originally proposed by Tighe �65� in the context of the force
network ensemble.

Let p�r�=� /A+�2
��0. After transforming into Fourier
space, this condition becomes

	 d2q

�2��2q2�qeiq� ·r� � �/A . �37�

The left-hand side �LHS� �=−�2��r�� is the negative of the
local deviation from the mean pressure and can be both posi-
tive or negative. If the LHS is negative, the local pressure
fluctuation is positive, and the constraint is automatically ful-
filled. We therefore consider the case where the LHS is posi-
tive. We can square both sides while keeping the inequality
and transform one of the integrals by noting that �=��,

	 d2q

�2��2q2�qeiqr	 d2q�

�2��2q�2�q�e
−iq�r � ��

A
�2

.

If we integrate over all r on both sides, the right-hand side
�RHS� acquires a volume term A, while in the LHS, we can
change the order of integrations and get a �2��2
�q� −q�� �
from the exponentials. The condition becomes then

	 d2q

�2��2q4
�q
2 � �2/A .

The integrand is always positive, so we can write

q4
�q
2 � ��
A
�2

. �38�

The LHS is nothing but S�q�=1 /K�� ,z� and so, finally, the
positivity constraint leads to

K��,z��
A2

�2 . �39�

The field theory we have constructed is for the marginal case
where the stiffness satisfies the equality, and the stiffness is
therefore the smallest allowed by the constraint of positivity.
The z dependence of K is nontrivial and not predicted this
argument. Its form, however, is not totally unexpected: at
larger contact numbers, the stiffness, which is related to the
number of configurations, should increase since there are
more configurations available to the packing.

E. Tests of the field theory

1. Implications for jamming

The form of the field theory we have obtained from simu-
lations and from theoretical arguments presents a picture of
the jamming transition where the transition is the result of
the number of possible states for the system tending to zero.
As � tends to zero, the stiffness diverges, and hence the
number of states around the smooth-pressure ground state
that the system can access under perturbations is drastically
reduced. This is ultimately a consequence of the positivity
constraint: the position of the hyperplane on which the �
constraint is satisfied shifts to the “lower left corner” of the
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space of allowed forces, so that the area of the hyperplane
shrinks drastically.

2. Fluctuations of the shear stress

Even for isotropic systems, where the global shear stress

�̂xy /A vanishes, the local values of �̂xy are nonzero and have
well-defined correlations. Since the shear can be expressed
as a function of the Airy stress function as �̂xy =−�x�y	, we
can predict the shear structure factor in Fourier space,

�
��xy�q
2� =
�2

k0q4

qx
2qy

2

�2 + c�z − ziso�2� + �2
2q2 + �4

4q4 . �40�

Figure 5 shows the structure factor of the shear obtained
from the mean of 50 simulated packings, while the theoreti-
cal prediction from Eq. �40� is shown in Fig. 6. The param-
eters are identical to the pressure case except for one incon-
sistency: the overall constant k0 had to be adjusted by a
factor �1 /3 with respect to the result found for the pressure
fluctuations.

We find good agreement between the simulation result
and the prediction, especially for the angular structure of the
correlation function.

3. Real-space correlation functions

From the form of the Fourier-space correlation functions
�Eqs. �35� and �40��, we can predict the real-space correla-
tion functions, e.g.,

�
p�r��
p�0�� =	 d2q

�2��2exp�iq� · r���

pq
2� , �41�

and determine if the field admits long-range correlations. We
condense the short correlation lengths �2 and �4 into a single
correlation length ��1, which multiplies the q2 term. This is
a good approximation since the integrals are dominated by
the small-q limit, where the q2 term dominates the q4 term in
the denominator.

4. Airy stress function

The second-order correlation function of the fluctuations
of the Airy stress can be calculated for �→0 if the integral is
cut off at system size �the cutoff is necessary even for �
�0�. We obtain a scaling form in x= 2�r

L ,

���r����0�� =
�2

K0�2 + c̃�z − ziso�2�
L2

128�2��3x2

��− x2
2F3�1,1;2,3,3;− x2�

+ 32�ln�x/2� + 2x2 + � − 1�� , �42�

where 2F3�1,1 ;2 ,3 ,3 ;−x2� is a hypergeometric function and
� is the Euler-Mascheroni constant. The correlations of the
Airy stress function are long ranged and scale with the sys-
tem size L—qualitatively consistent with the real-space cor-
relations seen in �53�.

5. Pressure fluctuations

The inverse Fourier transform �Eq. �41�� can be per-
formed analytically. After the angular integration we obtain

�
p�r�
p�0�� =
�2

K0
	

0

� dq

2�

J0�qr�
2 + c�z − ziso�2 + q2�2 . �43�

The result is another Bessel function, K0�x�, the zeroth modi-
fied Bessel function of the second kind,

�
p�r�
p�0�� =
�2

K02�
K0� �2 + c�z − ziso�2�1/2r

�
� . �44�

Asymptotically, for large arguments, K0�x��e−x /x1/2 so that
the pressure fluctuations have short-range correlations which
fall off beyond a scale set by the correlation length �.

6. Shear fluctuations

For the shear fluctuations, the integral has a nontrivial
quadrupolar angular dependence and can only be done ana-
lytically for certain angular directions ��=0, � /2, �, and
3� /2� using polar coordinates. The result for these directions
is a combination of Bessel functions and a constant piece,
multiplied by a power law,
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FIG. 5. �Color online� Structure factor �
��̂xy�q
2� obtained from
the mean of 50 simulated packings at �z�=4.46.
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FIG. 6. �Color online� Theoretical prediction of Eq. �40� for
�
��̂xy�q
2� at the same �z�.
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�
�̂xy�r��̂xy�0�� =
�2

K0

2�

r2 � 1

f�z��−
1

2
+ K2� f�z�1/2r

�
��

−
r

f�z�1/2�
K3� f�z�1/2r

�
� + 6� �

f�z�r
�2� ,

�45�

where K3 and K3 are the second and third modified Bessel
functions of the second kind and f�z�=2+c�z−ziso�2. The
Bessel functions decay exponentially for r��; however the
first term shows that the shear admits long-range power-law

correlations �1 /r2 regardless of the distance from the jam-
ming transition. Equation �45� has negative correlations, and
in fact a numerical integration of Eq. �40� shows that the
real-space correlation function has a similar quadrupolar an-
gular dependence as the Fourier-space form, with negative
correlations along the axes and positive correlations at 45°
�see Fig. 7�.

IV. MEAN-FIELD THEORETICAL MODEL

The results from the simulation, as well as the universal
properties we have found at the isostatic point, can be com-
bined into a mean-field theory of jammed packings of fric-
tionless spheres. We investigate the properties of the mini-
mum of the effective free energy F and show that Point J has
some properties of a critical point within this framework.

A. Effective free energy

1. At the isostatic point

The results for the density of states from the simulation
and the partition function at the isostatic point we derived in
Sec. II agree with each other �Eqs. �16� and �22��. We can
define an intensive mean-field variable �=� /N, such that
P���=�2Ne−�N�= ��2e−���N, where N is the system size. Then
we write a free energy as a function of this variable,

Z��� = 	
0

�

d�e−NF��� with Fziso
��� = �� − 2 ln��� .

�46�

2. Scaling of the mean contact number

The variable which parametrizes the departure from the
isostatic point is the mean contact number �z��z in mean-
field notation. From the simulations, we were able to extract
several scaling laws linking the contact number and � by
exploring the phase space of compressed jammed configura-
tions available to the conjugate gradient minimization proto-
col.
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FIG. 7. �Color online� Top: real-space correlations of the shear
stress, obtained by numerical integration of Eq. �40�. Bottom: real-
space correlations of the shear stress at �=0 �numerical result in
blue; Eq. �45� in black, bottom curves� and �=� /4 �numerical re-
sult in red, top curve�.
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FIG. 8. �Color online� Coefficient for the power-law scaling between ��� and �z�−ziso for harmonic interactions �left� and Hertzian
interactions �right�; linear fit is in red.
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We observe the following relation between the ensemble
means of ��� and �z� �see Fig. 8�:

��� = Bs��z� − ziso�2 with Bs = 0.084, �47�

��� = Bh��z� − ziso�2 with Bh = 0.026 �48�

for harmonic and Hertzian interactions, respectively. This
scaling was first observed in the Chicago simulations �14�,
from which our simulation protocol derives.

This scaling and by extension the empirical mean-field
free energy we present below do depend significantly on the
precise form of the intergranular potential �quadratic or Hert-
zian in this case� and the nature of the simulation protocol.
We explore the influence of the simulation protocol in the
context of a stability argument.

3. Form of the free energy

For z�ziso, the number of additional force variables in a
system of size N is N�z−ziso� /2 and each geometric configu-
ration can bear several force-balanced states. The form of the
partition function at the isostatic point �Eq. �21�� needs to be
updated to take account of the additional force variables, and
the geometrical information cannot be dropped,

Z = 

k=1

Nz/2 	
0

�

dFk exp�− ����
�rij�


 �geom. − constr.� . �49�

The constraints imposed by the geometry on each arrange-
ment of the forces are similar to the case studied by Snoeijer
et al. �38�. Their work focuses on integrating over all the
possible force distributions allowed by force balance and
purely repulsive forces on a given triangular lattice with
fixed external forces. The case studied here is essentially an
inversion of the problem: for a given set of forces, is there a
geometry of �N, frictionless, spherical� particles to accom-
modate them? Their direct approach, even if conceptually
feasible for a single random geometrical configuration, fails
for us because we have no ansatz to tackle the problem of
counting all the possible geometrical configurations at large
compressions.

We assume that formal �49� is consistent with writing Z as
a function of � and t=z−ziso,

Z = 	
0

�

d�	
0

�

dt exp�NFziso
����exp�NW�t,��� , �50�

such that the effective free energy is F�� , t ,��=��−2 ln �
+W�t ,��. We then determine the simplest W consistent with
the simulation results discussed above.

For a system with harmonic interactions, Eq. �16� directly
leads to W�t�=−c�t�2 ln���+g�t�, and this also gives the cor-
rect equation of state �17� from setting the first derivative �F

��
to zero. To incorporate relation �47�, we set the z derivative
of F to zero and substitute Eq. �47� for �, so that we find

g�t� = ct2�ln�Bst
2� − 1� . �51�

Then, the effective free energy is given by

F��,z� = �� − 2 ln � − ct2�ln� �

Bst
2� + 1� . �52�

For systems with Hertzian interactions, we only know rela-
tion �48� between � and z but not the dependence of the
density of states on z nor the equation of state. We can nev-
ertheless obtain a similar free energy which incorporates Eq.
�48�,

F��,z� = �� − 2 ln � − cht3�ln� �

Bht3� + 1� . �53�

This then makes a prediction for the density of states and the
equation of state for a system with Hertzian interactions,

���,z� � �2+cht3 and � =
2

���
�2 + ch�t�3� . �54�

More generally, for systems with a contact interaction of the
type used in �14� with a power 
, we predict an effective free
energy

F��,z� = �� − 2 ln � − ct2�
−1��ln� �

Bt2�
−1�� + 1� . �55�

B. Phase transition in the mean-field theory

We now investigate the jamming transition in the context
of the free energy �Eq. �52�� at first for a system with har-
monic interactions. The constants in the free energy can be
scaled out to give

F��,x� = �� − 2 ln � − x2�ln� �
x2� + 1� , �56�

with the scaled variables x�c1/2�z−ziso�, �� c
B�, and �

� B
c�.
Minimizing Eq. �56� with respect to its fields � and x

allows us to extract the scaling of the ensemble averages ���
and �x� with the inverse temperature �. We find

��� =
2

� − 1
and �x� = � 2

� − 1
�1/2

, �57�

which is consistent with the equation of state at ziso and the
relation between � and z, as expected.

Form of the transition

The jamming transition is the point ���→0 and �x�→0,
i.e., �→�. Figure 9 shows the change in shape of the free
energy approaching the jamming transition, and we observe
a narrowing of the width of F around the minimum in the �
direction, while the width in the x direction increases.

The signature of a second-order phase transition is a di-
vergence of the fluctuations of the order parameters x or � as
the transition is approached, i.e., a vanishing curvature of the
free energy at its minimum at the transition �44�. We calcu-
late the Hessian matrix at the minimum of F and we obtain
that in the limit �→�, the eigenvectors of this matrix be-
come the � and x directions, with eigenvalues that scale as
����2 and �x=4. This shows that the minimum in the �
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direction narrows drastically as the transition is approached,
consistent with the well-defined equation of state we observe
and with the divergence of the stiffness in the field theoreti-
cal picture. The magnitude of the fluctuations in x, however,
is independent of the distance from the jamming transition
and does not diverge.

With � and x as order parameters, the jamming transition
does not have the properties of a second-order phase transi-
tion. Neither can it be described as a first-order phase tran-
sition since it lacks a second minimum of the free energy.
This reflects the fact that within the stress-ensemble frame-
work, a granular packing can only be in a single state, i.e.,
jammed. Unstable configurations cannot be accounted for
within the framework.

C. New order parameter

1. Motivation

The work of Wyart et al. �66,67� and Ellenbroek et al.
�68� shows that there is an excess of low-energy deformation
modes in soft granular packings close to the jamming tran-
sition. The authors linked the soft modes to very low-energy
rearrangements in which the grains slip past each other. They
also show that the scale of the rearrangements is determined
by the distance of the packing from the isostatic point. A
simplified version of the argument considers a packing of
size l at mean contact number z, so that the number of force
components in excess of the force and torque balance re-
quirements in the packing is given by 
nf =N
z /2� ld
z
�
z=z−ziso�. If we cut the boundary of the system, we re-
move of the order ld−1 force components and create an un-
stable region if ld−1� ld
z. This predicts a characteristic
length scale l��
z−1 below which the packing is locally un-
stable, and this length scale diverges as the jamming transi-
tion is approached. The scale of the soft modes is set by l�,
so that their energy becomes �s

2��l��−2��
z�2.
The energy for the soft modes for a packing at pressure

p=� /A diminishes proportionally to the stress the soft modes
cause at finite compression, which is proportional to p for a
harmonic interaction potential. Therefore, the frequency of
the soft modes at positive pressure scales as �s

2�A�
z�2−�,
where A is a constant.

Every mechanically stable packing must satisfy the in-
equality

0� 
E� A�z − ziso�2 − � , �58�

where 
E is the energy of the lowest-energy displacement
eigenmode of the system.

The equation predicts a phase diagram for static granular
packings, with stable packings above the �=A�z−ziso�2 line
and unstable packings below it �see Fig. 10�.

The simulated packings always lie on the boundary
between the stable ���B�z−ziso�2� and unstable
���B�z−ziso�2� regimes, i.e., they are marginally stable.
Wyart et al. �66� suggested a mechanism to explain this: the
conjugate gradient minimization will decrease the total po-
tential energy of the system by reducing the overlap between
initially random disks just enough to reach mechanical equi-
librium. During the procedure, on average, � will reduce
with the energy while the contact number z will increase.
Stopping the process at the first stable configuration reached
biases the process toward configurations with high � and low
z compared to a flat sample of all the stable configurations.
The same bias is not immediately encountered in other meth-
ods used in the literature to create mechanically stable con-
figurations, such as tapping �7� or shearing �49�. More gen-
erally, the marginally stable configurations should be
encountered in any protocol which does not allow the system
to thermalize, i.e., explore the phase space of jammed con-
figurations, but instead does an infinitely rapid quench to the
nearest stable packing.

Figure 8 shows that as we approach the isostatic point, the
relative fluctuations around the stability line derived above
increase. Therefore, it is natural to investigate the variable
u= x2

� which takes the value of 1 on the stability line and u
�1 in the stable region.

2. Mean-field theory in u-x coordinates

We can rewrite the free energy �Eq. �56�� in terms of the
new variables u and x,

F�u,x� = �
x2

u
− 2 ln� x2

u
� − x2�1 − ln u� , �59�

and investigate the properties of the transition in function of
u and x. Here we have neglected the Jacobian x2 /u2 of the
transformation from �� ,x� coordinates to �u ,x� coordinates
which adds a term −ln�x2 /u2� /N to the free energy. The po-
sition of the minimum is at �u�=1 and �x�= � 2

�−1 �1/2, which is
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FIG. 9. �Color online� Contour plot of the free energy �Eq. �56��
for �=5 �left� and for �=50 �right�, approaching the transition. The
scale for the contours in both cases is the height of the free energy
barrier to x=0, F���� , �x��−F���� ,0�. FIG. 10. �Color online� Phase diagram derived from Eq. �58�.

The red line marks the phase boundary between the stable and
unstable packings and the blue dots show stable packings. The sam-
pling effect of the conjugate gradient minimization protocol is il-
lustrated by the black arrow leading from the initial configuration to
the final stable packing on the phase boundary.
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compatible with the results obtained in the �� ,x� coordinates.
Figure 11 shows the evolution of the shape of F as the jam-
ming transition is approached.

We observe a striking asymmetry develop in the width of
the minimum of F as the jamming transition is approached. It
is clear that there exists a direction along which the second
derivative of F vanishes, and hence the fluctuations diverge.
The Hessian matrix is given by

�2F

�u,�x
= � 2

�

� − 1
− 2�2�� − 1��1/2

− 2�2�� − 1��1/2 4�� − 1�
� . �60�

The eigenvalues close to unjamming, for large �, become
�−� 1

� and �+�2�. Hence the curvature of the free energy
vanishes along the direction of v�−, whose angle with the u
axis is just tan���=v−

2 /v−
1. At the unjamming transition �

→�, this angle vanishes as tan�����2��−1/2, and the flat
eigendirection becomes the u axis.

So in the limit �→�, we observe a diverging susceptibil-
ity in the u direction, that is, the fluctuations around the
stability line �=x2 diverge, with an exponent � u2���. This
indicates critical behavior at the jamming transition, further
evidence that Point J is a critical point if approached along
the T=0 line.

3. Comparison to simulation data

The first prediction of the field theory in u-x coordinates
is that all the �u ,x� data points associated to individual con-
figurations should cluster around u=1 after an appropriate
rescaling. Second, we predict that the x value of the data
points for a given � clusters around �x�= � 2

�−1 �1/2. Figure 12
�top� shows configurations throughout the jammed region,
grouped by their values of � �indicated by the color of the
data points�. The data cluster around u=1, with large fluc-
tuations for data points at higher � �in blue�. The circles,
which are in the same color as the data points, mark the
minimum of F for the � associated to that color. The line
through each circle is in the direction of the eigenvector
along which the susceptibility diverges. Its length is propor-
tional to 1 /�−, i.e., proportional to the magnitude of the ex-
pected fluctuations. We observe that the data points do in-
deed cluster around the minimum and follow the direction
given by the eigenvector. In the limit of the jamming transi-
tion, the spread of the data points at a given u becomes very
large and parallel to the u direction as expected. We address

the apparent asymmetry of the distributions with respect to
u=1 below.

4. Scaling of the divergence

The exact nature of the divergence in the simulated data
can be probed by investigating the system-size dependence
of the fluctuations around u=1. We observe that if we plot
the number of excess contacts x̃=N /2�z−ziso� as a function
of the scaled g̃=N /2�1/2, the distribution of ��g̃ , x̃�� points is
independent of N �see Fig. 12, bottom�. The linear mean
�corresponding to u=1� is consistent with Eq. �47� with a
coefficient Bs which is independent of N. We observe that for
any x̃�0, the bulk of the distribution lies below the u=1
line, which must necessarily pass through the origin. This is
inconsistent with the stability argument �Eq. �58��, which
forbids stable packings in this region, and this feature of the
distribution is also responsible for the asymmetry in the
�u ,x� distributions observed in Fig. 12. We can calculate the
mean square fluctuations of u in the following way. The fluc-
tuations of the rescaled variables x̃ and g̃ are not only N
independent but, to a good approximation, are also indepen-
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FIG. 11. �Color online� Contour plot of the free energy �Eq.
�59�� for �=5 �left� and for �=50 �right�, approaching the transi-
tion. The scale for the contours in both cases is the value of the
second derivative of F with respect to u at the minimum of F.
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FIG. 12. �Color online� Top: data points from the N=1024 con-
figurations with harmonic interactions grouped by different values
of � �blue, bottom: high �; red, top: low �� plotted in the x-u
diagram. For each �, the circle of the same color marks the mini-
mum of F at that �. The line through each circle is in the direction
of the eigenvector along which the susceptibility diverges. Its length
is proportional to 1 /�−, i.e., proportional to the expected fluctua-
tions. Bottom: scaling with system size N. Plotted is the number of
excess contacts in the packing x̃=N /2�z−ziso� as a function of g̃
=N /2�1/2. The distributions overlap for N=64 �green dots�, N
=256 �blue circles�, N=1024 �red squares�, and N=4096 �black
stars, most data points are outside of the frame�.
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dent of x̃ and g̃ themselves: �x̃2�1/2�4 and �2̃2�1/2�1. Note
that the width of the distribution is larger than the discrete-
ness cutoff on x̃,  x̃min=1. Then the fluctuations in u=Bs

x̃2

g̃2

can be approximated by

� u2� =
4 x̃2

x̃2 +
4 g̃2

g̃2 .

Using the linear relation between x̃ and g̃ and the definition
of g̃, as well as the equation of state close to ziso ��=2, this
leads to

� u2� = 8/g̃2 = �/N . �61�

This result shows a divergence consistent with the mean-field
theory, including the system-size dependence �see Eq. �46��.

D. Link of the mean-field theory to the field theory

For the field theory derived in Sec. III and the mean-field
theory explored above to be consistent with each other, the
partition function has to take the following form:

Zm��� =	 d�dz exp�− mF��,x��

=	 d�dz	 D� exp�−
K0

�2	 d2q

2�2 ��2 + c�z − ziso�2�q4

+ �2
2q6 + �4

4q8�
�q
2�exp�− ��� . �62�

We can show this link in two ways. The simpler method is to
expand the mean-field theory to second order about its mini-
mum in ��r��=�+�2��r�� while keeping the scaled contact
number x as a parameter. We obtain

F��,x� = F��,x� −	 d2r
2 + cx2

�2 
�2�
2, �63�

which is nothing but the stiffness part of the field theory.
This shows consistency since the purely microscopic length
scales �2 and �4 are not expected to contribute to the mean-
field free energy.

Alternatively, we can perform the path integral in � and
see if we obtain the entropic part of the mean-field free en-
ergy from the logarithm of the microcanonical partition func-
tion. Although this can be done exactly since we limited
ourselves to Gaussian terms, there are problems with this
approach. The field theory is an expansion in powers of �,
and we have kept only the lowest order. This is sufficient to
calculate the moments of �, like the structure factor, but it is
probably inadequate to accurately calculate the generating
functional Z�� ,x�. A proper treatment of the problem would
need knowledge of the full power series and then a sophis-
ticated renormalization approach for a two-dimensional
problem.

Nevertheless, some progress can be made and we can test
the consistency between the two forms to lowest order in �
and we obtain �53�

S��,z� = S0 + N�2 ln � − ln�2 + c̃�z − ziso�2�� . �64�

Comparing this to the mean-field result, we find that the
isostatic limit of both expressions, 2 ln �, is identical. We
recover part of the z dependence if we expand the logarithm
of the contact number ln�2+ c̃�z−ziso�2�� ln 2+1 /2c̃�z
−ziso�2. The field theory does surprisingly well in a numerical
comparison to the mean-field result. Figure 13 shows both
for the pairs of �� ,z� corresponding to the structure factor
plotted in Fig. 3. This is likely due to the fact that the �� ,z�
pairs investigated are all quite close to the line of u=1, so
that the logarithmic term ln� �

B�z−ziso�2 � vanishes. On the line
u=1, both expressions reduce at first order to

S = S0 + N�2 ln � − cx2� , �65�

with a value c=2.8�0.5 from the mean-field theory and a
value c= c̃ /2=2�0.25 from the field theory.

V. CONCLUSIONS

A. Summary

We have investigated the properties of jammed granular
assemblies, approaching Point J and within the jammed re-
gion using a stress-based ensemble. The jamming transition
can be analyzed within this framework.

The force-moment tensor of a system can be written as a
boundary term, which makes it a conserved quantity under
internal rearrangements. We use this conservation law to de-
fine a canonical ensemble in Sec. II. The conjugate variable
to the force-moment tensor defines then a granular analog to
temperature, which is closely related to the Edwards defini-
tion of angoricity.

We review our previous test �40� of the ensemble and
obtain an equation of state for the granular temperature
within the jammed region. The form of the equation of state
is a universal property at the isostatic point, a conjecture that
we confirm through an exact calculation, though we also
detect evidence for short-range correlations.

In Sec. III, using the constraint-free Airy stress function,
we build a field theoretical model for the jammed range
based on symmetry arguments and the analysis of the pres-
sure fluctuations in the simulated configurations. The jam-
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FIG. 13. �Color online� Comparison between the mean-field
theory �blue line� and the field theoretical result for S�� ,z� using the
values of �� ,z� from the simulations for the latter �red dots�.
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ming transition appears as a divergence of the stiffness of the
leading term, so that the entropy of jammed packings tends
to zero at the transition.

Finally, in Sec. IV we combine all the relations obtained
from simulation into a phenomenological mean-field theory.
We investigate the jamming transition again to determine the
correct order parameter. Inspired by a stability argument pro-
posed in �66�, we use an order parameter which measures the
deviations from the stability line linking mean pressure and
mean number of contacts. The mean-field theory then pre-
dicts divergent fluctuations in this order parameter at Point J,
lending weight to the interpretation of J as a critical point.

B. Limitations of the ensemble, predictions,
and further tests

Limitations and applicability

The stress ensemble, with its tensorial conserved quantity
and tensorial temperature, can be applied to a wide range of
systems. The only conditions are that the system has to be in
mechanical equilibrium and that there can be no long-range
interactions between the particles. This excludes any kind of
driven system �exceptions below� or system with a tempera-
ture, but it includes systems with attractions, like colloids, or
packings with friction. Anisotropic systems, either made of
nonspherical particles and/or with an imposed shear in addi-
tion to a hydrostatic pressure, are a major area where we
expect the stress ensemble to be useful.

The analyses of the simulated packings, the field theory,
the mean-field theory, and the interpretation of Point J in this
context are limited to isotropic frictionless packings of round
grains. Lifting any one of these restrictions fundamentally
changes the nature of the system.

For packings with an imposed shear, we expect the “Bolt-

zmann factor” exp�−Tr��̂�̂�� to reduce to a factor exp�
−�pp� featuring the pressure p=1 /2��1+�2� and a pressure
temperature �p and a factor exp�−�s!� featuring the shear
!=1 /2��1−�2� and a shear temperature �s. Here �1 and �2
are the principal stresses for the global stress tensor. We have
extended the field theory presented here to the pure shear
case and are in the process of testing its predictions against
simulations and experiments �64�.

The introduction of friction or of anisotropic grains trans-
forms the isostatic point into a broader region within which
marginally stable packings occur. It is then doubtful if Point
J is a single well-defined singular point for these systems,
and it will be interesting to investigate the field theoretic
framework for these cases.

C. Predictions

In principle, all the relations obtained from the application
of the ensemble to the simulated system are predictions
which can be verified in other simulations or in experimental
systems which are close to frictionless round particles, like
bubble rafts. There are however several major caveats.

First, the density of states at larger compressions is depen-
dent on the method of preparation of the sample, as dis-
cussed in Sec. IV, and it remains to be seen which range of

�simulation or experimental� protocols selects for marginally
stable packings. The behavior close to the jamming transition
should not be affected though.

Second, most of the predictions were made in the
�-canonical ensemble which is difficult to reproduce in ex-
periments or in simulations since there are no means of im-
posing � externally, as is normally done with the temperature
in thermal systems. It is feasible, though, to work in the
microcanonical ensemble where the external stress �or the
hydrostatic pressure for isotropic systems� is fixed. The pre-
dictions of the canonical ensemble can be adapted to the
microcanonical ensemble by carrying out a Legendre trans-
form if the subsystem investigated is sufficiently large �i.e.,
m�1�. For smaller subsystems, especially for the force dis-
tribution and the single-grain pressure distribution, the local
correlations make the thermodynamic approximation break
down.

The best prediction is the equation of state �=
zisoN

2� , to-
gether with the coarse-grained density of states ���m�
��2m close to Point J for 2D frictionless round grains. It is a
universal property which we expect to hold regardless of
preparation method and the choice of the ensemble.

D. Further tests

There are several interesting methods by which the stress
ensemble can be explored.

When a hot and a cold body come into touch, the second
law of thermodynamics dictates that heat will flow from the
hot body to the cold body until both of them arrive at the
same temperature, regardless of the composition of the two
bodies. In the context of the stress ensemble this means that
two compartments at different �1��2, if brought into touch,
will transmit stress from the compartment with lower � �i.e.,
higher granular temperature� to the compartment with the
higher � until �1=�2. To set up a numerical experiment test-
ing this situation, one could prepare two sets of simulated
configurations similar to the ones tested in �40�, determine
their respective equations of state, and then bring them into
touch. Then one can measure the �m distributions in the two
halves, determine their respective � via the equations of
state, and test if both values of � match.

The only dynamical situation where the stress ensemble
can be applied is a quasistatic motion where the system
evolves through a sequence of equilibrium states. One ex-
ample of this is a system under quasistatic shear, slow
enough for it to be characterized by a sequence of stress
buildups and eventual rearrangements. It is in this regime
that we expect that the SGR formalism �11� can be adapted
from the Boltzmann ensemble to the stress ensemble, as we
have done for a toy model �48�.

Another situation of the same type is a system which is
periodically tapped so that it rearranges itself into a new
configuration. In contrast to the same setup in the context of
the Edwards ensemble, we need a system with the same ex-
ternally imposed stress after each rearrangement. For this
system or for the quasistatically sheared system, we can then
employ a granular version of the fluctuation-dissipation theo-
rem �FDT�, as has been done by Song et al. �33� for the
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Edwards ensemble. Let F be an external perturbing force and
x�t� be the position of a tracer particle. Then the FDT links
the fluctuations in the particle position to its mean response
to the perturbation

��x�t� − x�0��2� =
2

�

�x�t� − x�0��
F

. �66�

The driving force, provided by gravity in the work of Song et
al., should be replaced by, e.g., the magnetic force on a me-
tallic tracer particle since the stress ensemble is sensitive to a
gravitational field. The values of � extracted by this method
should then only depend on the external stress and not on the
type of material employed or the magnitude of the driving
force.

E. Outlook

This work underscores that the experimental conditions
under which a granular material is examined are crucially

important. The framework we have introduced permits us to
distinguish between systems in a canonical stress ensemble
or in a microcanonical stress ensemble and between different
stress states. The statistical framework can be used to predict
correlations functions of the stress under these different con-
ditions.

The jamming phase diagram masks a more complicated
reality, arising from the sensitivity of the jamming transition
to the prepared state of the packing �see �6� for a review�.
The stress ensemble provides a concrete framework for un-
derstanding the behavior of granular materials at the jam-
ming transition and within the jammed region.
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