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A vast variety of real-life networks display the ubiquitous presence of scale-free phenomenon and small-
world effect, both of which play a significant role in the dynamical processes running on networks. Although
various dynamical processes have been investigated in scale-free small-world networks, analytical research
about random walks on such networks is much less. In this paper, we will study analytically the scaling of the
mean first-passage time �MFPT� for random walks on scale-free small-world networks. To this end, we first
map the classical Koch fractal to a network, called Koch network. According to this proposed mapping, we
present an iterative algorithm for generating the Koch network; based on which we derive closed-form expres-
sions for the relevant topological features, such as degree distribution, clustering coefficient, average path
length, and degree correlations. The obtained solutions show that the Koch network exhibits scale-free behav-
ior and small-world effect. Then, we investigate the standard random walks and trapping issue on the Koch
network. Through the recurrence relations derived from the structure of the Koch network, we obtain the exact
scaling for the MFPT. We show that in the infinite network order limit, the MFPT grows linearly with the
number of all nodes in the network. The obtained analytical results are corroborated by direct extensive
numerical calculations. In addition, we also determine the scaling efficiency exponents characterizing random
walks on the Koch network.
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I. INTRODUCTION

Complex networks have been acknowledged as an invalu-
able tool for describing real-world systems in nature and so-
ciety �1–5�. Extensive empirical studies have uncovered that
a lot of real networks share several remarkable features �6�.
One of the most relevant is the scale-free behavior, that is,
various real networks exhibit a power-law degree distribu-
tion P�k��k−� �7�. Another very important observation is
that most real-life systems are characterized by ubiquitous
small-world effect �8�, including large clustering coefficient
�9� and small average path length �APL� �10�. Both the scale-
free behavior and the small-world effect have a profound
impact on almost all dynamical processes taking place on the
networks �3–5,8,11–17�.

Among various dynamical processes, random walks on
networks are fundamental to many branches of science and
have received considerable attention from the scientific com-
munity �18–25�. As a primary dynamical process, random
walks are related to a plethora of other dynamics such as
transport in media �26�, disease spreading �27�, and target
search �28,29� to name a few. On the other hand, random
walks are useful for the study of topological structure �e.g.,
between-ness and average path length �18,25�� and commu-
nity detection �30� on networks. In particular, as an integral
theme of random walks, trapping is related to a wide variety
of contexts �31�, such as photon-harvesting processes in pho-

tosynthetic cells �32,33� and characterizing similarities be-
tween the elements of a database �34�. It is thus of theoretical
and practical interests to study standard random walks and
trapping problem on complex networks.

The main interesting quantity closely related to random
walks is the mean first-passage time �MFPT�, and a central
issue in the study of random walks is how the MFPT scales
with the size of the system �26,35,36�. In the past several
years, a lot of endeavors have been devoted to studying the
intrinsic relations between the scaling behavior of random
walks and the underlying topological structure of networks
�18,19,31,37�. The results of these investigations uncovered
many unusual and exotic features of complex networks, es-
pecially of small-world and scale-free networks. In spite of
their useful insight, most of previous jobs focused on nu-
merical investigation, the analytical results of MFPT �in par-
ticular the average for all pairs of nodes� for standard random
walks and trapping problem have been far less reported, with
the exception of some graphs with simple topology, such as
regular lattices �32�, Sierpinski fractals �38,39�, T fractal
�40�, and deterministic scale-free trees �41,42�, as well as
other structures �20–22�, and exhaustive analytical research
on scale-free and small-world networks with loops is still
missing.

In this paper, we analytically investigate the scaling be-
havior of MFPT on complex networks with scale-free phe-
nomenon and small-world effect. To achieve this goal, we
first propose a relevant deterministic network, named Koch
network, which is based on the classical fractal–Koch curve.
We then suggest a minimal iterative algorithm generating the
Koch network, on the basis of which we give in detail a
scrutiny of the network architecture. The analysis results
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show that the Koch network is simultaneously scale free,
small world, and has large clustering coefficient. Particularly,
we show that the Koch network is completely two-point un-
correlated by exactly computing two relevant quantities of
two-point correlations, which has never been previously
found in other deterministically growing networks. Eventu-
ally, we study the scalings of MFPT on the proposed network
for the standard random walks, together with a special case
of trapping problem with the trap fixed at a hub node. We
present that the MFPT averaged over all couples of nodes
scales linearly with the network order �total number of
nodes�. We derive a closed-form solution for the MFPT char-
acterizing the trapping process, which also grows as a linear
function of the network order. We also compare the our re-
sults with those previously obtained for other scale-free net-
works.

II. NETWORK CONSTRUCTION

The network under consideration is derived from the
Koch curve. To define the network, we first introduce the
classical fractal, Koch island, also known as Koch curve,
Koch snowflake, or Koch triangle, which was proposed by
Koch �43�. This well-known fractal denoted by St after t
generations is constructed as follows �44�. Start with an equi-
lateral triangle and denote this initial configuration as S0.
Perform a trisection of each side of this initial triangle and
construct an equilateral triangle on each middle segment, so
that the interior of the added triangle lies in the exterior of
the base triangle, then remove the segment upon which the
new triangle is established. Thus, we get S1. For each line
segment in S1, trisect it and draw an equilateral triangle
based on the resultant middle small segment to obtain S2.
Repeat recursively the procedure of trisection of existing line
segments in last generation and addition of triangles. In the
infinite t limit, we obtain the famous Koch curve St, whose
Hausdorff dimension is df =

2 ln 2
ln 3 �45�. In Fig. 1, we show

schematically the structure of S2. In fact, this fractal can be
easily generalized to other dimensions �44�.

From the Koch curve we can easily construct a network
�called Koch network� using a simple mapping as follows. In
the Koch network, nodes �vertices and sites� correspond to
the sides �excluding those deleted� of the triangles con-
structed at all generations of the Koch curve as shown in Fig.
1. That is to say, for every triangle created at some genera-
tion, its two newly born sides are mapped to two nodes,
while the removed side is not. We make two nodes connected
if the corresponding two sides of the Koch curves contact
each other. For uniformity, the three sides of the initial equi-
lateral triangle of S0 also correspond to three different nodes.
Note that after the birth of each side of a triangle constructed
at a given generation, although some segments of it will be
deleted at subsequent steps, we look upon its remaining seg-
ments as a whole and map it to only one node. Figure 2
shows the network associated with S2.

III. GENERATION ALGORITHM OF KOCH NETWORK

According to the construction process of Koch curve and
the proposed mapping from Koch curve to Koch network,
we can introduce with ease an iterative algorithm to create
Koch network, denoted by K�t� after t generation evolutions.
The algorithm is as follows. Initially �t=0�, K�0� consists of
three nodes forming a triangle. Then, each of the three nodes
of the initial triangle gives birth to two nodes. These two new
nodes and its mother node are linked to each other shaping a
new triangle. Thus we get K�1� �see Fig. 3�. For t�1, K�t� is
obtained from K�t−1�. We replace each of the existing tri-
angles of K�t−1� with the connected cluster on the right-

FIG. 1. �Color online� The first two generations of the construc-
tion for Koch curve.

FIG. 2. �Color online� Construction for the Koch network and
labels of its nodes, showing the first two steps.

FIG. 3. �Color online� Iterative construction method for the
network.
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hand side �rhs� of Fig. 3 to obtain K�t�. The growing process
is repeated until the network reaches a desired order. Figure
2 shows the network growth process for the first two steps.

Next we compute the order and the size �number of all
edges� of Koch network K�t�. To this end, we first calculate
the total number of triangles existing at step t, which we
denote as L��t�. By construction, this quantity increases by a
factor of 4, i.e., L��t�=4L��t−1�. Considering the initial con-
dition L��0�=1, it follows that L��t�=4t. Let Lv�t� and Le�t�
be the respective number of nodes and edges created at step
t. Notice that each triangle in K�t−1� will lead to an addition
of six new nodes and nine new edges at step t, then one can
easily obtain the following relations: Lv�t�=6L��t−1�=6
�4t−1 and Le�t�=9L��t−1�=9�4t−1 for arbitrary t�0.
From these results, we can compute the order and the size of
Koch network. The total number of vertices Nt and edges Et
present at step t is

Nt = �
ti=0

t

Lv�ti� = 2 � 4t + 1 �1�

and

Et = �
ti=0

t

Le�ti� = 3 � 4t, �2�

respectively. Thus, the average degree is

�k� =
2Et

Nt
=

6 � 4t

2 � 4t + 1
, �3�

which is approximately 3 for large t, showing that Koch
network is sparse as most real systems.

IV. STRUCTURAL PROPERTIES OF KOCH NETWORK

Now we study some relevant characteristics of Koch net-
work K�t�, focusing on degree distribution, clustering coeffi-
cient, average path length, and degree correlations.

A. Degree distribution

We define ki�t� as the degree of a node i at time t. When
node i is added to the network at step ti �ti�0�, it has a
degree of 2, viz., ki�ti�=2. To determine ki�t�, we first deter-
mine the number of triangles involving node i at step t that is
represented by L��i , t�. These triangles will create new nodes
connected to the node i at step t+1. Then at step ti,
L��i , ti�=1. By construction, L��i , t�=2L��i , t−1�. Since
L��i , ti�=1, one can derive L��i , t�=2t−ti. Note that the rela-
tion between ki�t� and L��i , t� satisfies

ki�t� = 2L��i,t� = 2t+1−ti. �4�

In this way, at time t the degree of node i has been computed
explicitly. From Eq. �4�, one can see that at each step the
degree of a node doubles, i.e.,

ki�t� = 2ki�t − 1� . �5�

Equation �4� shows that the degree spectrum of Koch net-
work is discrete. It follows that the cumulative degree distri-
bution �3� is given by

Pcum�k� =
1

Nt
�
��ti

Lv��� =
2 � 4ti + 1

2 � 4t + 1
. �6�

Substituting for ti in this expression using ti= t+1− ln k
ln 2 gives

Pcum�k� =
2 � 4t � 4 � k−�ln 4/ln 2� + 1

2 � 4t + 1
. �7�

When t is large enough, one can obtain

Pcum�k� = 4 � k−2. �8�

So the degree distribution follows a power-law form with the
exponent �=3. Note that this exponent of degree distribution
is the same as that of the Barabási-Albert �BA� model �7�.

Before closing this section, we compute another quantity
�k2�, i.e., the fluctuations of the connectivity distribution,
which is useful for the calculation of Pearson correlation
coefficient that will be discussed in the following text. The
quantity �k2� is given by

�k2� =
1

Nt
�
ti=0

t

Lv�ti��k�ti,t��2, �9�

where k�ti , t� is the degree of a node at step t which was
generated at step ti. Combining previously obtained results,
we find

�k2� =
2 � 4t�3t + 6�

2 � 4t + 1
. �10�

B. Clustering coefficient

The clustering coefficient �8� of a node i with a degree ki
is given by Ci=2ei / �ki�ki−1��, where ei is the number of
existing triangles attached to node i and ki�ki−1� /2 is the
total number of possible triangles including i. Using the con-
nection rules, it is straightforward to calculate analytically
the clustering coefficient C�k� for a single node with degree
k. In the preceding section, we have obtained 2ei=ki for all
nodes at all steps. So there is a one-to-one correspondence
between the clustering coefficient of a node and its degree.
For a node of degree k, we have

C�k� =
1

k − 1
, �11�

which is inversely proportional to k in the limit of large k.
The scaling of C�k��k−1 has been observed in many real-
world scale-free networks �46�.

After t generation evolutions, the clustering coefficient Ct
of the whole network, defined as the average of Ci’s over all
nodes in the network, is given by

Ct =
1

Nt
�
r=0

t 	 1

Mr − 1
Lv�r�
 , �12�

where the sum runs over all the nodes and Mr is the degree
of those nodes created at step r, which is given by Eq. �4�. In
the limit of large Nt, Eq. �12� converges to a nonzero value
C=0.82008, as shown in Fig. 4. Therefore, the Koch network
is highly clustered.
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C. Average path length

Let dt denote the APL of the Koch network K�t�. Since the
Koch network is self-similar, the APL can be computed ana-
lytically to obtain an explicit formula by using a method
similar to but different from those in Refs. �47,48�. We rep-
resent all the shortest path lengths of K�t� as a matrix in
which the entry dij is the shortest distance from node i to
node j, then dt is defined as the mean of dij over all couples
of nodes,

dt =
Dt

Nt�Nt − 1�/2
, �13�

where

Dt = �
i�K�t�,j�K�t�

i�j

dij �14�

denotes the sum of the shortest path length between two
nodes over all pairs. It should be mentioned that, in Eq. �14�,
for a couple of nodes i and j �i� j�, we only count dij or dji,
not both. In the Appendix, we provide the detailed derivation
for the APL. The obtained analytical expression for dt is

dt =
4 + 14 � 4t + 12t � 4t

3�4t + 1�
, �15�

which approximates 4t in the infinite t, implying that the
APL shows a logarithmic scaling with the network order.
Therefore, the Koch network exhibits a small-world behav-
ior. We have checked our analytical result against numerical
calculations for different network orders up to t=10 which
corresponds to N10=1 048 577. In all the cases we obtain a
complete agreement between our theoretical formula and the
results of numerical investigation �see Fig. 5�.

D. Degree correlations

Degree correlations are a particularly interesting subject
in the field of network science �49�, because they can give
rise to some interesting network structure effects. An inter-

esting quantity related to degree correlations is the average
degree of the nearest neighbors for nodes with degree k,
denoted as knn�k�, which is a function of node degree k �50�.
When knn�k� increases with k, it means that nodes have a
tendency to connect to nodes with a similar or larger degree.
In this case the network is defined as assortative �51�. In
contrast, if knn�k� is decreasing with k, which implies that
nodes of large degree are likely to have near neighbors with
small degree, then the network is said to be disassortative. If
correlations are absent, knn�k�=const.

We can exactly calculate knn�k� for Koch network using
Eqs. �4� and �5� to work out how many links are made at a
particular step to nodes with a particular degree. By con-
struction, we have the following expression �52,53�:

knn�k� =
1

Lv�ti�k�ti,t�
� �

ti�=0

ti�=ti−1

Lv�ti��k�ti�,ti − 1�k�ti�,t�

+ �
ti�=ti+1

ti�=t

Lv�ti�k�ti,ti� − 1�k�ti�,t�� + 1 �16�

for k=2t+1−ti. Here the first sum on the right-hand side ac-
counts for the links made to nodes with larger degree �i.e.,
ti�	 ti� when the node was generated at ti. The second sum
describes the links made to the current smallest degree nodes
at each step ti�� ti. The last term 1 accounts for the link
connected to the simultaneously emerging node. After some
algebraic manipulations, we obtain exactly

knn�k� = t + 2. �17�

Therefore, two node correlations do not depend on the de-
gree. On the other hand, Eq. �17� shows that, for large t,
knn�k� is approximately a logarithmic function of the network
order Nt, namely, knn�k�� ln Nt. Note that the same behavior
has also been observed in the BA model �54�.

Degree correlations can be also described by a Pearson
correlation coefficient r of degrees at either end of a link. It
is defined as �51,52,55�

FIG. 4. Semilogarithmic plot of average clustering coefficient Ct

versus network order Nt.
FIG. 5. Average path length dt versus network order Nt on a

semilogarithmic scale. The solid line is a guide to the eye.

ZHANG et al. PHYSICAL REVIEW E 79, 061113 �2009�

061113-4



r =
�k��k2knn�k�� − �k2�2

�k��k3� − �k2�2 . �18�

If the network is uncorrelated, the correlation coefficient
equals zero. Disassortative networks have r	0, while assor-
tative graphs have a value of r�0. Substituting Eqs. �3�,
�10�, and �17� into Eq. �18�, we can easily see that, for arbi-
trary t�0, the numerator of Eq. �18� is always equal to zero.
Thereby, r also equals zero, which again indicates that Koch
network shows the absence of degree correlations.

V. RANDOM WALKS

As addressed in Sec. IV, the Koch network exhibits ex-
clusive topological properties not simultaneously shared by
other networks. Thus, it is worthwhile to study dynamical
processes occurring on the network. In this section we con-
sider simple random walks on the Koch network defined by
a walker such that at each step the walker, located on a given
node, moves to any of its nearest neighbors with equal prob-
abilities.

A. Scaling efficiency

We follow the concept of scaling efficiency introduced in
�41�. Denote by Tij the first-passage time �FPT� between two
nodes i and j in a network. Let Tii be the mean time for a
walker returning to a node i for the first time after the walker
has left it. When the network order grows from N to gN, one
expects that in the infinite limit of N

Tij�gN� � g
ijTij�N� , �19�

where 
ij is defined as the scaling efficiency exponent. An
analogous relation for Tii defines an exponent 
ii.

One can confine the scaling efficiency in the nodes al-
ready existing in the network before growth. Let Tij� �gN� be
the mean first-passage time in the network under consider-
ation, averaged over the original class of nodes �before
growth�. Then the restricted scaling efficiency exponent �ij
is defined by the relation

Tij� �gN� � g�ijTij�N� . �20�

Similarly, we can define �ii.
After introducing the concepts, in the following we will

investigate random walks on the Koch network following a
similar but obviously different method used in �41,42�.

B. First-passage time for old nodes

Consider an arbitrary node i in the Koch network K�t�
after t generation evolution. Note that for the sake of sim-
plicity, we also denote K�t� by Kt, and both denotations will
be used alternatively in the following text. From Eq. �5�, we
know that upon growth of the network to generation t+1, the
degree ki of node i doubles, that is to say, it increases from ki
to 2ki. Let the FPT for going from node i to any of the ki old
neighbors be T and let the FPT for going from any of the ki
new neighbors to one of the ki old neighbors be A. Then we
can establish the following equations �see Fig. 6�:

T = 1
2 + 1

2 �1 + A� ,

A = 1
2 �1 + T� + 1

2 �1 + A� , �21�

which leads to T=4. Therefore, the passage time from any
node i �i�Kt� to any node j �j�Kt+1� increases four times,
on average, upon growth of the network to generation t+1,
i.e.,

Tij� �Nt+1� = 4Tij�Nt� . �22�

For explanation, see Refs. �26,41� and related references
therein. Since the network order approximately grows by
four times in the large t limit �see Eq. �1��. This indicates that
the scaling efficiency exponent for old nodes is �ij =1, which
is the same as that of the recursive scale-free tree addressed
in Ref. �41�.

Next we continue to consider the return of FPT to node i.
Denote by Tii� the FPT for returning to node i in Kt+1. Denote
by Tji� the FPT from j—an old neighbor of i �i�Kt�—to i in
Kt+1. Analogously, denote by Tii the FPT for returning to i in
Kt and denote by Tji the FPT from the same neighbor j, to i,
in Kt. For Kt, we have

Tii =
1

ki
�

j��i�t�
�1 + Tji� , �23�

where �i�t� is the set of neighbors of node i, which belongs
to Kt. On the other hand, for Kt+1,

Tii� =
1

2
� 3 + �1 −

1

2
� 1

ki
�

j��i�t�
�1 + Tji� � . �24�

The first term on the rhs of Eq. �24� accounts for the process
in which the walker moves from node i to its new neighbors
and back. Since among all neighbors of node i, half of them
are new, which is obvious from Eq. �5�, such a process oc-
curs with a probability of 1

2 and takes three time steps. The
second term on the rhs interprets the process where the

FIG. 6. �Color online� Growth of trapping time in going from Kt

to Kt+1. Node i�Kt has ki neighbor nodes in generation t ��� and ki

new neighbor nodes in generation t+1 ���. A new neighbor of node
i has a degree of 2 and is simultaneously linked to another new
neighbor of i.
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walker steps from i to one of the old neighbors j previously
existing in Kt and back; this process happens with the com-
plimentary probability �1− 1

2 �.
Using Eq. �22� to simplify Eq. �24�, we can obtain

Tii� = 2Tii = 41/2Tii. �25�

In other words,

Tii��Nt+1� = 41/2Tii�Nt� . �26�

Thus, the scaling efficiency exponent �ii=
1
2 , which is less

than 1. Recall that for the recursive scale-free tree, its scaling
efficiency exponent is �ii=1− ln 2

ln 3 	
1
2 �41�, which means that

in the Koch network it is more difficult for the walker to
return to the origin than in the recursive scale-free tree, when
the networks grow in size.

C. First-passage time for all nodes

We continue to compute Tj�j�, which is the FPT to return
to a new node j��Kt that is a neighbor of node i�Kt−1.
Notice that when j� was generated, another node j� emerged
simultaneously, connected to i and j� �see Fig. 6�. Denote by
T1 the FPT from i to j� and denote by B the FPT to return to
i �starting off from i� without ever visiting j� and j�. Then we
have

Tj�j� = 1
2 �1 + T1� + 1

2 �1 + Tj�j�� , �27�

Tj�j� = 1
2 � 1 + 1

2 �1 + T1� , �28�

and

T1 =
1

ki
+

1

ki
�1 + Tj�j�� +

ki − 2

ki
�B + T1� . �29�

Equation �29� can be interpreted as follows: with probability
1
ki

�ki being the degree of node i in Kt�, the walker starting
from node i would take one time step to go to node j�; with
probability 1

ki
, the walker takes one time step to move to node

j� then takes time Tj�j� to reach j�; and with the remaining

probability
ki−2

ki
, the walker chooses uniformly a neighbor

node except j� and j� and spends on average time B in re-
turning to i then takes time T1 to arrive at node j�.

In order to close Eqs. �27� and �29�, we express the FPT
to return to i as

Tii�Nt� =
1

ki
� 3 +

1

ki
� 3 +

ki − 2

ki
B . �30�

Eliminating T1, Tj�j�, and B, we obtain

Tj�j��Nt� =
ki

2
Tii�Nt� . �31�

Combining Eqs. �4�, �25�, and �31�, we have

Tj�j��Nt� = 3 � 4t � 3Nt. �32�

Thus, in spite of the fact that simultaneously emerging new
nodes are linked to different nodes with various degrees, they
have the same mean return time. Iterating Eqs. �25� and �31�,

we have that in Kt there are Lv�
� �0�
� t� nodes with Tii
=2t+1+
. This, together with Eqs. �2� and �4�, means that for
an arbitrary node i �born at step ti� with degree ki�t�=2t+1−ti

at time t, the FPT to return to i is Tii=
2Et

ki�t�
. Note that a similar

expression has been obtained for the periodic lattices �56�
and random networks �18� by using a different derivation
method. Thus, the mean return time Tii is not reliant on the
details of the global structure of Koch network. It only relies
on the network size and the connectivity of the node: the
larger the degree of the node, the smaller the FPT to return.

Taking the average of Tii over all nodes in Kt leads to

�Tii�t =
1

2 � 4t + 1
�3 � 2t+1 + 6 � 2t+2 + 6 � 4 � 2t+2 + 6

� 4t−1 � 2t+1+t�

=
1

2 � 4t + 1
�24

7
� 16t +

18

7
� 2t� . �33�

For infinite t, �Tii�t

12
7 �4t�Nt, implying that 
ii=1, an ef-

ficiency scaling identical to that of the recursive scale-free
tree �41�. Therefore, the scalings of new nodes play a domi-
nant role in the average of mean return time for all nodes.

Next we calculate Tij in Kt, which is FPT from an arbi-
trary node i to another node j. Since each newly created node
has a degree of 2 and is linked to an old node and a simul-
taneously emerging new node, and these three nodes form a
triangle, the FPT Ti�j from node i�—a new neighbor of the
old node i—to j equals Tij plus 2 �i.e., Ti�i� and thus has little
effect on the scaling when the network order N is very large.
Therefore, we need only to consider FPT Tij� from i to j�—a
new neighbor of j, which can be expressed as

Tij� = Tij + Tjj�. �34�

Suppose that when j� was born, it connected to node j and a
simultaneously emerging node j� �by construction, j� was
also linked to node j�, then we have

Tj�j� = 1
2 �1 + Tjj�� + 1

2 �1 + Tj�j�� �35�

and

Tj�j� = 1
2 + 1

2 �1 + Tjj�� . �36�

Inserting Eq. �36� to Eq. �35�, we obtain

Tjj� = 4
3Tj�j� − 2. �37�

Substituting Eq. �37� and Eq. �32� for Tj�j� into Eq. �34�
results in

Tij� = Tij + 4
3Tj�j� − 2 � Nt, �38�

where Eq. �22� has been used. Therefore, we have

�Tij�t � Nt, �39�

which shows that the mean transit time between arbitrary
pairs of nodes is proportional to the network order. Equation
�39� also reveals that 
ij is a constant 1. Notice that the linear
scaling of the average traverse time with network order has
been previously obtained by numerical simulations for the
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Apollonian networks �37� and the pseudofractal scale-free
web �41�, both of which have been well studied �52,57–67�.

VI. RANDOM WALK WITH A TRAP

In the preceding section, we have obtained the scaling
between the MFPT and the network order. Although scaling
theory is central in studying diffusive process on a variety of
deterministic media, it has been noted that scaling laws do
not provide a complete picture of dynamic phenomena on
deterministic media, e.g., regular fractals �68�, and exact re-
lationships are useful. In this section we study the trapping
problem of a simple unbiased Markovian random walk of a
particle on network Kt in the presence of a trap or a perfect
absorber located on a given node, which absorbs all particles
visiting it. Our aim is to give some further insight into the
trapping process and the independence of the average trap-
ping time �TT� on the size of the underlying system by pro-
viding a rigorous solution of the mean trapping time �MTT�
as a function of the network order.

A. Formulating the trapping problem

For the convenience of description, we distinguish differ-
ent nodes by labeling all the nodes belonging to Kt in the
following way. The initial three nodes in K0 are labeled as 1,
2, and 3, respectively. In each new generation, only the new
nodes created at this generation are labeled, while the labels
of all old nodes remain unchanged, i.e., we label new nodes
as M +1,M +2, . . . ,M +�M, where M is the total number of
the preexisting nodes and �M is the number of newly cre-
ated nodes. Eventually, every node is labeled by a unique
integer; at time t all nodes are labeled from 1 to Nt=2�4t

+1 �see Fig. 2�.
Before proceeding further, we give the following defini-

tions. Let Aij be an element of the adjacency matrix At of
network Kt such that Aij =1 if nodes i and j are connected by
an edge and Aij =0 otherwise. Thus, the degree of a vertex i
in Kt is dvi

=� jAij. And the diagonal degree matrix Dt of Kt is
defined by Dt=diag�dv1

,dv2
, . . . ,dvi

, . . . ,dvNt
�. Finally, we de-

fine Wt=At ·Dt
−1, where Dt

−1 is the inverse matrix of Dt, then
the normalized Laplacian matrix of network Kt is Lt=It
−Wt, in which It is an identity matrix with order Nt�Nt.

We locate the trap at node 1 �due to the symmetry, the trap
can be also located at node 2 or 3, which does not have any
effect on MFPT�, denoted as iT. Note that the particular se-
lection we made for the trap location makes the analytical
computation process �that will be shown in detail in the fol-
lowing text� easily iterated as we can identify the trap node
iT since the first generation. At each time step �taken to be
unity�, the walker selects uniformly among the neighbors of
the current node �excluding the trap� and takes a step to one
of them. Since node 1 is one of the three nodes with the
largest degree, it is easily seen that in the presence of the trap
iT fixed on node 1, the walker will be inevitably absorbed
�41�.

This trapping process can be described by specifying the
set of transition probabilities Wij for the particle of going
from node i �except the trap iT� to node j. We can regard Wij

as an element of the matrix Wt
T, which is a submatrix of Wt

with the row and the column corresponding to trap being
removed. That is to say, Wt

T is a �Nt−1�-order submatrix of
Wt with the first row and column being deleted. Similarly,
one can define At

T, Dt
T, It

T and Lt
T; thus, we have Wt

T

=At
T · �Dt

T�−1 and Lt
T=It

T−Wt
T. The inverse of Lt

T, �Lt
T�−1, is

the fundamental matrix of the Markovian chain representing
the unbiased random walk with a trap.

An interesting quantity related to the trapping process is
the mean residence time �MRT�, which is the mean time that
a random walker spends at a given site prior to being
trapped. In fact, the MRT is the mean number of visitations
of a given site by the walker before trapping occurs, and
finding the MRT at node i, starting from node j, is equivalent
to finding the element Li,j

−1 of the fundamental matrix �69�.
Another quantity of interest is the TT. In network Kt, the

trapping time Ti
t of a given site i is the expected time for a

walker starting from i to first reach the trap. By definition,
trapping time Ti

t is the sum of the MRTs over all nodes ex-
cept iT, i.e.,

Ti
t = �

j=2

Nt

Lij
−1. �40�

Then, the MTT or the mean first-passage time �MFPT�,
�T�t, which is the average of Ti

t over all initial nodes distrib-
uted uniformly over nodes in Kt other than the trap, is given
by

�T�t =
1

Nt − 1�
i=2

Nt

Ti
t =

1

Nt − 1�
i=2

Nt

�
j=2

Nt

Lij
−1. �41�

The quantities of TT and MTT are very important since
they measure the efficiency of the trapping process: the
smaller the two quantities, the higher the efficiency, and vice
versa. Equations �40� and �41� show that the problem of
calculating Ti

t and �T�t is reduced to finding the sum of ele-
ments of matrix �Lt

T�−1. In Tables I and II, we list separately
Ti

t of some nodes and �T�t for different network orders up to
t=6. From Table I, one can easily observe that, for a given
node i, the relation Ti

t+1=4Ti
t holds. That is to say, upon

growth of Koch network from t generation to generation t
+1, the trapping time to first reach the trap increases by a
factor of 4, which is consistent with Eq. �22�. This scaling
relation is a basic character of the trapping process on the
Koch network, which will be useful for deriving the formula
of MTT that will be given in the following section.

Notice that the order of matrix �Lt
T�−1 is �Nt−1�� �Nt

−1�, where Nt increases exponentially with t, as shown in
Eq. �1�. Thus, for large t, the computation of the TT and the
MTT from Eqs. �40� and �41� is prohibitively time and
memory consuming, making it difficult to obtain Ti

t and �T�t
through direct calculation for large network; one can com-
pute directly the MFPT only for the first several generations.
However, the recursive construction of Koch network allows
one to compute analytically the MTT to achieve a closed-
form solution; the derivation details of which will be given
in next section.
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B. Analytical solution for mean trapping time

We now determine the average of the mean time to ab-
sorption, aiming to derive an exact solution. We represent the
set of nodes in Kt as �t and denote the set of nodes created at

generation t by �̄t. Thus we have �t= �̄t��t−1. For the con-
venience of computation, we define the following quantities
for m� t:

Tm,sum
t = �

i��m

Ti
t �42�

and

T̄m,sum
t = �

i��̄m

Ti
t. �43�

Then, we have

Tt,sum
t = Tt−1,sum

t + T̄t,sum
t . �44�

Next we will explicitly determine the quantity Tt,sum
t . To this

end, we should first determine T̄t,sum
t .

We examine the mean time to absorption for the first sev-
eral generations of the Koch network. Obviously, for all t
�0, T1

t =0; for t=0, it is a trivial case. We have T2
0=T3

0=2. In
the case of t=1, by construction of the Koch network, it
follows that T4

1= 1
2 �1+T1

1�+ 1
2 �1+T5

1�, T5
1= 1

2 �1+T1
1�+ 1

2 �1+T4
1�,

T6
1= 1

2 �1+T2
1�+ 1

2 �1+T7
1�, T7

1= 1
2 �1+T2

1�+ 1
2 �1+T6

1�, T8
1= 1

2 �1
+T3

1�+ 1
2 �1+T9

1�, and T9
1= 1

2 �1+T3
1�+ 1

2 �1+T8
1�. Thus,

T̄1,sum
1 = �

i��̄1

Ti
1 = T4

1 + T5
1 + T6

1 + T7
1 + T8

1 + T9
1

= 12 + 2�T1
1 + T2

1 + T3
1� = 12 + 2T̄0,sum

1 . �45�

Similarly, for t=2 case, we have

T̄2,sum
2 = �

i��̄2

Ti
2 = �

i=10

33

Ti
2 = 48 + 22�T1

2 + T2
2 + T3

2� + 2�T4
2 + T5

2

+ T6
2 + T7

2 + T8
2 + T9

2� = 12 � 41 + 22T̄0,sum
2 + 2T̄1,sum

2 .

�46�

Proceeding analogously, it is not difficult to derive that

T̄t,sum
t = 12 � 4t−1 + 2T̄t−1,sum

t + 22T̄t−2,sum
t + ¯ + 2t−1T̄1,sum

t

+ 2tT̄0,sum
t �47�

and

T̄t+1,sum
t+1 = 12 � 4t + 2T̄t,sum

t+1 + 22T̄t−1,sum
t+1 + ¯ + 2tT̄1,sum

t+1

+ 2t+1T̄0,sum
n+1 , �48�

where 12�4t−1 and 12�4t are indeed the double of node
numbers, which are generated at generations t and t+1, re-
spectively. Equation �48� minus Eq. �47� times 8 and making
use of the relation Ti

t+1=4Ti
t, one gets

T̄t+1,sum
t+1 − 12 � 4t = 2T̄t,sum

t+1 + 8�T̄t,sum
t − 12 � 4t−1� , �49�

which may be rewritten as

T̄t+1,sum
t+1 = 16T̄t,sum

t − 12 � 4t. �50�

Using T̄1,sum
1 =44, Eq. �50� is solved inductively as

T̄t,sum
t = 5 � 24t−1 + 4t. �51�

Substituting Eq. �51� for T̄t,sum
t into Eq. �44�, we have

Tt,sum
t = Tt−1,sum

t + 5 � 24t−1 + 4t = 4Tt−1,sum
t−1 + 5 � 24t−1 + 4t.

�52�

Considering the initial condition T0,sum
0 =4, Eq. �52� is re-

solved by induction to yield

TABLE I. Trapping time Ti
t for a random walker starting from node i on Kt for various t. Notice that

owing to the obvious symmetry, nodes in a parentheses are equivalent, since they have the same trapping
time. All the values are calculated straightforwardly from Eq. �40�.

t \ i �2,3� �4,5� �6,7,8,9� �10,11,12,13� �14,15,16,17,18,19,20� �22,23,24,25� �26,27,28,29,30,31,32,33�

0 2

1 8 2 10

2 32 8 40 2 34 10 42

3 128 32 160 8 136 40 168

4 512 128 640 32 544 160 672

5 2048 512 2560 128 2176 640 2688

6 8192 2048 10240 512 8704 2560 10752

TABLE II. Mean trapping time obtained by direct calculation
from Eq. �41�.

t Nt �i=2
Nt Ti

t �T�t

0 3 4 4/2

1 9 60 60/8

2 33 896 896/32

3 129 13888 13888/128

4 513 219648 219648/512

5 2049 3501056 3501056/2048

6 8193 55951360 55951360/8192
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Tt,sum
t =

4t

3
�10 � 4t + 3t + 2� . �53�

Plugging the last expression into Eq. �41�, we arrive at the
accurate formula for the average of the mean time to absorp-
tion at the trap located at node 1 on the tth of the Koch
network,

�T�t =
1

Nt − 1�
i=2

Nt

Ti =
1

Nt − 1
Tt,sum

t =
5

3
� 4t +

t

2
+

1

3
.

�54�

We continue to show how to represent mean trapping time
as a function of network order, with the aim of obtaining the
scaling between these two quantities. Recalling Eq. �1�, we
have 4t=

Nt−1
2 and t=log4�Nt−1�− 1

2 . These two relations en-
able us to write Eq. �54� as

�T�t = 5
6 �Nt − 1� + 1

2 log4�Nt − 1� + 1
12 , �55�

from which it is easy to see that for large network �i.e., Nt
→��, the following expression holds:

�T�t 
 5
6Nt. �56�

Thus, the mean trapping time grows linearly with increasing
order of the network, which is consistent with the conclusion
obtained in the preceding section.

We have checked our analytical formulas, i.e., Eqs.
�54�–�56�, against numerical values quoted in Table II. For
the range of 1� t�6, the values obtained from Eq. �54� or
Eq. �55� completely agree with those numerical results on
the basis of the direct calculation through Eq. �41� �see also
Fig. 7 for comparison�. This agreement serves as an indepen-
dent test of our theoretical formulae.

Notice that this linear scaling between the average trap-
ping time and the network order has been previously ob-
tained for three-dimensional regular lattice by using a
method of generating function �32�. It is also interesting to
stress that this linear scaling is in contrast to the sublinear
scaling of mean trapping time obtained for the two-

dimensional Apollonian network �60� and the pseudofractal
scale-free web �67�, in spite of the fact that they have a
similar topological structure �57–59,62–64� as that of the
Koch network. The reason for this disparity is worth study-
ing in the future.

VII. CONCLUSION

In this paper, on the basis of the well-known Koch fractal
we have proposed a scale-free network that is called Koch
network. We have provided a detailed exact analysis of the
topological features. We have shown that the Koch network
displays a rich structural behavior: it is simultaneously scale
free and small world and has a high clustering coefficient. In
particular, we have shown that the Koch network is an abso-
lutely two-point uncorrelated network. The especial struc-
tural characteristics make Koch network unique within the
class of scale-free networks.

The uniqueness of the topological features for Koch net-
work presented here makes it potentially interesting to study
dynamical processes occurring on the network. We have in-
vestigated the random walk process and a particular trapping
problem �with a trap located at a hub node� on the Koch
network. We have obtained analytically the scaling efficiency
exponents which are interesting to random walks. We have
shown analytically that the mean first-passage time behaves
linearly with the number of network nodes �see Eqs. �39� and
�56��, which indicates that despite the presence of loops in
the Koch network, the linear scaling of the MFPT for ran-
dom walks is similar to that of a scale-free tree �41�. Our
analytical result confirms a previous conclusion obtained by
numerical simulations that for scale-free networks �with
loops or not�: the MFPT of random walks increases linearly
with the network order �37,41�.
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APPENDIX: DERIVATION OF THE AVERAGE
PATH LENGTH

The Koch network has a self-similar structure that allows
one to calculate dt analytically. The self-similar structure is
obvious from an equivalent network construction method: to
obtain K�t+1�, one can make four copies of K�t� and join
them at the hub nodes. As shown in Fig. 8, network K�t
+1� may be obtained by the juxtaposition of four copies of
K�t�, which are labeled as Kt

1, Kt
2, Kt

3, and Kt
4, respectively.

Then we can write the sum Dt+1 as

FIG. 7. Mean first-passage time �T�t versus t on a semilogarith-
mic scale. The solid line corresponds to the relation between �T�t

and network order Nt: �T�t

5
6Nt=

5
6 �2�4t+1� as given by Eq. �56�.

STANDARD RANDOM WALKS AND TRAPPING ON THE … PHYSICAL REVIEW E 79, 061113 �2009�

061113-9



Dt+1 = 4Dt + �t, �A1�

where �t is the sum over all shortest paths whose end points
are not in the same Kt branch. The solution of Eq. �A1� is

Dt = 4t−1D1 + �
x=1

t−1

4t−x−1�x. �A2�

The paths that contribute to �t must all go through at least
one of the three edge nodes �i.e., X, Y, and Z in Fig. 8� at
which the different Kt branches are connected. The analytical
expression for �t, called the length of crossing paths, is
found below.

Denote �t
�,� as the sum of length for all shortest paths

with end points in Kt
� and Kt

�, respectively. If Kt
� and Kt

�

meet at an edge node, �t
�,� rules out the paths where either

end point is that shared edge node. For example, each path
contributing to �t

1,2 should not end at node X. If Kt
� and Kt

�

do not meet, �t
�,� excludes the paths where either end point

is any edge node. For instance, each path contributive to �t
2,3

should not end at node X or Y. Then the total sum �t is

�t = �t
1,2 + �t

1,3 + �t
1,4 + �t

2,3 + �t
2,4 + �t

3,4. �A3�

By symmetry, �t
1,2=�t

1,3=�t
1,4 and �t

2,3=�t
2,4=�t

3,4, so
that

�t = 3�t
1,2 + 3�t

2,3. �A4�

In order to find �t
1,2 and �t

2,3, we define

st = �
i�K�t�

i�X

diX. �A5�

Considering the self-similar network structure, we can easily
know that at time t+1, the quantity st+1 evolves recursively
as

st+1 = 2st + �st + �Nt − 1�� + �st + �Nt − 1�� = 4st + 4 � 4t.

�A6�

Using s1=12, we have

st = 4t�t + 2� . �A7�

On the other hand, by definition given above, we have

�t
1,2 = �

i�Kt
1,j�Kt

2

i,j�X

dij = �
i�Kt

1,j�Kt
2

i,j�X

�diX + djX� = �Nt − 1� �
i�Kt

1

i�X

diX + �Nt − 1� �
j�Kt

2

j�X

djX = 2�Nt − 1� �
i�Kt

1

i�X

diX = 2�Nt − 1�st �A8�

and

�t
2,3 = �

i�Kt
2,i�X

j�Kt
3,j�Y

dij = �
i�Kt

2,i�X

j�Kt
3,j�Y

�diX + dXY + djY� = 2�Nt − 1�st + �Nt − 1�2, �A9�

where dXY =1 has been used. Substituting Eqs. �A8� and �A9� into Eq. �A4�, we obtain

�t = 12�Nt − 1�st + 3�Nt − 1�2 = �12t + 27� � 16t. �A10�

Inserting Eq. �A10� for �x into Eq. �A2� and using D1=72, we have

Dt =
4t

3
�2 + 7 � 4t + 6t � 4t� . �A11�

Inserting Eq. �A11� into Eq. �13�, one can obtain the analytical expression for dt as shown in Eq. �15�.

FIG. 8. Second construction method of Koch network that high-
lights self-similarity. The graph after t+1 construction steps, K�t
+1�, is composed of four copies of K�t� denoted as Kt

� ��
=1,2 ,3 ,4�, which are connected to one another as above.
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