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An extensive study of the one-dimensional two-segment Frenkel-Kontorova �FK� model reveals a transition
from the counterintuitive existence to the ordinary nonexistence of a negative-differential-thermal-resistance
�NDTR� regime, when the system size or the intersegment coupling constant increases to a critical value. A
“phase” diagram which depicts the relevant conditions for the exhibition of NDTR was obtained. In the
existence of a NDTR regime, the link at the segment interface is weak and therefore the corresponding
exhibition of NDTR can be explained in terms of effective phonon-band shifts. In the case where such a regime
does not exist, the theory of phonon-band mismatch is not applicable due to sufficiently strong coupling
between the FK segments. The findings suggest that the behavior of a thermal transistor will depend critically
on the properties of the interface and the system size.
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I. INTRODUCTION

When a thermodynamic force X is applied to a system, the
system may exhibit a flux Y of a certain attribute and the
system’s resistance to the flux is R=X /Y �0. In some cases,
Y decreases counterintuitively with increasing X and the state
of negative differential resistance �NDR� occurs. In the case
of electrical conduction, the state of NDR occurs during the
operation of a number of semiconductor devices, for ex-
ample the tunnel diode �1�. In the case of heat conduction,
the concept of negative differential thermal resistance
�NDTR� has emerged from recent efforts to design and build
the thermal counterparts of present-day electrical devices.
One possibility for the exhibition of NDTR lies in a two-
layer system: the phonon band of each layer will shift with
any change in the temperature of that layer. If the tempera-
ture difference between the layers is enlarged but, due to the
phonon-band shifts of the individual layers, the degree of
phonon-band overlap between the layers decreases, the heat
flux across the layers will drop and the phenomenon of
NDTR will occur.

In recent years, much attention has been paid to the ef-
fects of nonlinearity on thermal transport in low-dimensional
systems �2,3�. Recent theoretical studies have shown that
some low-dimensional nonlinear systems exhibit thermal
rectification �4–15� and some even exhibit NDTR �13–15�.
Designs of thermal transistors, thermal logic gates, and
thermal-memory devices based on low-dimensional lattice
models have recently been proposed �13,16�, and their op-
erational principles are fundamentally based on the concept
of NDTR. It can be seen that the concept of NDTR is and
will remain an important ingredient in the designing of a
variety of next-generation thermal devices, and therefore a
fundamental understanding of the physical mechanism of
NDTR is urgently needed.

II. MODEL AND METHOD

The Frenkel-Kontorova �FK� model �17–20� has found a
wide range of applications in condensed-matter systems,
from adsorbed monolayers, Josephson junctions, charge-
density waves, magnetic spirals, tribology, transport proper-
ties of vortices in easy-flow channels, to strain-mediated in-
teraction of vacancy lines in pseudomorphic adsorbate
systems. This paper reports a NDTR study of the one-
dimensional two-segment FK model, which consists of two
FK segments connected by a harmonic spring; the coupling
constant of the intersegment harmonic spring is here denoted
as kint. The size of the left segment and that of the right
segment are here denoted as NL and NR, respectively. The
total Hamiltonian of the model is

H = HL + HR + Hint, �1�

where HL and HR are the Hamiltonians of the left and the
right segment, respectively, and Hint is the Hamiltonian of
the segment interface. The Hamiltonian of each segment is
given by

HW = �
i=1

NW � pW,i
2

2m
+

kW

2
�xW,i − xW,i−1�2 −

VW

�2��2cos 2�xW,i� ,

�2�

where W=L or R, xW,i is the ith particle’s displacement from
its equilibrium position, pW,i is the ith particle’s conjugate
momentum, kW is the strength of the interparticle potential,
and VW is the strength of the external potential from the FK
lattice. It follows that, at the segment interface, Hint

=
kint

2 �xL,NL
−xR,NR

�2.
Nonequilibrium molecular-dynamics simulation is used.

The Langevin heat baths are taken and the equation of mo-
tion is integrated by using a fourth-order Runge-Kutta algo-
rithm. In the simulations, the parameter values m=1, VL=5,
VR=1, KL=1, and KR=0.2 were employed, the parameters*Corresponding author.
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are the same as the ones in Ref. �13�, and the parameters
under study were kint and a system size of N=NL=NR. Since
the segments have different parameter values, the model un-
der study could generally exhibit asymmetric heat conduc-
tion. The boundary conditions were fixed at xL,0=xR,0=0,
with the particles at the left and the right boundary connected
to individual Langevin heat baths at temperatures TL and TR,
respectively. The equations of motion of particles are as fol-
lows:

ẍW,1 = −
�H

�xW,1
− �WẋW,1 + �W,

ẍW,i = −
�H

�xW,i
, i = 2, ¯ ,NW, �3�

where W=L or R, and �W=0.1 is the coupling constant
�damping constant� between the Langevin heat bath and the
chain. �W is independent Wiener processes with zero mean,
variance 2�WTW. In the bulk of the model, the local tempera-
ture and local heat flux were defined as Ti=m�ẋi

2	 and ji
=ki�ẋi�xi−xi−1�	, respectively. Figure 1 shows the local tem-
perature Ti and local flux ji as functions of the position i for
various TL with kint=0.05 and N=25. To calculate the mean
values, the time mean and random seed mean are taken. The
noise is white noise and the damping constant of Langevin
heat bath �=0.1. After the system reaches a stationary state,
ji is independent of site position i, so the flux can be defined
as steady-state heat flux J. To obtain a steady-state heat flux
J and a steady-state temperature profile, each simulation was
performed long enough with about 109 iterations. For each
set of chosen values of kint and N, the steady-state heat flux J
was investigated as a function of the temperature TL of the
left boundary while the temperature of the right boundary
was fixed at TR=0.2. It follows that, in the plot of J against
TL, the regime of positive slope is the regime of NDTR.

The temperature used in our numerical simulation is di-
mensionless. It is connected with the true temperature Tr

through the following relation �7,21�: Tr=
m�0

2b2

kB
T, where m is

the mass of the particle and b is the period of external po-
tential. �0 is the vibration frequency. kB is the Boltzman
constant. For the typical values of atoms, we have
Tr
�102–103�T �7,21�, which means that the room tempera-
ture corresponds to the dimensionless temperature
T
�0.1–1�.

III. TRANSITION

Figure 2 depicts how the coupling constant kint affects the
temperature dependence of the heat flux J for a system size
of N=25, 150, and 250. For the purpose of comparison, it is
worth pointing our that, in Fig. 2�a�, the case of N=25 and
kint=0.05 is one that is also presented in Fig. 3�c� in Ref.
�13�. For each value of the system size, the heat flux J is
presented as a function of the temperature TL of the left
boundary for different values of kint and, as explained above,
the regime of positive slope is the regime of NDTR. As
shown in Fig. 2, for each value of the system size, the regime
of NDTR diminishes for increasing kint until it vanishes at a
critical coupling constant kint=kc. It can also be seen that

FIG. 1. �Color online� The local temperature Ti and local flux ji

as functions of the position i for various TL with kint=0.05 and N
=25.

FIG. 2. �Color online� Heat flux as a function of the temperature
TL of the left boundary for various values of kint, at a system size of
�a� N=25, �b� N=150, and �c� N=250.
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there is a general decrease in kc as the system size increases
from N=25 to N=250.

It was found that the transition from the exhibition to the
nonexhibition of NDTR coincides with a thermal-diode gain
of unity. The thermal-diode gain of the system is defined as
�= �J+ /J−�, where J+ is the heat current from left to right for
TL=0.2 and TR=0.02 and J− the heat current from right to
left for TR=0.2 and TL=0.02. Figure 3 depicts the thermal-
diode gain � as a function of the coupling constant kint for a
system size of N=25, 150, and 250. The dashed blue line
indicates the case of �=1, i.e., J+=J−. As the coupling con-
stant kint increases, the thermal-diode gain � decreases. A
comparison with Fig. 2 reveals that the case of �=1 coin-
cides with the vanishing of the NDTR regime at the critical
coupling constant kc.

Figure 4 depicts how the system size N affects the tem-
perature dependence of the heat flux J for a coupling con-
stant of kint=0.05, 0.3, and 0.5. For the purpose of compari-
son, it is again worth pointing out that, in Fig. 4�a�, the cases
of kint=0.05 and N=25 and 50 are ones that are also pre-
sented in Fig. 3�c� in Ref. �13�. As shown in Fig. 4, for each
value of the coupling constant, the regime of NDTR dimin-
ishes for increasing system size until it vanishes at a critical
system size Nc. It can also be seen that there is a general
decrease in Nc as the coupling constant increases from kint
=0.05 to kint=0.5.

Figure 5 depicts the thermal-diode gain � as a function of
the system size N for a coupling constant of kint=0.05, 0.3,
and 0.5. The dashed blue line indicates the case of �=1. As
the system size N increases, the thermal-diode gain � de-
creases until it stays at a constant value; This can be under-
stood by regarding the segment interface as an “impurity;”
As the system size increases, the relative importance of the
impurity decreases and hence the thermal-diode gain de-
creases �9�. A comparison with Fig. 4 also reveals that the
case of �=1 coincides with the vanishing of the NDTR re-
gime at the critical system size Nc.

FIG. 3. �Color online� The thermal-diode gain � as a function of
the coupling constant kint for a system size of N=25, 150, and 250.
The dashed blue line indicates the case of �=1.

FIG. 4. �Color online� Heat flux as a function of the temperature
TL of the left boundary for various values of N, with a coupling
constant of �a� kint=0.05, �b� kint=0.3, and �c� kint=0.5.

FIG. 5. �Color online� The thermal-diode gain � as a function of
the system size N for a coupling constant of kint=0.05, 0.3, and 0.5.
The dashed blue line indicates the case of �=1.
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It is thus clear that the system will not exhibit NDTR if
the coupling between the segments is sufficiently strong or if
the system size is sufficiently large. To further study the role
of nonlinearity in the exhibition of NDTR, a quartic coupling
term was added to the Hamiltonian of the segment interface,

Hint =
kint

2
�xL,NL

− xR,NR
�2 +

	int

4
�xL,NL

− xR,NR
�4, �4�

where 	int is here referred to as the nonlinear coupling con-
stant. Such addition of a quartic term is a common and sim-
plest way of investigating the role of nonlinearity in the dy-
namical behavior of a system �9�. Figure 6�a� depicts the heat
flux J as a function of the temperature TL of the left boundary
for different values of the nonlinear coupling constant 	int.
The parameter values kint=0.05 and N=25 were chosen. As
shown in Fig. 6�a�, the regime of NDTR diminishes as the
value of 	int increases, which is due to an increase in
phonon-band mixing for increasing nonlinearity. In this case,
the theory of phonon-band mismatch is not applicable. Fig-
ure 6�b� depicts the thermal-diode gain � as a function of the
nonlinear coupling constant 	int for a coupling constant of
kint=0.05 and a system size of N=25. The dashed blue line
indicates the case of �=1. As 	int increases, the thermal-
diode gain � decreases. A comparison with Fig. 6�a� also
reveals that the case of �=1 coincides with the vanishing of
the NDTR regime at a critical nonlinear coupling constant.

IV. PHASE DIAGRAM

The transition from the exhibition to the nonexhibition of
NDTR for increasing coupling constant at a given system

size or for increasing system size at a given coupling con-
stant can be explained as follows: as the coupling constant
increases at a given system size or as the system size in-
creases at a given coupling constant, the phonon bands of the
segments are no longer separable; instead, they become
“mixed” and form one single band. The theory of phonon-
band mismatch for the exhibition of NDTR is no longer valid

FIG. 6. �Color online� �a� Heat flux as a function of the tem-
perature TL of the left boundary for various values of the nonlinear
coupling constant 	int. �b� The thermal-diode gain � as a function
of the nonlinear coupling constant 	int. The dashed blue line indi-
cates the case of �=1. The parameter values employed were kint

=0.05 and N=25.

FIG. 7. A “phase” diagram which depicts the range of allowed
values of kint and N for the exhibition of NDTR.

FIG. 8. �Color online� Power spectra of the two particles at the
segment interface for two drastically different values of the system
size, N=25 and 1000, with the parameter values TL=0.11, TR=0.2
and kint=0.05 employed in the simulation. The green �light gray�
line is the power spectrum of left particle and the red �heavy gray�
line is the power spectrum of right particle. The striking similarity
between these two spectra suggests that the conventional power-
spectrum explanation of NDTR is not sufficient to account for the
transition from the exhibition to the nonexhibition of NDTR for
increasing system size.
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�9�. A “phase” diagram which depicts the range of allowed
values of kint and N for the exhibition of NDTR is shown in
Fig. 7. It can be seen that, as the system size increases, the
critical coupling constant kc decreases, and as the coupling
constant increases, the critical system size Nc decreases.

V. CONCLUSION

In this paper, the heat-conduction behavior of the one-
dimensional two-segment FK model was investigated. It was
found that the system exhibits NDTR only if the system size
or the coupling constant is sufficiently small. In the existence
of a NDTR regime, the link at the segment interface is weak
and the corresponding exhibition of NDTR can be explained
in terms of effective phonon-band shifts. Figure 8 shows the
power spectra of the two particles at the segment interface
for two drastically different values of the system size, N
=25 and 1000. The parameter values TL=0.11 and TR=0.2
with kint=0.05 were chosen. The green �light gray� line is the
power spectrum of left particle and the red �heavy gray� line
is the power spectrum of right particle. It can be seen that the
power spectra for these two values of the system size are
practically the same, which suggests that the conventional
power-spectrum explanation of NDTR is not sufficient to
account for the transition from the exhibition to the nonex-
hibition of NDTR for increasing system size as reported in
this paper �13,14�. In fact, there has been evidence that a
combination of the self-consistent phonon theory �SCPT�
and the Landauer formula is a good candidate for explaining

the exhibition of NDTR under the circumstances of a weak
intersegment coupling and a small system size. For example,
Fig. 3 of Ref. �15� depicts a NDTR regime where the heat
flux decreases as the temperature difference increases from
−0.7 to −0.4, as obtained by analytical calculations and non-
equilibrium molecular dynamics �NEMD� simulations, and
the corresponding theoretical analysis was based on the
SCPT and the Landauer formula. A recent NDTR study by
He et al. �22� on the weakly coupled one-dimensional two-
segment 
4 model was also based on this theoretical ap-
proach. As to practical implications, the operational prin-
ciples of current models of thermal transistors and thermal
logic gates are fundamentally based on the concept of
NDTR. This study shows that the exhibition of NDTR de-
pends critically on the properties of segment interfaces. It is
therefore believed that the real fabrication of thermal transis-
tors and thermal logic gates would require extra efforts �23�
to control the relevant interfacial properties to a sufficiently
high precision.
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