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Evolution of the A-particle island — B-particle island system at
propagation of the sharp annihilation front A+B—0
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We consider diffusion-controlled evolution of the A-particle island — B-particle island system in a semi-
infinite medium at propagation of the sharp annihilation front A+B — 0. We show that depending on the initial
particle number ratio, the system demonstrates three asymptotic regimes: self-accelerating collapse of one of
the islands, synchronous power-law relaxation of both islands, and exponential death of one of the islands at a
constant velocity of front propagation. We find asymptotic scaling laws of evolution in these regimes and
reveal the limits of their applicability for the cases of mean field and fluctuation fronts.
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The reaction-diffusion system A+B— 0, where species A
and B diffuse and irreversibly annihilate in a d-dimensional
medium, has attracted great interest owing to the remarkable
property of the effective dynamical repulsion of unlike spe-
cies [1,2]. In systems with initially statistically homogeneous
particle distribution, this property brings about spontaneous
growth of A and B particles domains (Ovchinnikov-
Zeldovich segregation). In systems with initially spatially
separated reactants, this property results in the formation and
propagation of a localized reaction front which is a key fea-
ture of a broad spectrum of problems. The simplest model of
a reaction front, introduced by Galfi and Racz (GR) [3], is
the quasi-one-dimensional model

daldt=D,N*a—R, 9bldt=DgV*b—R, (1)
for two initially separated reactants which are uniformly dis-
tributed on the left side (x<<0) and on the right side (x>0)
of the initial boundary. Taking the reaction rate in the mean-
field form R(x,7)=ka(x,t)b(x,t), GR discovered that in the
long-time limit kz— o the reaction profile R(x,7) acquires the
universal scaling form
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where xfOCt”z, RfOCt‘m, and woct!/® are, respectively, posi-
tion, height, and width of the reaction front. Subsequently, it
has been shown [4-8] that the mean-field approximation can
be adopted at d>d, =2, whereas in one-dimensional (1D)
systems fluctuations play the dominant role. Nevertheless,
scaling law (2) takes place at all dimensions so that at any d
on the diffusion length scale L, ¢!> the width of the reac-
tion front asymptotically contracts: w/Lp—0 as t— .
Based on this fact a general concept of the front dynamics,
the quasistatic approximation (QSA), has been developed
[4.5.8,9]. The key property of the QSA is that w and R,
depend on ¢ only through the time-dependent boundary cur-
rent of particles arriving at the reaction front, J,=|J4=J(),
the calculation of which is reduced to solving the external
diffusion problem with the moving boundary. In the mean-
field case with D, p=D from the QSA it follows that [4,5,9]
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R~ Jlw, w~ (D*Jk)'"?, (3)

whereas in the 1D case w acquires the k-independent form
w~ (D/J)"* [4,5]. Following the GR model the majority of
the authors employed the QSA mainly for systems with A
and B domains having an unlimited extension, i.e., with an
unlimited number of A and B particles, where asymptotically
the stage of monotonous quasistatic front propagation is al-
ways reached [10].

Recently, it has been shown [11] that based on the QSA
the scope of the A+B— 0 problems which allow for analytic
description can be appreciably broadened including the sys-
tems with finite number of particles and nonmonotonous
front propagation where asymptotically the QSA is violated.
In the work [11] the problem of the death of an A-particle
island in the B-particle sea was considered, and it was estab-
lished that at large initial number of A particles and high-
reaction constant the death of the majority of island particles
proceeds in the universal scaling regime which extends al-
most up to the critical point of the island collapse. The more
general A-particle island — B-particle island problem was
considered in the recent work [12] where was given an ex-
haustive picture of the islands death on the finite interval x
€[0,L] with the impenetrable-to-particles boundaries. The
special case of this problem was also analyzed in the work
[13] where an excellent agreement with the results of nu-
merical simulation was found. As principally distinct from
the island-island model [12] where the centers of both is-
lands hold immobile, in this work we investigate the evolu-
tion of the island-island system where the center of one of
the islands is moving. More precisely, we study the evolution
of the quasi-one-dimensional island-island system in the
semi-infinite space x € [0,%°) and reveal a surprisingly rich
scaling behavior of the system at propagation of the sharp
annihilation front A+B—0.

Let in the interval x e [0,%) particles A with concentra-
tion a, and particles B with concentration b, be initially uni-
formly distributed in the islands x € [0,€) and x € (€,L], re-
spectively. We will assume that concentrations change only
in one direction (flat front) and the boundary x=0 is impen-
etrable. We will also assume that D,=Dg=D. Then, by mea-
suring the length, time, and concentration in units of L,
L?/D, and by, respectively, and defining the ratio of initial
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concentrations ay/by=r and the ratio €/L=¢g, we come from
Eq. (1) to the simple diffusion equation for the difference
concentration s=a—>b

dsldt= Vs, (4)
in the interval x € [0,20) at the initial conditions

solx €[0,9)=r, spx e (g, 1) =-1

solx € (1,%)]=0, (5)
with the boundary conditions

Vslieo=0, s(0,1)=0. (6)

According to the QSA for large k— < at times k™' —0
there forms a sharp reaction front w/x;— 0 so that the solu-
tion s(x,?) defines the law of its propagation s(x;,#)=0 and
the evolution of particle distributions a=s(x <xf) and b
=|s|(x>x,). The general solution to Eqgs. (4)—(6) for arbitrary
7, q, and ¢t has the form

s(e,t) = (r+ D) Fy(x.1) = Fi(x,1), (7)

q+x q-x
Folx,t) = {erf(z—vg> +erf< 2\/; )} (8)

It can easily be convinced that at > ¢> and x<t/g the func-
tion F,(,x,?) has the asymptotics

where

F ) = LLZXD o ©
Nt
where Xq=42(1_1xzzi2[)_‘14[1_)(2(1;3:2/120/[]"""' Following the

work [12] we shall focus here on the initial island-sea con-
figuration ¢ <<1. The remarkable property of this configura-
tion is that at g<<1 and r>¢? the system’s evolution is de-
termined by the sole parameter A=N,,—Ngo=rq—(1-¢q)
which at ¥> 1 defines the ratio of the initial particle numbers
p=1+A=N,o/Ng. In the limit g<1 at t>¢> we obtain
from Egs. (7) and (9)

s(u,1) = pe e — Fy(x,1). (10)

By substituting into Eq. (10) the condition s(x;,#)=0 we find
the law of front motion in the form

xp= 2t [/ wFa(x)1]. (11)

From Eq. (11) it follows that at p<<p,=1 the trajectory of the
front center xf(t) after the initial expansion of the island A
comes back to the origin of the coordinates x/(z.)=0 so that
at k—oo the island A dies within a finite time 7.(p) which is
defined by the expression

\"TICerf(l/Zw’/t_c) =p. (12)

In the time interval ¢g><r<<1 the finiteness of the island B is
not yet revealed, F; (xf) = 1, therefore the island A death has
to proceed in the scaling island-sea regime [11] with .
=p’ /[ar, amplitude of the maximal island width xy
=p\2/me, and the universal ratio t,,/t,=1/e. Taking t.<1
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we derive from Eq. (12) tc(p)=p2(1+4pe_”/4p2/ﬂ'+---)/71'
whence for the region of the island-sea regime we find
p<p,~04. In the opposite limit #.>1 we derive from
Eq. (12)

1-9|A|/10+ -

A) =
(8) 2

(13)
Here we are mainly interested in the evolution of islands at
t>1 and |A| <1 when the diffusion length exceeds the initial
sizes of both islands and the both islands are “long lived.” At
t>1 and x<r from Egs. (9) and (10) we find

—x%/4t
s(f) = [A+ Xl(”)ﬂ)]e , (14)

Nt

where x,(x,7) can conveniently be presented in the form

( t)_(1—3/40t+"') x*(1-3/20t+ )
XL0= 247
x4
-— +
19207*

From Eq. (14) at small |A| we come to the compact expres-
sion for the front trajectory

xXp=\20(y+ A+ 1720t + ), (15)

where y=1+6A/5+0(A? and A=12A[1-3A/10+0(A?)].
Equation (15) demonstrates three characteristic regimes of
front propagation: (1) At A <0 the island A first expands to a
maximal amplitude x}’ o< |A[~"2 and then dies within a finite
time ¢, according to Eq. (13); (2) At A,=0 the front moves
asymptotically by the law xf—\r2t (3) At A>0 the front
moves asymﬂ)tlca Ily by the law x;= V2At at a constant ve-
locity vy =V2A =~ V24A [note that from the exact Eq. (10) at

large p~A>1 we find e"//z/vf =p and therefore vy In A].
The calculated from Eqgs. (11) and (15) front trajectories x(t)
are shown in Fig. 1 which gives the exhaustive picture of
their evolution with growing p and demonstrates that in the
interval —0.1 <A < 0.1 Eq. (15) gives a quite precise descrip-
tion of the trajectories beginning with 7~ 1. By neglecting in
parentheses of Eq. (15) the terms we arrive at a
remarkable conclusion that at small 0<<|A|<1 and large ¢
>1 the front trajectories x/(t) behave self-similarly and are
described by the universal scaling laws

A2 D (), (16)

where 7=t/t, and t,=1/|A|=1/12|A| defines the collapse
time of the island at A<<O and the crossover time to the
constant front velocity regime at A>0 (here and in what
follows the upper sign “~” corresponds to the case A <0 and
the lower sign “+” corresponds to the case A>0). From Eq.
(16) it follows that at A <0 the coordinates of the front turn-
ing point are #y,/t,=1/2, xM Vt); whence for the universal
front trajectory we find

xf/x;'! ={{(n=2Vr(1-1) (17)

and conclude that as p grows there occurs a crossover from
the scaling regime island-sea t,,/t,=1/e to the scaling re-

R
xp=N21(1 F 1l1,) =
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FIG. 1. (Color online) Evolution of the front trajectories x(f)
with growing p=1+A, calculated from Eq. (11) (blue lines) and Eq.
(15) (green circles) at p=0.4,0.6,0.8,0.94 (inset) and p
=0.94,0.98,0.99,0.995,1,1.02,1.1 (main panel) (from left to
right). The region of the scaling IS regime is colored.

gime island-island #,,/f.=1/2 with the remarkable symmetry
7+ 1—7 (Fig. 1). In Fig. 2(a) are shown the calculated from
Eq. (11) trajectorles of the front x/(¢) in the rescaled coordi-
nates x;/x}" vs t/1,. It is seen that with the decreasing |A| the
trajectories rapidly collapse to the scaling function { (7).

Let us now turn to regularities of the decay of the particle
number in islands N, p and the boundary diffusion current J,
which, the width of the reaction front being neglected, are
defined by the expressions N,=[{/sdx=Ng+A and J=
—3s/ x|, . Taking 0<<|A|<1, t>1 and retaining in Eq.
(14) only the leading terms, we come from Egs. (14) and
(16) to the scaling laws [Fig. 2(b)]

(a)

FIG. 2. (Color online) (a) Collapse of the calculated from Eq.
(11) trajectories x/(t) to the scaling function { (7) (line) in the res-
caled coordinates {;= f/xf vs 7=t/t,: p=0.9 (crosses) 0.94 (stars),
0.98 (squares), and 0.99 (circles). The region restricted by {(7) is
colored. (b) Time dependences of the scaling functions N_(7) and
N.(7)-1. The circle marks the turning point of the front.

PHYSICAL REVIEW E 79, 061114 (2009)

0.04-
o
=3

ke
0

A B
0.00 Y . . r
0 1 2 3 4
xIXt

FIG. 3. (Color online) Collapse of the calculated from Eq. (11)
dependences |s,|t¥? vs x/x} to the scaling function |S| (thick line):
from bottom to top =1,2, and 4 (thin lines). The region under the
function || is colored.

Ny=IAN= (7)., J=A2T(2), (18)
where the scaling functions
24¢eG
N=z(7) = _ﬁg — ¥ erfgf, J=(7)=- Jiffq’z f
N

with §f=xf/2\s’t:\s“(l F7)/2. Equations (18) immediately
lead to the following important consequences: (i) At A<0 in
the turning point of the front we find N'/|A|~0.358 and
therefore, independently of |A| in the turning point of the
front (N,/Ng),=~0.263. The asymptotics of the island A
death in the vicinity of the collapse point 7=(r.—1)/t,<1
have the form

Ny=a |A|T?, J=pB.AT", (19)

where a_=pB_/18=4/ 3\27. (i) At A>0 in the point of
crossover to the regime with the constant velocity of the
front we find N/ A=0.257 and therefore, independently of
A at the crossover point (Ng/N,).=~0.205. The asymptotics
of the island B death at >t have the form of exponential
relaxation

,8+A2€_T/2

0(+A€_T/2

7_3/2 ’ 7_3/2 ’

where a,=3,/6=2\2/me. Exactly at the particular point A
=A, =0 from Eq. (14) we find that asymptotically the island-
island system relaxes self-similarly by the law

5.060) = S (x/x7) 21)

Np= (20)

with the scaling function S(Z)=(1—zz)e‘zz/2/12v"7_'r (Fig. 3)
whence there follows the synchronous power-law death of
both islands

N,/Ny=a,t, J,=pJt, (22)

where a,=0,= \2/ e/ 12=0.04. As it must be, in the limit
|A|—0 (£.— ) Egs. (18) are reduced to the power-law as-
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ymptotics (22) which at any 0<|A|<1 are intermediate as-
ymptotics in the interval 1 <¢<f¢,.

We shall define the center x,, of the island B by the natural
condition [s],-, =max|s(x>x,)| (Fig. 3). In the point x,, the
current of particles B reverses its sign, so it is clear that along
with the characteristic size x, of the island A the distance
X, —Xs defines the second characteristic size of the problem
with respect to which the front width ought to be quite small.
Taking |A|<1 and t>1 we find from Eq. (14) the law of
motion of the island B center in the form

X = \20(yy + AL +3/201 4+ ), (23)

where ,,=3+3A/10+0(A?). With the same exactness as in
Eq. (16) we come from Eq. (23) to the scaling laws

X, = \2t(3 F t/t.) = |A|TV2D ) (7). (24)

The comparison of Egs. (15) and (23) suggests the following
conclusions: (1) at A<<0 the centers of the front and of the
island B having passed through the turning point of the front
are moving in the opposite directions. In the vicinity 7— 0 of
the island A collapse point x,,/x;—; (2) at A>0 the cen-
ters of the front and of the island B are asymptotically mov-
ing at_tt the same velocity so that x,/x,—1 and x,—x,
~1/\6A=const; (3) at the particular point A=A, =0 the ra-
tio of velocities of the front and the island B centers holds
constant so that asymptotically x; /x; — V3.

To complete the outlined picture we have to reveal the
applicability limits for the key condition of the sharp annihi-
lation front

7=w/min(x,,x,, —x;) < 1. (25)

Mean-field front. We shall estimate the applicability of the
sharp front approximation for a prefect 3D diffusion-
controlled reaction with dimensionless (in units of D/L?b)
constant k~r,L?b, where r, is the annihilation radius
[7,12,14]. Substituting here r,~107% cm, L~0.1 cm and
bo~10%* cm™ we obtain k~10'". At A<0 from Egs. (3),
(15), and (19) we find

MF T_l/6, E’IF ~ (T /7)2/3’ (26)

where T% (B2K*|A|)~"*. Taking k=10'" we obtain 7};;[_}:
~Tol 72 ~107*/|A["* and  NYT|, o/ |Al~a (T, )3/2
~ 10 6/|A|*® and conclude that at not too small |A| the front
holds sharp almost up to the island A collapse point. At A
>0 from Egs. (3), (15), (20), and (23) we find

wMF o Vre™, 7~ V\7e™, (27)
where \=(Bk*A)~'3. Taking k=10 we obtain 717\;'_}:01
~3ln(7]2/)\7') 3 In(1 0°A"3/7,) and NMF|,,_0]/A

~1/k7y’ VA~ 10‘7/ VA and conclude that at not too small A
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the exponential relaxation stage is reached in the sharp-front
regime. At the particular point A=A, =0 from Egs. (3), (15),
and (22) we find

MF
WMF oc 213,

f ME~ (t1)"®, (28)

where 1,=(B,k)>. Taking k 1010 we obtain M 0 |~ o’
~10" and N1/ No~ a, /155 ~ 107" and conclude that
on the power relaxatlon stage the vast majority of the par-
ticles die in the sharp-front regime.

Fluctuation front. By performing the analogous calcula—
tions for a 1D fluctuation front with no=boL we find 7"
~(Ty/ T)** where Tp=(B.Ang) ™23, 7}~ (wn)¥*e™ where

(ﬂ Ang)™3, and 7 ~\t/1, where to=PBno. Taking ny
—106 we finally obtaln T o1~ 107%/[APB, 7,
~31n(10°A%3/7,), and 01~102 We conclude that al-
though the regime of ﬁuctuatlon front imposes more severe
restrictions, the presented theory has a wide applicability
scope from electron-hole systems with characteristic times of
the order of milliseconds to chemical systems with charac-
teristic times of the order of hours.

In summary, the problem of diffusion-controlled evolution
of the A-particle island — B-particle island system in semi-
infinite medium has been considered and three characteristic
regimes of propagation of the sharp annihilation front A+B
— 0 have been revealed. As a central result it has been found
out that at |A| <1 the evolution of the island-island system in
each of these regimes proceeds self-similarly and is de-
scribed by the universal scaling laws. Within the framework
of the quasistatic approximation the laws of growth of the
relative front width have been derived self-consistently and it
has been shown that all the three regimes may be realized in
a wide range of parameters. One of the most interesting con-
sequences of the analysis presented is the discovery of the
regime with a constant velocity of front propagation (regime
of exponential relaxation), which offers a possibility to ob-
serve nontrivial Liesegang patterns (rhythmic precipitation
patterns in the wake of the moving front) for the irreversible
reaction A+B— C [15]. It should be emphasized, however,
that to experimentally realize this regime the initial concen-
trations of particles in the islands should be high enough. As
in the case of the island-island system on a finite interval
[12], here the evolution of the island-island system has been
considered at equal species diffusivities. Although we be-
lieve that the analysis presented reflects the key features of
the island-island system evolution the study of the much
more complicated problem for unequal species diffusivities
remains an intriguing and a challenging problem for the fu-
ture.
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