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Simulation of vapor-liquid coexistence in finite volumes: A method to compute the surface free

energy of droplets
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When a fluid at a constant density p in between the densities of coexisting vapor (p,) and liquid (p,) at
temperatures below criticality is studied in a (cubic) box of finite linear dimension L, phase separation occurs
in this finite volume, provided L is large enough. For a range of densities, one can observe a liquid droplet (at
density py slightly exceeding py) coexisting in stable thermal equilibrium with surrounding vapor (with density
p.>py, S0 in the thermodynamic limit such a vapor would be supersaturated). We show, via Monte Carlo
simulations of a Lennard-Jones model of a fluid and based on a phenomenological thermodynamic analysis,
that via recording the chemical potential u as function of p, one can obtain precise estimates of the droplet
surface free energy for a wide range of droplet radii. We also show that the deviations of this surface free
energy from the prediction based on the “capillarity approximation” of classical nucleation theory (i.e., using
the interfacial free energy of a flat liquid-vapor interface for the surface free energy of a droplet irrespective of
its radius) are rather small. We also study carefully the limitation of the present method due to the “droplet
evaporation/condensation transition” occurring for small volumes and demonstrate that very good equilibrium
is achieved in our study, by showing that the radial profile of the local chemical potential from the droplet

center to the outside is perfectly flat.
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I. INTRODUCTION AND OVERVIEW

The concept of nucleation as a mechanism of a phase
change in a thermodynamic system that can exist in several
phases is a classical concept [1-5] but nevertheless not well
understood until today (see, e.g., [6—16] for a small collec-
tion of relevant literature). The archetypical problem is the
spontaneous formation of a liquid droplet from a slightly
supersaturated vapor due to statistical fluctuations (“homoge-
neous nucleation”). According to classical nucleation theory
[1-11,14] one constructs the work of formation of such a
droplet. The free-energy barrier AF™ that needs to be over-
come in a nucleation event can be expressed in terms of a
competition of bulk and surface free energies of a droplet.
Assuming a spherical droplet of radius R, and assuming fur-
ther that the surface free energy of the droplet is identical to
the interfacial free energy (per unit area) 7y,, of a macro-
scopic flat interface between bulk coexisting vapor and lig-
uid phases, one arrives at a free energy AF(R),
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Ap +47R?y,,. (1)
At constant temperature and chemical potential (note that in
equilibrium the droplet and the surrounding vapor can freely
exchange both energy and particles) the bulk free-energy dif-
ference per unit volume between the liquid drop and the
surrounding vapor is just the pressure difference Ap, of
course. For small R the positive second term on the right-
hand side of Eq. (1) dominates, and so a barrier AF” results.
The corresponding maximum of AF(R) occurs at the critical
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radius R*. The derivation dAF(R)/dR|g_g+=0 yields R*
=2v,¢/Ap.

Physically relevant barriers (which lead to nucleation
rates on physically observable time scales, e.g., of the order
of 1 to 10% nucleation events per cubic centimeter and sec-
ond) are somewhere in the range from 20kgT to 100ksT (de-
pending on the considered system and the assumptions
needed to draw conclusions on the nucleation rate from the
nucleation barrier [6-11]). One easily recognizes a serious
problem: apart from the immediate vicinity of the critical
point where 7,, vanishes [10,17] the resulting values of R
are of the order of a few molecular diameters. Hence, there is
no reason to expect that a macroscopic description of such
nanodroplets as suggested in Eq. (1) should be accurate. In
fact, since AF™ scales like the third power of vy,
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and the nucleation rate J depends on AF™ via an Arrhenius
relation,

_A *
F), 3)

J=v exp( kT
relative errors of 10% for vy,, lead to relative errors of 30%
in AF*. Therefore the error in J may easily span several
orders of magnitude. In Eq. (3), T is the absolute tempera-
ture, kg is Boltzmann’s constant, and the prefactor v* may
contain various corrections resulting from a more detailed
consideration of the kinetics of the nucleation process (‘“Zel-
dovitch factor” [3], description of nucleation as a flow over a
saddle point in a multidimensional phase space [7,10] rather
than describing droplets by a single degree of freedom, R,
etc. [6-16]).
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A first step to go beyond the capillarity approximation for
small droplets was proposed by Tolman [18], who introduced
the phenomenological Tolman length ¢ to describe the cur-
vature dependence of the surface tension y(R) of small drop-
lets as follows:

Yve

(1+268R)’ @

YR) =
It is difficult to give & a more precise meaning in the context
of statistical mechanics and the dependence of § on tempera-
ture is still under discussion [19-22]. Using Eq. (4) in Eq. (1)
for large R leads to a correction linear to R to Eq. (1). Of
course, for small R many other corrections may come into
play, e.g., logarithmic terms (°In R) as proposed in Fisher’s
droplet model [23], which is believed to be relevant near the
critical point [10,11]. Another important fact is that the
vapor-liquid interface on the molecular scale is diffuse rather
than sharp [17], and hence the separation of AF into bulk and
interfacial terms is clearly problematic [13,24]. Thus, the
theoretical understanding of homogenous nucleation is still
unsatisfactory.

Of course, there have been many attempts to explore ho-
mogenous nucleation via experiments (for some recent ex-
amples see [25-27]). However, experimental studies of ho-
mogeneous nucleation of liquid droplets in supersaturated
vapors are very difficult for several reasons: (i) The small
size of critical droplets and their extremely small density
make a direct observation of critical droplets impossible.
Only when they have grown to a size much larger than the
critical size can droplets be detected by light scattering meth-
ods [25-27]. (ii) One has to avoid very carefully any hetero-
geneous nucleation at the wall of the container, at dust par-
ticles, or ions, etc. Heterogeneous nucleation agents may
reduce AF* dramatically, and hence even a tiny concentra-
tion of such agents may falsify the measurement. Of course,
if an experimentally observed deviation from the classical
nucleation theory implies a too high free-energy barrier, such
a discrepancy cannot be attributed to the effect of heteroge-
neous mechanisms, which could only reduce the barrier
rather than enhancing it. Experiments on nucleation in argon
[26], a particularly simple fluid composed of neutral point-
like atoms interacting with a potential similar to simple
Lennard-Jones forces, have revealed unexplained discrepan-
cies in the nucleation rate of up to a factor 10%° between the
prediction of classical nucleation theory and measurement.

Computer simulations, on the other hand, do not suffer
from the problem of heterogeneous nucleation at all. Walls
are avoided by using periodic boundary conditions and no
dust particles or any other kinds of impurities occur. In ad-
dition, observations on scales down to the nanoscale or even
the scale of single atoms are readily possible, because in
simulations one has full information on the coordinates of all
the atoms. Nevertheless, the study of nucleation events by
simulation is very difficult, since for AF*> kyT, nucleation
events are very rare: one would have to simulate huge sys-
tems over very long time scales (note that for molecular-
dynamics methods [28] the typical time scales range from
picoseconds to at most microseconds). Thus simulation stud-
ies of nucleation kinetics have often addressed very simpli-
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fied models, such as the lattice gas (Ising) model, and very
high supersaturation, where the nucleation barrier AF" is
down to a few kgT, e.g., [10,29-33]. Only by implementing
the novel technique of transition path sampling [34] can this
limitation be overcome and trajectories can be sampled that
correspond to nucleation events over barriers in the physi-
cally interesting range [35]. Even though for the Ising model
this approach is very promising, it is still in an exploratory
stage [36].

As an alternative, rather early the idea was proposed to
use simulation to directly study a critical droplet which is
stabilized by confining the droplet in a small box [9,37,38].
A drawback of these early studies was that all particles in the
box were counted as belonging to the droplet, while in reality
the system contains a droplet in equilibrium with supersatu-
rated vapor [39]. It was suggested to use the Stillinger neigh-
borhood criterion [40] to define which particles belong to the
droplet. Such an approach was later used by ten Wolde and
Frenkel [41,42], who used biased Monte Carlo algorithms
(“umbrella sampling” [43,44]) to stabilize large droplets in
their simulation. However, possible corrections due to finite-
size effects have not been studied in this approach. Homoge-
neous and heterogeneous nucleation of single crystal nuclei
were also considered in subsequent studies [45-47] as well
as more complex systems such as crystallization of hard-rod
liquids [48] and anisotropic colloids [49].

A systematic approach to study the equilibrium between a
droplet and surrounding supersaturated vapor in a finite vol-
ume was attempted in [50] in terms of a phenomenological
theory and Monte Carlo simulations for the Ising lattice gas
model (see also [51]). It was pointed out that the equilibrium
between the droplet and the surrounding vapor is only stable
if the total density p exceeds a density p, which depends on
the box linear dimensions L such that

p—py = L7 (5)

In the region p,<p<p, the homogeneous vapor (which
would be supersaturated in the thermodynamic limit) is the
thermodynamically stable phase. The so-called “droplet
evaporation/condensation transition” at p=p, has received
considerable attention recently [52-60], but is not in the
main focus of the present work. Rather the goal of the
present work is the use of the equilibrium properties of the
vapor coexisting with the droplet to obtain information on
the surface free energy of the droplet, over a wide range of R.
While a related analysis was attempted in [51] for the lattice
gas model near the critical point, the analysis of [51] was
inconclusive due to insufficient statistics. The system sizes
available in that study were also too small, and also the value
used for y,, [61] was somewhat inaccurate. First results of
the free energy of droplets as a function of radius using a
simplified model were already published in [62].

Figure 1 illustrates the main idea of our analysis: for a
fluid of point particles interacting with Lennard-Jones forces
at temperature 7=0.68T in a cubic box of size L=15.80 (the
Lennard-Jones parameter o sets the length scale in our prob-
lem) the chemical potential difference g=u(N)—u with w
= Meoex 18 plotted versus density. One can see a curve with a
maximum, and a minimum, and several rounded kinks. All
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FIG. 1. (Color online) Chemical potential difference fi=u(N)— peoex plotted vs density p for a cubic L X L X L box of size L=15.80 (o
is the Lennard-Jones diameter) at 7=0.68T,. The states at =0 with density p, (vapor) and p, (liquid) approximate very accurately the
homogeneous phases that can coexist in the thermodynamic limit. In the finite box, the homogeneous vapor (indicated by the snapshot
picture denoted as “hom”) also exists for densities exceeding p,, up to about the density p, (dotted vertical line) where the droplet
evaporation/condensation transition occurs. For densities from about p, to about p,, the system is in an inhomogeneous state. A spherical
(sph) droplet coexists with surrounding supersaturated vapor. At py, the shape of the liquid droplet changes from spherical to cylindrical
(cyl), which is the stable two-phase configuration for p, <p<ps, while in the central region around py=(p¢+p,)/2 a slablike two-phase
configuration (slb) is stable (p3<p<pu). At py the character of two-phase coexistence in the box changes again. The vapor changes from
a slablike region to a cylindrical domain (cyl2), while for p;s<p<p,s one has a coexistence of a spherical bubble (sph2) with surrounding
liquid. Inset: this graph illustrates that for £>0 there exists a regime of & where three phases correspond to the same value of 2 and hence
can coexist with each other—a homogeneous vapor at density p; > p,, a homogeneous liquid droplet coexists with surrounding vapor, at
average density p (in the regime p,<p<p,) in the simulation box, and a homogeneous liquid at density p;. Note that the occurrence of all
these phases was already discussed in [56,57].

these features indicate (rounded) transitions between differ-
ent states of the system, as illustrated by the small snapshot
pictures in the lower part of the figure. The region of interest
is the first descending part of the 4 vs p curve. Here, a
spherical droplet coexists with surrounding vapor. The key
observation is that at the chemical potential difference f,
there exist two pure phases at the ascending branches of the
A vs p curve: a pure vapor on the left branch and a pure
liquid at the right branch. Accepting the principle that states
that have the same chemical potential can coexist with each
other, we conclude that the vapor in the mixed-phase state at
the descending branch of the 4 vs p curve is identical in its
properties (in particular, its density) with the pure vapor. The
density inside of the liquid droplets is the same as the density
of the pure fluid at the same chemical potential. As will be
shown in Sec. III, the knowledge of the densities p",, p, and
p, taken from Fig. 1 (inset) allows to infer the droplet radius
R from a purely thermodynamic construction. An alternative
estimate in terms of the Stillinger criterion [40] yields iden-
tical results (Sec. V). Thermodynamic integration of the g vs
p curve yields the free energy of the mixed phase state, from
which the droplet surface free energy can be extracted (Sec.
IID). Of course, the range of & and of R that can be studied
from one such curve as shown in Fig. 1 is limited; but if we
vary L a wide range of R is accessible. As an example, Fig.
2 shows a snapshot for L=33.7¢ with a droplet containing
N=3427 atoms.

The outline of our paper is as follows: in Sec. II we
briefly review our simulation methodology, while Sec. III

describes the theoretical basis of our analysis in more detail.
Section IV gives more details on the droplet evaporation/
condensation transition, while Sec. V describes the main re-
sults of our study, and discusses the consequences on the
behavior of the nucleation barrier AF™. Section VI concludes
our paper and gives an outlook on future work.

FIG. 2. (Color online) Typical snapshot picture of a spherical
droplet in a box of linear dimension L=33.7¢ at average density
p=0.16"3 (total particle number N=3827 and N=3427 particles in
the droplet).
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II. MODEL AND SIMULATION TECHNOLOGY

For simplicity, we consider point particles which interact
with Lennard-Jones forces. The potential is truncated and
shifted to zero (since then the code runs significantly faster
than for the untruncated potential),

(o)™ ()}
4ey| = =\—) (+C, r=r,
u(r) = r r (6)

0, r>r

co

where € describes the depth of the potential well and o de-
scribes the range of the potential. The constant C=+ 6]23784 is
chosen such that u(r) is continuous at r=r,. We choose a
rather small value for r,, namely, r.=2-2"%¢ (=twice the
distance of the minimum). For this choice the critical tem-
perature is known to be 7.~ 0.999¢/ kg [63]. Although this
value is about 30% lower than the corresponding value T,
=~ €/ kg [64] of the untruncated potential (only the latter can
be taken as an almost realistic model of the actual interaction
between argon atoms, as used in the experiments [26,27]), it
has been shown that the properly rescaled phase diagram of
the truncated model in the T—p plane almost coincides with
the phase diagram of the untruncated model [65]. Thus we
think that no essential physics with respect to the vapor-
liquid transition has been lost by this truncation.

As usual, we apply cubic L X L X L simulation boxes with
periodic boundary conditions throughout, with 11.30=L
= 1000 Data extending over the full range of densities (such
as shown in Fig. 1) are only taken up to a maximal size of
L=15.80, while larger sizes up to L=33.70 have been stud-
ied only in the density range where the droplet (sph) exists.
The sizes L=500 and L=1000 have been used in the vicinity
of the droplet evaporation/condensation transition (Sec. IV),
where typical particle numbers N at the chosen temperature
(T=0.68T,) are near N=15 800.

The first step of the simulation study addresses the esti-
mation of the distribution function of the particle number
P ,yr(N) in the grand-canonical ensemble (at given chemical
potential u, volume V=L? and temperature 7 of the system).
This distribution can be related to a Helmholtz free-energy
function F(N) via

F(N,V,T) =~ kgT In P ,y7(N) + uN + F, (7)

where the constant F, is not important for our purposes. If
F(N,V,T) is given, we can define a chemical potential func-
tion as the derivative

_(FNVD) (alnP VT(N))
M(N)_(—dN )VT— kgT —&N#— VT+

In the grand-canonical ensemble we observe an average
value (N),yr such that w({N),y7)=pu, of course. However, in
our study we are not only interested in the estimation of such
average values but rather in the sampling of the full distri-
bution P,y7(N) and thus the Landau free-energy function
F(N,V,T). This is done by successive umbrella sampling
[66]. The range from 0 <N<N,,, is divided into a set of
Npax Windows of width A,
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where 7,,,A=N., and adjacent windows have the particle
number at their boundary in common. In order to sample the
histogram H(N) corresponding to the kth window, the grand
canonical moves where particles are inserted or deleted are
constrained so that N falls in the considered window. The
number n,,,, has to be chosen large enough so that H(N)
does not vary too much from the left boundary to the right
boundary of the window [66,67]. Defining then R,=H,[N
=(k+1)\]/H,(N=k\), the desired probability distribution is
constructed successively and recursively,

k-1
_ H(N)
Pyi(N) -P,M(O)g R (8)

where k in Eq. (8) is now the largest integer of the ratio N/\.

For the study of the droplet evaporation/condensation
transition, it turned out to be useful to work with a variant of
this method, where one works in the canonical (NVT) en-
semble but wishes to construct the distribution Pyyr(U) of
the total potential energy U in the system. The procedure was
exactly as described above: the main distinction, however, is
that the starting value of the iteration is a minimum energy
Up, while for the sampling of P,,(N) the natural starting
value is N=0, vanishing vapor density. In addition, U unlike
N is a continuous variable, and so each window is arbitrarily
divided into a suitable number of subintervals to obtain a
convenient sampling of the corresponding histogram [67].

In order to locate the coexistence value w= .., Where
vapor-liquid coexistence occurs in the bulk we need to work
in the region of u where P,,7(N) has two peaks, one peak
near N=Vp, and the other peak near N=Vp,. The phase tran-
sition occurs when the area underneath both peaks is equal
[68,69]. For implementing this equal weight rule, standard
histogram reweighting methods [70] were used,

P,ryr(N) =expl(n’ = w)NIkgT1P y7(N). )

In agreement with a previous estimation [63], phase coexist-
ence at 7=0.687, was found for

lu’coex(T)/kBTz —4.755 25. (1())

Figure 3 shows the resulting Landau free-energy density
fi(p, T)=L3F(N,V,T)/ kT plotted vs p at phase coexist-
ence for six choices of L. The minima of this function yield
the coexisting vapor (p,=0.009 9203) and liquid (p,
=0.769 17073 densities. Near the minima polynomial fit
functions are shown. Note that the undetermined constant F,
in Eq. (7) was chosen such that F(N,V,T)=0 for p=p, for
all L. Near the (parabolic) minima of these functions finite-
size effects are completely negligible for the chosen tempera-
ture and range of L that was explored. The size dependence
of f;(p,T) is entirely due to interfacial effects related to the
different types of phase coexistence shown already in Fig. 1.
Indeed, for L— e all these interfacial effects are negligibly
small, and do not contribute to the bulk term of the free
energy f;(p,T), which (in our normalization) can be written
as
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FIG. 3. (Color online) Normalized free-energy density f;(p,T)
=L73F(N,V,T)/kgT plotted vs density p for six choices of L at T
=0.687,. Only for the three smallest sizes the functions are shown
over the full density range. The free-energy branches describing
homogeneous vapor and liquid are fitted to simple polynomials of
the density.

fb(p,T)=Llim filp,T)=0, p,=p=p,. (11)

The finite-size behavior of f;(p,T) observed in Fig. 3 con-
tains important information on the interfacial free-energy
contributions due to the various interfacial configurations
that occur here (Fig. 1). This is precisely the basic idea of the
present work: to accurately extract the information about the
interfacial free energy of droplets (such as the droplet shown
in Fig. 2) from data as shown in Figs. 1 and 3.

Already for a long time [61] it has been accepted that the
slablike configuration in the region of the density p around
the “diameter density” pg=(p¢+p,)/2 can be used to extract
information on the vapor-liquid interfacial free energy of flat
planar interfaces,

. L
7V5=L11m EfL(p,T). (12)

Of course, the factor % in Eq. (12) results from the fact that
we have two interfaces (of area L X L) and not just a single
interface. f;(p,T) in the region from pg to py is strictly
constant (apart from the immediate vicinity of the interfacial
shape transitions at p;3 and p4 to a cylindrical liquid or vapor
domain, respectively). This indicates that a contribution due
to interactions between both interfaces (which in our model
will occur because of capillary wave-type fluctuations of the
interfaces, for instance [17]) is also negligibly small already
for the range of linear dimensions L that have been studied.
Using Eq. (12) with our data, we find

Yoo = 0.465ksTo™2, (13)

an estimate which agrees accurately with previous studies
[63]. Of course, for a test of the classical theory of homoge-
neous nucleation [Egs. (1) and (2)] it is essential to know vy,,
very accurately for precisely the same model for which the
droplets are studied.
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FIG. 4. (Color online) Radial distribution of the excess chemical
potential ., (r) (broken curves), the ideal gas part wu;q(r) (dotted
curves) and their sum (full curves) for boxes of linear dimension
L=15.80 (upper part) and L=33.7c (lower part) at density p
=0.10"3 and T=0.68T, (central part of the figure). The small pic-
tures on the right and left sides show corresponding results for
Mex» Mig and w(N) in bulk vapor and liquid phases at the densities
py.py as defined in Fig. 1. Note the different abscissa scales for r in
the upper and lower part, respectively.

Finally we mention that we also have implemented the
Widom test particle method [71] to measure the exchange
chemical potential u., which is related to the total chemical
potential w(N) via

M(N)=Mid+/‘l’ex7 (14)

where u;q is the known chemical potential of an ideal gas of
N particles in the volume V. We have generalized this stan-
dard method, carrying out runs in the canonical (NVT) en-
semble at densities p=N/V in the range in between p, and
Po, to “measure” the radial profile . (r) together with the
density profile p(r) of droplets coexisting with vapor in the
box. In each configuration that is analyzed the droplet is
identified using the Stillinger connectivity criterion [40]; i.e.,
two particles are considered to be connected if their distance
does not exceed 1.50. In this way the distribution function
Pnyr(N,) of cluster sizes (i.e., N, is the number of particles
contained in a cluster) can be determined [54]. In the con-
sidered density region, the distribution has a peak at very
small cluster sizes (N,<10). In addition each configuration
contains one very large cluster, which contains most of the
particles in the system. We determine in each configuration
which is analyzed the center of mass of the largest cluster
and use this as the coordinate origin to record the density
profile p(r) and the profile ., (r). Figure 4 shows the result-
ing profiles of u.(r) and w;4(r), together with corresponding
“measurements” in bulk vapor and liquid phases, at the cor-
responding densities p,, py (Fig. 1). These results are an “ex-
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perimental” proof that indeed very good chemical equilib-
rium between the liquid droplet and surrounding vapor is
established, as it should be. While in our simulation the tem-
perature is homogeneous, the homogeneity of the chemical
potential is a less trivial requirement for full thermal equilib-
rium. There does not exist an excess contribution of the
chemical potential due to the interface (and there should not
be one [72] as the droplet can freely exchange particles with
the surrounding vapor). The fact that droplet and surrounding
vapor in the box can be treated as subsystems which are in
full equilibrium with each other is the central starting point
for the considerations on which our analysis of the droplet
interfacial free energy is based, as is described in more detail
in the following section.

III. DROPLET-VAPOR COEXISTENCE IN FINITE
VOLUMES

A. General arguments

Here we follow the standard statements of the phenom-
enological theory of vapor-liquid equilibria [17,72] that one
may choose conventions such that (in a one-component sys-
tem) there is neither an excess of volume V nor an excess of
particle number N to be attributed to the interface. Thus, for
densities p that fall in the regime p,<p<<p.,, we can divide
up the volume and the particle numbers as follows:

V=V,+V,, N=N;+N,, (15)

where we also can take V,=47R3/3 to define the droplet
radius R, since the average shape of the liquid droplet must
be spherical. Note that we must choose p not to be to close to
either p, or py,, to strictly avoid fluctuations of the two-phase
equilibrium to either the homogeneous vapor or cylinderlike
droplets, respectively. This condition restricts the use of Eq.
(15) and the analysis based on it to box linear dimensions L
that must be much larger than . (Had we worked close to
the vapor-liquid critical temperature 7, the stronger condi-
tion L>§¢ would be required, where ¢ is the correlation
length of density fluctuations in the bulk). Of course, the box
must always be sufficiently large so that there is enough
space for the liquid droplet and surrounding vapor so that the
phases are clearly distinguishable. This implicit condition
also constrains the applicability of Eq. (15).

Now we simply state the vapor which we consider in Eq.
(15) has a chemical potential difference @& corresponding to
the density p, (inset of Fig. 1) and the liquid has the density
p;- (These statements have been tested via direct observa-
tions, cf. Fig. 4, since w;q is simply related to these densi-

ties.) Thus
N€=pé,’V€7 Nv=p\//Vvv (16)

and since N=pV we can simply find V, from the observation
(as shown in Fig. 1) which values of p;, p; belong to a cho-
sen pair of values, V,N at given p:
P=py

’ re
P¢— Py
This is nothing but the lever rule of phase coexistence, which
holds in finite geometry, too, due to the convention that there

V€=V (17)
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are no interface corrections either to the volume nor the par-
ticle number.

An important check of this argument is possible by noting
that the same values of fi, p;, p; can be obtained by different
choices of N and V, chosen such that the same droplet vol-
ume V, results. The argument that a system in full thermal
equilibrium can be divided into subsystems, which may ex-
change particles and have the same chemical potential (dif-
ference) 4 [72] immediately shows that a large box contain-
ing vapor at density p, and a (relatively) small droplet of
volume V, and density p; can be (as a thought experiment),
decomposed in a smaller box (still containing the droplet and
surrounding vapor of density p,) and the remaining volume
containing only vapor of density p.. If different choices of N
and V with the same & do not yield the same V/, it would be
an indication that either part of the data are affected by the
droplet evaporation/condensation transition, or the transition
from the spherical to cylindrical droplet, or both: our analy-
sis strictly implies that all microstates that are sampled under
the given conditions do have the same droplet-vapor two-
phase coexistence that was implied in Eqgs. (15)—(17).

The final step in the argument is simply a related decom-
position of the free-energy density f,(p,T),

2

[p. D)= o D+ 1ol T) + 2 AR). (19)
Again the same argument of the additivity of subsystems
coexisting with each other at the same chemical potential
(difference) & imply that the free-energy density of the vapor
is that of a bulk homogeneous vapor at density p,, (which can
be read off from data such as shown in Fig. 3). The liquid
density is given by the bulk p;. However, unlike V and N the
free energy does contain an interfacial contribution, and in
Eq. (18) we have specialized to the case of phase coexistence
with a spherical droplet, allowing for an unknown surface
free energy per unit area which we have denoted as y(R).
Equation (18) does not make any assumption on y(R) and is
simply the analog of Eq. (12) for flat interfaces where 7, is
extracted from the slab concentration. In the latter case i
=0, however (cf. Figs. 1 and 3) and hence the analogs of the
bulk vapor and liquid free-energy contributions, that are
present in Eq. (18), do not occur in this case.

B. Phenomenological treatment of the droplet
evaporation/condensation transition

The method to obtain y(R) that we have described above
is limited to large R because of the transition to the cylinder-
like geometry of the liquid droplet (Fig. 1). However, if we
increase the linear dimension L of the box suitably, arbi-
trarily large values of R are accessible, at least in principle.
(Of course, the demands for computer resources to equili-
brate large droplets increase strongly with the droplet size.)
Thus this limitation due to the transition of the droplet shape
from spherical to cylindrical does not restrict the usefulness
of the present methods in a serious way.

The situation is more subtle with respect to the droplet
evaporation/condensation transition which prevents the ap-
plicability of our method for small R. Small values of R
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correspond to small density differences p—p, in Fig. 1 [see
Eq. (17)]. But the chosen density p must exceed p, clearly,
otherwise Egs. (15)—(18) are not applicable. Since according
to Eq. (17) at fixed R the density difference p—p, scales like
1/L3, it must ultimately fall below p,—p, [cf. Eq. (5)]; i.e., if
we increase L at fixed R the equilibrium considered in the
previous subsection always becomes unstable [50]. On the
other hand, we must have a condition L> &, the correlation
length of density fluctuations in the pure phases (near the
critical point, the correlation length in the vapor and in the
liquid are the same, while far below the critical point, they
differ: however, in the context of these qualitative arguments
this problem can be ignored). If this condition is not met,
there would occur a non-negligible interaction between the
droplet and its “images” in the image boxes created by the
periodic boundary conditions, mediated via the tails of the
liquid-vapor density profiles (remember that the “intrinsic”
interfacial width of the interface, disregarding any capillary
wave broadening, is 2& [17]).

For small droplets, where R does not exceed ¢ much, our
treatment loses its accuracy. One can no longer eliminate
finite-size effects, as it can be expected, of course: for very
small critical droplet size, any quasistatic description of
nucleation loses its meaning. Rather than by rare (and hence
well-separated) nucleation events many droplets, interacting
with each other, form quickly, and the kinetics of phase sepa-
ration of such a strongly supersaturated vapor rather re-
sembles nonlinear spinodal decomposition [10,16], and Eq.
(3) is no longer useful.

Thus it is important to characterize the droplet-
evaporation transition more quantitatively, to clarify the ex-
tent to which this phenomenon is a practical limitation of our
study of nucleation barriers. Here we briefly describe the
general theoretical framework for this transition, following
[53] where this transition was discussed for Ising ferromag-
nets.

Being interested in the asymptotic behavior for large L,
where Eq. (5) is expected to hold [50], it is clear that p , p; in
Fig. 1 (inset) can deviate from p,,p, only very little, and
hence one can use linear expansions at the coexistence curve,

A ’ £) A
pL—py=pikpTi it pp—pe=pikpTic i, (19)

where Kgf;) and K(TV) are the isothermal compressibilities at the

vapor and liquid branches of the coexistence curve, respec-
tively. This linear expansion of the densities corresponds to a
quadratic expansion of the free energies of the pure vapor
and liquid phases in Fig. 3, of course,

1 A v
filp.T) = Epi(kBT)zﬂzk(r ),

I A
Filp. 1) =2 pilkp TV A2k (20)

For large L the radius R is also large and we may make the
capillarity approximation, i.e., the R dependence of ¥(R) in
Eq. (18) is neglected. With these assumptions, the thermody-
namic potential in Eq. (18) is explicitly known, using also
the relation between R and u that holds in this limit in equi-
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librium [cf. Eq. (1)] and using the relation p=(dp/dw)yr to
expand Ap linearly in &, Ap=kgTi(p,—p,). Hence

2yv€

= . 21
kTi(pe = py) !

At the droplet evaporation/condensation transition the free-
energy branch of the inhomogeneous system (droplet plus
surrounding supersaturated vapor) intersects the free energy
of the homogeneous (but more strongly) supersaturated gas,
which according to Egs. (19) and (20) is

1(p-p) 1

2 o, K

filp,T) = (22)
Equation (17) provides a relation between p and p, and, us-
ing Eq. (21), R can be eliminated in favor of . Note, how-
ever, that at the droplet evaporation/condensation transition
the chemical potential difference of the homogeneous phase
A, without the droplet, due to the larger supersaturation, is
larger than the chemical potential g, of the inhomogeneous
phase at the transition point (Fig. 5).

With some algebra [53,54,56,67] one can obtain explicit
expressions for both £, and g4, as well as p, from the above
relations, and thus justify Eq. (5). Of course, this treatment
neglects the finite-size rounding of the transition, and since
both 4, and g4/ vanish as L— oo,

:&t’ =2/ LM, (23)

as well as p,—p, [Eq. (5)]. Tt is a subtle issue to which extent
a “sharp” transition can be observed. However, phenomeno-
logical arguments [53] indicate that the width Ap over which
the transition is rounded decreases with a larger power of
1/L than (1/L)**, and hence in the limit of L— o the tran-
sition becomes asymptotically sharp. This is consistent with
the previous [54,56] observations of this transition, although
quantitative aspects [such as the % exponent in the power
laws, Egs. (5) and (23)] could only roughly be confirmed
(apart from work on the two-dimensional Ising model [58],
where the predicted exponent is % [52,53]). We shall address
this issue in the next section.

IV. MONTE CARLO RESULTS ON THE DROPLET
EVAPORATION/CONDENSATION TRANSITION

In previous work on the same model [54], it was already
observed that the peak of the 4 vs p curve (Fig. 1) that is
strongly rounded and almost symmetric around the position
of the maximum for small L becomes rather sharp and asym-
metric. Hence it resembles more and more the theoretical
cusp shape (Fig. 5), as L increases, but a clear confirmation
of the theory was not achieved.

Therefore we have reconsidered this problem in the
present work, using successive umbrella sampling with re-
spect to the energy distribution (see Sec. II) in the region
near p,. Already in Ref. [54] it was found that the transition
can be observed by looking at the bimodal distribution func-
tion for various quantities (chemical potential g, particle
number of the largest cluster N, internal energy). It was
found that the distribution of the internal energy suffers
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FIG. 5. (Color online) Graphical illustration of the equations
used to locate the droplet evaporation/condensation transition by an
approximate analytical calculation. At the transition density p,, the
free energy of the state containing a droplet plus surrounding vapor
(Fig. 1) and of the state with the denser vapor without a droplet are
equal (upper part). The density pé,[ of the vapor surrounding the
droplet at the transition point can be found from the equality of the
chemical potentials (&), lower part. Using Eq. (21), £, yields the
corresponding value of R, and Eq. (17) then yields the relation
between p, and L. Both in the plot of f;(p,T) vs p (upper part) and
in the plot of & vs p (lower part) metastable parts of the branches
are shown as broken curves, and the finite size rounding seen in
Figs. 1 and 3 due to the fact that in a finite simulation box the
system can jump back and forth between both states is disregarded.

much less from statistical errors than the other quantities and
it is also easy to measure. Therefore we use the internal
energy distribution Pyyr(U) throughout this work (for more
details see [67]). Figure 6 gives a typical example for the
variation in Pyyp(U) with N. We impose the standard “equal
area rule” [68,69] for the location of this first-order transi-
tion: the transition density p, (or equivalently, the corre-
sponding particle number N,=p,L?) occurs when both peaks
in Fig. 6 have equal weight. Note that the widths of the peaks
are strikingly different—fluctuations are relatively small for
the “pure” vapor and relatively large for the system exhibit-
ing the coexistence between liquid droplet and surrounding
vapor. Therefore it is useful to consider the integral of the
distribution

U
Pcum,NVT(U)zf dU' Pyyr(U'), (24)
0

since this function shows a plateau, when x=-U/kgTN ex-
ceeds the normalized energy in the vapor and rises to a sec-
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FIG. 6. (Color online) Probability distributions Pyyr(U) plotted
versus energy per particle —U/(NkgT) for seven values of N, for
T=0.68T,, and a cubic box with linear dimension L=50c (upper
part). Cumulative distribution function P, nyr(U) for the same
cases (lower part).

ond plateau P, nyr(U)=1 when x exceeds the normalized
energy of the droplet coexisting with the vapor, due to the
normalization of probability. Thus, when we find a well-
developed first plateau, it displays the relative weight wyyt
of the pure vapor state and the condition WNVT=% yields N,.
While for small L such as L=22.5¢ the two distributions
overlap in their wings, and hence only an inflection point is
found [67] rather than a well-defined plateau, for large L
such as L=500 the two peaks of Pyyp(U) are very well
separated from each other, and the plateau is clearly defined
(Fig. 6). Thus, N,=2544 * 1 can be estimated with very good
accuracy.

When one examines these data for p,—p, on a log-log plot
versus L, disappointingly there occurs a pronounced curva-
ture (Fig. 7). Obviously, there are still corrections to the
asymptotic behavior [Egs. (5) and (23)] present, so that a
simple power law (without any higher order terms) does not
yet suffice. Of course, comparing the actual data for & vs p
(Fig. 1) with the idealized hypothetical description (Fig. 5), it
is clear that p, does not occur close enough to p, that the
simple linearization approximation [which is used in Eq. (19)
and underlies Eq. (22) as well] is accurate. To study the
extrapolation to the thermodynamic limit, we have fitted
straight lines through three successive data points in Fig. 7,
to obtain “effective exponents,” as quoted in the figure. A
plot of these effective exponents vs 1/L clearly suggests that
the asymptotic value for L—o is indeed %, as expected
(Fig. 7).
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FIG. 7. (Color online) Log-log plot of the density difference
p—py versus the system size L for 7/T,=0.68. Straight lines exhibit
power-law fits through three successive values (slopes being indi-
cated in the figure). Inset: plot of the “effective exponent,” as esti-
mated before versus the inverse system size L.

V. MONTE CARLO RESULTS FOR THE SURFACE FREE
ENERGY OF LIQUID DROPLETS

In this section we now apply the description presented in
Eq. (18) to obtain the surface free energy of droplets as func-
tion of the droplet radius R. For this purpose, data for
f1(p,T) such as shown in Fig. 3 are used, and we use the fi
vs p data (cf. Fig. 1), as explained in Sec. III, to infer the
volume of the (spherical) liquid droplet using Eq. (17). In
this case the identification of the liquid droplet in terms of
the Stillinger [40] neighborhood criterion is not required.
While the latter method is almost fully compatible with the
present method at the (low) temperature T=0.68T, as has
been discussed in Sec. II, we feel that the latter method will
become problematic at temperatures closer to T, where the
difference between p, and p, becomes much smaller and
ultimately vanishes. The method to identify the liquid droplet
from “measurements” of the functions @(p) and f,(p,T)
should not suffer from this problem, of course, and should
work, in principle, arbitrarily close to 7, (if simulations for
large enough L are feasible).

Figure 8 presents our data for {i(p) vs p for six different
choices of L. The full variation (0<p<0.81) has been re-
corded for the three smallest sizes, however, while for the
three larger sizes only the region where the droplet coexists
with surrounding vapor is included. Figure 8 demonstrates
that for the relevant regimes of densities both the density of
the pure gas and the density of the pure liquid do not depend
on L, within the accuracy of our simulation. Thus, p. () and
p(f), needed in Eq. (17), can be determined uniquely. For
this purpose, it was convenient to use polynominal fit func-
tions pf (i) and pf (i), as shown in Fig. 8. The variation
in fi(p) vs p in the region of interest, where coexistence
between the liquid drop with surrounding vapor occurs, was
also described by analytic fit functions to facilitate the use of
Egs. (17) and (18). As described in Sec. III, we can use the
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FIG. 8. (Color online) Chemical potential difference fi(p) plot-
ted vs the density p at 7=0.68T including data for six choices of L.
The part of the curves describing pure homogeneous vapor and pure
homogeneous liquid that are not affected by finite-size effects due
to two-phase coexistence are fitted by functions pf (/)=-0.823
+110.042-2518.1/2%+20 9104% and pf (f1)=702.08-2628.4/
+3255.82%— 133343, respectively. The inset shows a magnified plot
of the fi(p) vs p curves in the region of interest, where two-phase
coexistence between a droplet and surrounding vapor always oc-
curs. In this region the data were also fitted by polynomials

pg‘p‘h( f,L), which now distinctly depend on L.

explicit knowledge of f;(py,T) of the pure liquid and of
Sfi(ps,T) of pure vapor, together with our knowledge of the
total free energy f;(p,T) (Fig. 3) and the knowledge of the
volume fractions V,/V, V,/V=1-V,/V, to obtain accurate
estimates of 477R>y(R). The important consistency check that
we have applied extensively is the fact that different choices
of L yield data in overlapping regions of R: indeed we find
(for L=11.30, 13.50, and 15.80) that these data coincide
within our statistical errors, and hence finite-size effects are
negligibly small. In order to include the data for L=22.50,
27.00, and 33.70, for which we did not record the full curve
of fi(p,T) in the vicinity of the condensation/evaporation
transition, we know f;(p,T) from the numerical integration
of the &(p) vs p curves for these linear dimensions only up to
a constant. Estimating these constants from least-squares fits,
the data again fall on top of the data for the smaller values of
L. This allows us to extend the curve to much larger values
of R. Figure 9 shows the final result. Since the results on this
large scale are hardly distinguishable from the classical cap-
illarity prediction, 4mwR?y,,, two insets are shown where
these functions are shown on greatly magnified scales. It can
be seen that in the region where 54 <4mR?7y,,= 150 the cap-
illarity approximation overestimates the actual surface free
energy 4mR>y(R) slightly. Even on these magnified scales,
no systematic differences between our different choices for L
can be seen, demonstrating our assertion that the present
study is not affected significantly by finite-size effects. How-
ever, there emerges a slight but systematic difference be-
tween results where the proposed methods based on “macro-
scopic” measurements (curves labeled by “m”) and between
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FIG. 9. (Color online) Surface free energy F (R)=4mR%>y(R)
plotted vs the droplet radius R for 7=0.687,. The thin full curve
shows the result of the classical capillarity approximation 4Ry,
with 7y, taken from the independent estimation given in Eq. (13).
The insets show magnified plots near R=100 (right) and from R
=250 to R=4.50 (left). The curves labeled “m” are the results
where R was computed from Eqgs. (15)—(17), while the curves la-
beled “c” refer to estimations of R from the Stillinger [40] cluster
criterion. For 7=0.85T analogous data are shown for small radii up
to R=5.250 (only for method “m”).

results based on the Stillinger cluster criterion (curves la-
beled by “c”) are used. The latter always yield slightly
smaller energies. In the region which is physically meaning-
ful for nucleation experiments, shown in the left inset, this
difference between the curves labeled by “m” and by “c” is
much smaller than the deviation of both curves from the
conventional classical nucleation theory. Remember that Eq.
(2) can be written as AF*=4mR?y,,/3, so the barrier is 1/3
of the surface energy, and hence the left inset of Fig. 9 cor-
responds to a region of 18 <AF*/kgT=50. The right inset
shows that the difference between the predictions resulting
from the two cluster definitions persists for large cluster
sizes, but remains of the order of a few kgT (and then the
relative difference is below 1%). For the higher temperature
T=0.85T, the surface free energy of the droplets is smaller.
Figure 9 shows data up to a droplet radius of R=5.250 and
the corresponding classical capillarity prediction. The devia-
tion is slightly larger than for the lower temperature. Similar
behavior has already been observed in [62].

With decreasing R the relative deviation between 47R>7y,,
and the actual 47R>y(R) increases and reaches about 15%
for R=30 (Fig. 10). However, for AF* this corresponds to a
difference of a few kg7. It is also interesting to observe that
the relative deviation from unity decreases with increasing R
much faster than one would expect from a Tolman correc-
tion, Eq. (4): it is impossible to extract a Tolman length &
from Eq. (7) in any meaningful way as shown in the inset of
Fig. 10. These findings are very similar to the results of ten
Wolde and Frenkel [41] for a closely related model using a
Stillinger-type criterion to define liquid droplets. They con-
cluded that the classical nucleation theory works for
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FIG. 10. (Color online) Plot of ¥(R)/y,¢ vs the droplet radius R
for T=0.68T, (full curves) and for T=0.85T, (broken curve). The
curve labeled by “m” has been obtained using “macroscopic mea-
surements” of p|,p; and applying Eqgs. (15)—(17) to estimate R,
while the curve labeled by “c’” has been obtained from observations
of the droplets identified via the Stillinger connectivity criterion
[40]. Inset: the plotted data vs the inverse radius reveals that the
deviation from the classical capillarity approximation cannot be de-
scribed by a Tolman correction, at least not for 7=0.687. Other-
wise the curve would be a straight line through the origin with slope
26.

T=0.68T,, apart from a small offset of the barrier, but a
Tolman correction could not be identified either.

VI. CONCLUSIONS

In this paper, we have presented a method by which the
surface free energy of liquid droplets coexisting with sur-
rounding vapor can be obtained for a wide range of droplet
radii. We have demonstrated the feasibility of this method
using a simple fluid where particles interact with (truncated)
Lennard-Jones forces as an example. This method general-
izes the standard method, where the interfacial free energy of
flat interfaces is extracted from the density probability distri-
bution in a finite-sized box, to curved interfaces. This gener-
alization is not completely straightforward because one must
take into account that the vapor coexisting in a finite volume
with a liquid droplet is supersaturated, in comparison with a
vapor at bulk vapor-liquid density, and also the liquid droplet
has an enhanced density. We have shown systematically that
these effects can be considered, applying general concepts of
statistical mechanics about phase equilibria, but one must
avoid using simulation data affected by the evaporation/
condensation transition of the droplet. We confirm the phe-
nomenological prediction that the density p,, at which this
transition occurs, differs from the vapor density at coexist-
ence p,, via a power-law correction, p,—p, % L™, where L is
the linear dimension of the simulation box.

Our method, based on “macroscopic measurements” to
characterize the two-phase equilibrium in the finite box, is
compared with the standard method based on the “micro-
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scopic” identification of liquid droplets in terms of the Still-
inger neighborhood criterion, and found to be at low tem-
peratures in almost perfect agreement with the latter method.
We argue, however, that our method is superior since it is
applicable also close to the critical point, while the micro-
scopic approach would be hampered by the percolation of
liquid droplets in the vapor phase. (Such an effect is well
known in the lattice gas models of fluids [73].) In addition,
the generalization of our method to the case of cylindrical
droplets or bubble nucleation in liquids as depicted in Fig. 1
should be completely straightforward.

We find that the surface free energy y(R) of the droplets
moves toward the interface tension v,, of flat interfaces
rather fast with increasing R, Fig. 10, the results cannot be
described by a Tolman-type correction. This result is in full
accordance with a rather different simulation analysis for a
related model presented earlier by ten Wolde and Frenkel
[41]. The deviations between 47R>y(R) and the classical
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prediction 4Ry, are nowhere large. These deviations can-
not explain the large deviations between the nucleation rates
predicted from the classical theory of nucleation and the cor-
responding measurements in liquid argon at low tempera-
tures [26]. If these measurements are correct, other explana-
tions (rather than a very strong deviation of y(R) from 7,,)
must be sought [nucleation of fluid droplets at low vapor
density is a kinetic process and it is not certain that the as-
sumption that a critical droplet is formed, which is in some
kind of equilibrium with surrounding vapor under isothermal
conditions, as implied by Egs. (2) and (3), holds]. As a con-
sequence, it is desirable to generalize our approach to various
other systems to elucidate better the conditions under which
classical nucleation theory holds and clarify the dependence
of the droplet interfacial tension y(R) on the droplet radius
R. Extensions to heterogeneous nucleation are currently in-
vestigated by our group [74].
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