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We introduce an extension of the simple on-off ratchet by including a second asymmetric sawtooth potential
with half the periodicity and inverse asymmetry in the ratchet cycle. As a result of this additional potential, the
Brownian particles exhibit reversal of the direction of their mean displacement when relevant parameters such
as the on time of the potentials are varied. This direction reversal offers new opportunities for microfluidic
particle separation in sieve devices. Based on the results of our extended ratchet model, we propose two
designs. Compared to the classical microfluidic sieve, the proposed devices can be made of significantly
smaller sizes without sacrificing the resolution of the separation process. In fact, one of our devices can be
reduced to a single channel. We study our extended ratchet model by Brownian dynamics simulations and
derive analytical and approximative expressions for the mean displacement using an extension of the method
of discrete steps. We show that these expressions are valid in relevant regions of the parameter space and that
they can be used to predict the occurrence of direction reversal.
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I. INTRODUCTION

The effective separation of micron-sized particles poses a
challenge for integrated microfluidic devices �1,2�. A particu-
larly promising strategy is the separation based on the recti-
fication of Brownian motion caused by the ratchet effect. It
has experimentally and theoretically been demonstrated that
this strategy can be implemented with microfabricated sieve
devices �3–6�. In such a sieve, the suspended particles are
driven through rows of asymmetric obstacles with the help of
an electric field. The ratchet induces a component of the flow
in a direction parallel to the rows of obstacles. The net flow
of particles through the device is, hence, inclined with re-
spect to the electric field. Differences in the magnitude of the
ratchet induced component of the flow between distinct types
of particles lead to different inclinations and to particle sepa-
ration. Due to the resolution in the direction of the flow, this
separation process is also known as “vector chromatogra-
phy” �7�. For pointlike particles the magnitude of the in-
duced flow has been calculated by means of Brownian
ratchet theory �5,6�. Finite-size effects have been studied by
means of a network theory �8�. Compared to conventional
technologies, such as gel electrophoresis, sieve devices offer
some advantages including continuous separation. However,
the classical implementation of the sieve device has two ma-
jor drawbacks. First, the number of rows of obstacles, and
consequently the size of the device, has to be increased in
order to improve the resolution. Second, a localized injection
of the particles is required for optimal separation. Localized
injection, however, reduces the throughput of the device. It
has been pointed out in Ref. �9� that the exploitation of the
direction reversal effect would overcome both disadvantages.

Direction reversal refers to ratchets in which the direction
of the induced flow can be inverted by the adjustment of
certain system parameters �10�. If the direction of the in-
duced flow also depends on the properties of the particles, a
proper tuning of the system parameters can lead to opposite
directions of the flows pertaining to distinct types of par-

ticles. Direction reversal has experimentally been observed
for colloids in holographic optical trapping devices �11�.
Most theoretical work on direction reversal has been done
for ratchets with stochastically switching potential states
�12–14�. These so-called fluctuating ratchets have the advan-
tage that the induced flow can be calculated by standard
methods. Fluctuating ratchets have implications in the field
of biological molecular motors, but they are relatively irrel-
evant in the context of particle separation. Most experimental
work on Brownian ratchets is based on potential states which
are periodically changed �15–18�. To the best of our knowl-
edge, direction reversal in the latter type of on-off ratchet has
attracted little attention �19�. This might be a reason why the
benefits of direction reversal have so far not been exploited
for the design of separation devices. However there have
been several contributions describing direction reversal in
related fields, e.g., ratchets with non-Gaussian noise �20�,
ratchets with space and time-dependent modulation of the
potential states �21�, and direction reversal in combination
with absolute negative mobilities �22–24�.

The standard on-off ratchet relies on an asymmetric saw-
tooth potential that is turned on and off and thereby induces
a drift in one direction. A simple modification of this ratchet
replaces the sawtooth potential in every second on state by a
sawtooth potential of inverse asymmetry and half the spatial
periodicity. The second sawtooth potential alone would in-
duce a drift in the reverse direction. We show that in such an
extended ratchet the average drift direction can be controlled
by variation in system parameters such as the time during
which the potentials are switched on. The principle of our
extended ratchet is simple and therefore attractive for con-
structing microfluidic sieves for particle separation. In par-
ticular, since the particles to be separated drift in opposite
directions, the size of microfluidic sieves can be reduced to a
single channel without sacrificing the resolution of the sepa-
ration process. We propose two possible designs of the mi-
crofluidic devices. In the first design, every second row of
the obstacles in the classical sieve is replaced by a row of
obstacles with half the spatial periodicity and inverse asym-
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metry �see panel �a� of Fig. 1�. The particles are driven
through the device with the help of an externally applied
electric field and they alternately interact with the two types
of rows of obstacles. In the second proposed design, the saw-
tooth shaped obstacles line the opposing walls of a single
channel. Here, the particles are driven back and forth be-
tween the walls with the help of a periodically inverted elec-
tric field �see panel �b� of Fig. 1�. In the paper, we first
investigate the extended on-off ratchet in detail and then
demonstrate how our results can be applied to the proposed
microfluidic designs.

The paper is organized as follows. In Sec. II, we introduce
the extended on-off ratchet model. We show that the model
and its governing Langevin equation are described by four
independent dimensionless parameters. With the help of
Brownian dynamics simulations, we identify those param-
eters that are able to tune the direction of the induced particle
flow. In Sec. III, analytical expressions for the mean dis-
placement per ratchet cycle based on the method of discrete
steps are presented. We first treat the extended on-off ratchet
in the regime where the particles have enough time to drift
into the potential minima. Then we extend the range of va-
lidity of the method of discrete steps to smaller on times by
introducing what we call the split-off approximation. It is
capable of reproducing our simulation results in relevant re-
gimes of the parameter space. In Sec. IV, we explain how the
performance of the proposed microfluidic devices can be de-
scribed by the extended on-off ratchet. For this purpose, we
map the parameters of the devices onto the characteristic
parameters of the extended on-off ratchet. Finally, we vali-
date our predictions with the help of Brownian dynamics
simulations for the microfluidic channel device.

II. EXTENDED ON-OFF RATCHET

A. Details of the model

In a simple on-off ratchet a Brownian particle moves un-
der the influence of a potential V1, which is periodically
switched on and off. A widely used potential is the asymmet-
ric sawtooth potential. The form of the potential and the
cycle of the simple ratchet are schematically depicted in pan-
els �a� and �b� of Fig. 2, respectively. The potential V1 is
characterized by a spatial period L, asymmetry a, and ampli-

tude V̂. The asymmetry parameter a determines the shape of
the potential and has a value in the range from zero to one.
When the potential is switched off during a time toff, the
particle diffuses freely along the x axis. When the potential is
switched on during a time ton, besides diffusion the particle
drifts coherently toward a minimum of the sawtooth poten-
tial. The interplay of the diffusion and the coherent drift rec-
tifies the motion of the particle. Note that in this model the
motion is always one dimensional along the x axis. The mag-
nitude of the mean displacement for an ensemble of particles
is determined by the properties of the potential as well as by
the diffusional behavior of the particles. In contrast, the di-
rection of the mean displacement is exclusively determined
by the value of the asymmetry parameter a �25�. For a
�0.5, the mean displacement is in the positive direction
along the x axis, whereas for a�0.5 the particle will move
on average in the negative direction. A simple on-off ratchet
with asymmetry �1−a� induces exactly the opposite mean
displacement as a ratchet with asymmetry a. In the symmet-
ric situation with a=0.5, no mean displacement will be ob-
served.

In order to change the direction of the mean displacement
with another property than the asymmetry of the sawtooth
potential, the on-off ratchet needs to be extended. For this
purpose, we add a second sawtooth potential V2 to the ratchet
cycle. The cycle of our proposed extended on-off ratchet is
schematically depicted in panel �c� of Fig. 2. As illustrated in
panel �a� of Fig. 2, the second potential V2 is characterized
by half the spatial period L /2 and an inverse asymmetry
parameter �1−a�. The two potentials are alternately activated
with equal duration ton and equal interjacent off times toff so
that the complete cycle lasts T=2toff+2ton. Due to their in-
verse asymmetries, the individual potentials induce drifts in
opposite directions. In the extended on-off ratchet, both po-
tentials are combined and the resulting direction of the mean
displacement is no longer exclusively determined by the
value of the asymmetry parameter a. In the following, we
will define a set of four dimensionless parameters, which

FIG. 1. Microfluidic devices for particle separation that benefit
from the effect of direction reversal. �a� A microfluidic sieve device.
The solid line represents an example trajectory of a particle driven
by a constant electric field with electrophoretic velocity vE. The
gray objects refer to the obstacles. �b� As in panel �a� but for a
microfluidic channel device. The particles are driven by a periodi-
cally inverted electric field back and forth across the channel.

FIG. 2. �a� Spatial characteristics of the potentials used in the
extended on-off ratchet. Short-periodic sawtooth potential V2 �top�,
long-periodic sawtooth potential V1 �bottom�. �b� Cycle of a simple
on-off ratchet. �c� Cycle of the extended on-off ratchet.
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fully characterizes the operation of the extended on-off
ratchet. In particular, we will investigate which combinations
of these parameters reverse the direction of the mean dis-
placement.

In the extended on-off ratchet the motion of a Brownian
particle with a friction coefficient � is described by the
Langevin equation

�
�

�t
x = −

�

�x
V�x,t� + ��t� , �1�

where x denotes the position of the particle at the time t. As
a function of t, the potential V�x , t� changes cyclically be-
tween the two on states V�x�=V1,2�x� and the off state V�x�
=0 �see the extended ratchet cycle in panel �c� of Fig. 2�. The
random force ��t� is unbiased so that ���t��=0 and its time-
correlation function obeys the fluctuation-dissipation theo-
rem

���t���t��� = 2�kBT��t − t�� , �2�

with kBT being the thermal energy. The description of the
system in terms of the Langevin equation can be simplified
by using rescaled variables. The spatial period L provides a
length scale, whereas the typical time for the particle to
cover the distance L by diffusion tdiff gives a time scale. The
diffusion time tdiff is defined by

tdiff =
L2

D
, �3�

with D being the diffusion constant. The Einstein relation
D=kBT /� relates the diffusion constant D to the friction con-
stant �. Another time scale is given by the drift time tdrift,
which is the required time for the particle to drift the distance

L under the constant force V̂ /L. With the drift velocity

vdrift= V̂ / ��L�, the drift time takes the following form:

tdrift =
L

vdrift
=

tdiff

Ṽ
, �4�

where Ṽ= V̂ / �kBT� denotes the rescaled potential amplitude.
The Langevin Eq. �1� and the correlation function �Eq. �2��
can now be expressed in reduced form

�

� t̃
x̃ = Ṽfa�x̃, t̃� + �̃�t̃� , �5�

��̃�t̃��̃�t̃��� = 2�̃�t̃ − t̃�� , �6�

where we have introduced the rescaled position x̃=x /L, time

t̃= t / tdiff, random force �̃�t̃�=��t�L / �kBT�, and � function

�̃�t̃�= tdiff��t�. The function fa describes the rescaled force
exerted on the Brownian particle. When the potential is
switched off, fa=0 and Eq. �5� describes a particle freely
diffusing in one dimension. When the potential Vi �i=1,2� is
switched on, fa=−ci /a and fa=ci / �1−a� on the long and
short slopes of the potential, respectively. The constant ci
takes the values c1=1 and c2=−2. The rescaled potential

amplitude Ṽ is the Peclet number �26�. As shown by Eq. �4�,

it denotes the ratio of the times a particle needs to diffuse and
drift a distance L. Therefore, at large Peclet numbers drift is
dominant and Brownian diffusion during the application of
the potential can be neglected. We will deal with this limit
from here onwards.

We also rescale the periods of the ratchet cycle ton and toff.
First, the off time toff is rescaled with respect to the diffusion
time tdiff,

�off =
toff

tdiff
. �7�

For �off�1 Brownian particles are not able to cover a dis-
tance L by diffusion during the time toff. Second, the on time
ton is rescaled with respect to the drift time tdrift,

�on =
ton

tdrift
. �8�

For �on�1 all particles will drift into the minima of the
potentials. In analogy with the rescaling of the time variable

t̃= t / tdiff, we also obtain t̃on=�on / Ṽ and the period T̃=2��off

+�on / Ṽ� of one complete ratchet cycle.
In conclusion, the motion of a Brownian particle in the

extended on-off ratchet depends on the rescaled off time �off,
the rescaled on time �on, the asymmetry parameter a, and the

Peclet number Ṽ. Our objective is to calculate the ensemble
averaged displacement ��x̃� per ratchet cycle, as a function
of these four dimensionless variables, where the Peclet num-

ber Ṽ will always be chosen much larger than one.

B. Brownian dynamics simulations

To solve the Langevin Eq. �5�, we have performed
Brownian dynamics simulations based on the standard Euler
method, which is sufficient in view of the simplicity of the
potential. Following this method, the position x̃ evolves dur-
ing one time step dt̃ according to

x̃�t̃ + dt̃� = Ṽfa�x̃, t̃�dt̃ + �2dt̃�1/2r�t̃� . �9�

Here, �2dt̃�1/2r�t̃� is the Wiener increment and r�t̃� is a ran-
dom number from a distribution with zero mean �r�=0 and
variance �r2�=1 �27�. To obtain sufficiently precise results,
one million ratchet cycles were simulated for each combina-
tion of parameters.

The simulation results for the mean displacement ��x̃�
with Ṽ=1000 and a=0.1 and 0.3 are shown in panels �a� and
�b� of Fig. 3, respectively. A common feature is that ��x̃�
becomes vanishingly small in the limit �off→0 and �on→0.
Furthermore, for large values of �off and �on the mean dis-
placement approaches a maximum value ��x̃�max. In Sec.
III A, we will derive an analytical expression for ��x̃�max. In
comparison with the simple on-off ratchet, the extended
model exhibits some new features. In particular, the sign of
��x̃� now depends on the values of �off and �on. Two regions
are observed, in which ��x̃� has opposite signs. The coordi-
nates �off

� and �on
� of the curve which demarcates these two

regions depend on the value of the asymmetry parameter a.
In Sec. III A, we will treat the discrete regime with �on
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� �1−a�2, i.e., when the particles always reach the minima
of the potentials. As we will see, direction reversal only oc-
curs for a�0.25. A more pronounced direction reversal is
achieved in the nondiscrete regime, with �on� �1−a�2 for
sufficiently large values of �off. The latter direction reversal
will be discussed in Sec. III B.

III. METHOD OF DISCRETE STEPS

To derive an analytic expression for the mean displace-

ment ��x̃� in the case of large Peclet numbers Ṽ, we apply
the method of discrete steps �25�. As will be described in
Sec. III A, this method is based on the assumption that the
rescaled on time �on is sufficiently large so that a Brownian
particle will always drift into a minimum when the sawtooth
potentials are switched on. Hence, the trajectory of the par-
ticle can be mapped onto a sequence of effective steps be-
tween the locations of the potential minima. These steps oc-
cur with certain step probabilities. In Sec. III B, we
successively extend the applicability of our method to
smaller values of �on with the help of what we call the split-
off approximation.

A. Discrete steps and their probabilities

For large Peclet numbers Ṽ, Brownian motion can be ne-
glected once the potential is switched on. As a result, a par-
ticle drifts uniformly toward a minimum. For the longer

slope of potential V1, the drift velocity vdrift= V̂ / ���1−a�L�.
Accordingly, the particle reaches the minimum for

ton 	
�1 − a�L

vdrift
= �1 − a�2tdrift, �10�

irrespective of its position at the time the potential is
switched on. With the definition of the rescaled on-time �on

�Eq. �8��, the latter condition can be expressed as

�on 	 �1 − a�2. �11�

Particles drifting under the influence of the shorter slope of
potential V1 as well as both slopes of potential V2 also reach
the minimum, provided Eq. �11� is satisfied. Accordingly,
after each application of the potential, all particles are lo-
cated at the minima of either V1 or V2. A single particle
hence performs discrete steps along the x axis, provided its
trajectory is sampled at the end of each on time. The minima
of the potential V1 are labeled with the integer n so that the
corresponding positions are given by x̃n=n. For the potential
V2, the minima are labeled with m and the positions are x̃m
=m /2 because V2 has half the spatial periodicity.

Now, we consider the probability pnm for a step performed
by a single particle from the minimum n of V1 to the mini-
mum m of V2, as illustrated in Fig. 4. When the potential is
switched off the particle diffuses freely, starting from x̃S=n.
In our rescaled units, the probability density to reach the
position x̃ at the end of the off time is given by the Gaussian
distribution

g�x̃� =
1

�4
�off

e−�x̃ − x̃S�2/4�off. �12�

Note that the width of this distribution is exclusively deter-
mined by the value of the rescaled off time �off. In order to
drift to the minimum m of potential V2 during the subsequent
on time, the particle needs to diffuse into the interval �m
−a� /2� x̃� �m+1−a� /2 situated between the neighboring
maxima of minimum m. Accordingly, the step probability is
given by integrating g�x̃� so that

pnm = �
�m−a�/2

�m+1−a�/2 dx̃
�4
�off

e−�x̃ − n�2/4�off. �13�

In a similar way, we derive the probability qmn for a step
from the minimum m of V2 to the minimum n of V1. Now,
the initial minimum is located at x̃S=m /2 and the interval
between the maxima around minimum n of V1 is given by

FIG. 3. �a� Mean displacements ��x̃� obtained from a Brownian
dynamics simulation with asymmetry a=0.1. �b� As in panel �a� but
for a=0.3. The contour curves in the bottom planes correspond with
��x̃�=0. These curves with coordinates �off

� and �on
� trace the points

of the direction reversal of the mean displacement.

FIG. 4. Schematic illustration of a complete cycle of the ex-
tended on-off ratchet in the discrete limit. For one possible step
combination �n=0→m=1→n=1� the graphical interpretation of
the corresponding step probabilities p01 and q11 is visualized.
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�n−1+a�� x̃� �n+a�. Hence, the step probability takes the
form

qmn = �
n−1+a

n+a dx̃
�4
�off

e−�x̃ − m/2�2/4�off. �14�

The mean displacement ��x̃� is calculated for a complete
ratchet cycle. Due to the spatial periodicity of the system,
one can always place the initial minimum at n=0. By aver-
aging over all possible step combinations, we arrive at

��x̃� = �n� = 	
n

	
m

n · p0mqmn. �15�

Note that in the discrete limit the mean displacement ��x̃�
only depends on the values of the asymmetry parameter a
and the rescaled off time �off.

We now discuss the limiting behavior of the mean dis-
placement ��x̃� for small and large values of �off. For small
values of �off, the mean displacement approaches zero be-
cause the step probabilities to neighboring minima become
vanishingly small. For large values of �off, the mean dis-
placement takes its maximum value ��x̃�max. An algebraical
expression for ��x̃�max can be derived on the basis that the
probability profile between two maxima becomes approxi-
mately homogeneous for large values of �off. The fractions of
the particles experiencing the larger and shorter slopes of the
potential V1 are given by �1−a� and a, respectively. The
corresponding mean displacements of these fractions are �1
−a� /2 and −a /2. The total mean displacement induced by
potential V1 is given by the weighed average of both frac-
tions so that ��x̃1�= �1 /2�−a. The mean displacement in-
duced by V2 can be derived in the same way and yields
��x̃2�=−��x̃1� /2. For the complete cycle, the mean displace-
ment is given by the sum ��x̃�= ��x̃1�+ ��x̃2� so that

��x̃�max = lim
�off→�

��x̃� =
1

2

1

2
− a� . �16�

Note that this expression is only valid for sufficiently large
values of the rescaled on time �on	 �1−a�2.

We have obtained the mean displacement for a series of a
values in the range 0.1�a�0.45 by numerical evaluation of
Eq. �15�. The normalized values ��x̃� / ��x̃�max with ��x̃�max
obtained from Eq. �16� are displayed in Fig. 5 as a function

of the rescaled off time �off. For values of �off exceeding 0.1,
the normalized mean displacement approaches unity. This
confirms the predicted limiting behavior given by Eq. �16�.
For values of a�0.25, the normalized mean displacement
becomes negative in an intermediate range of values of �off,
i.e., the mean displacement changes its direction. The result-
ing minimum becomes more pronounced for larger values of
a. Note that ��x̃�max decreases linearly with a and reaches
��x̃�max=0 in the symmetric case with a=0.5. Accordingly,
the minimum in the �un-normalized� mean displacement
��x̃� vanishes in the limit a=0.5.

B. Split-off approximation

We now extend the method of discrete steps to values of
�on smaller than �1−a�2, i.e., not all particles will drift into a
minimum of either potential V1 or V2 during the on time. For
now, we restrict ourselves to the situation, where the par-
ticles on the longer slope of V1 do not necessarily reach a
minimum, but on the smaller slope and when potential V2 is
switched on they do. This situation corresponds to �1
−a�2 /4��on� �1−a�2.

We consider an ensemble of particles at a time right be-
fore the potential V1 is switched on. Particles on the right-
hand side of each maximum will not reach a minimum if
they are located in a spatial region with a width �1 as illus-
trated in Fig. 6. We will call �1 the split-off parameter in the
following. With the help of the drift velocity on the longer
slope of V1 and the length �1−a�L of this slope, one is able
to calculate the split-off parameter

�1 = max�0,�1 − a�
1 −
�on

�1 − a�2�
 . �17�

In order to apply the method of discrete steps, we assume
that all particles in the region �1 drift to a single split-off
point n�. As illustrated in Fig. 6, this split-off point is located
at a distance −�1 /2 from the minimum with index n. The
locations of the split-off points are hence given by x̃n�=n
−�1 /2.

For �on� �1−a�2 /4, we introduce additional split-off
points on the longer slope of potential V2. They are located at

FIG. 5. Normalized mean displacement ��x̃� / ��x̃�max in the ex-
tended on-off ratchet versus the rescaled off-time �off. The curves
have been calculated in the discrete limit. From top to bottom, a
=0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 0.4, and 0.45. The dashed line with
a=0.25 indicates the onset of direction reversal in an intermediate
range of values for �off.

FIG. 6. Illustration of the split-off approximation on the longer
slope of potential V1. Particles corresponding with the dark gray
colored part of the diffusion profile fail to reach the minimum n
during the on time and will start the subsequent off time from the
split-off point n�.
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x̃m�= �m+�2� /2, where m indicates the minima of V2. Par-
ticles in a certain region at the left-hand side of the maxima
are not able to reach the minima of potential V2. The width
of this region �2 is given by

�2 = max�0,
�1 − a�

2 �1 −
�on

1

4
�1 − a�2�� . �18�

Obviously, our split-off approximation will result in a pro-
gressively worse estimation of the mean displacement for
smaller values of �on and, implicitly, larger values of �1 and
�2.

We can derive an expression for the mean displacement in
the same manner as in Sec. III A. Now we need to consider
eight step probabilities. They are obtained by integrating
over the corresponding sections of the diffusion profile. The
split-off points are taken into account by a modification of
the starting points xS in Eq. �12� and the integration limits in
Eqs. �13� and �14�. Furthermore, in the expression for the
mean displacement one has to introduce the respective prob-
abilities P and P� for a particle to occupy either a minimum
or the corresponding split-off point at the beginning of each
cycle. Due to the spatial periodicity of the ratchet, these
probabilities do not depend on the particular location n of the

potential well. To determine P�t̃0+ T̃� and P��t̃0+ T̃� from

P�t̃0� and P��t̃0� after one full ratchet cycle with period T̃,
one has to consider all possible step combinations during
such a cycle. Without loss of generality, all these step com-
binations are generated when one starts from the minimum at
n=0 or the split-off point at 0�. Therefore the probabilities P
and P� evolve in time according to

P�t̃0 + T̃� = P�t̃0�	
m,n

�p0mqmn + p0m�qm�n�

+ P��t̃0�	
m,n

�p0�mqmn + p0�m�qm�n� , �19�

P��t̃0 + T̃� = P�t̃0�	
m,n

�p0mqmn� + p0m�qm�n��

+ P��t̃0�	
m,n

�p0�mqmn� + p0�m�qm�n�� . �20�

We are interested in the steady-state solution, P�t̃0+ T̃�
= P�t̃0� and P��t̃0+ T̃�= P��t̃0�, which yields

P�

P
=

1 − 	m,n
�p0mqmn + p0m�qm�n�

	m,n
�p0�mqmn + p0�m�qm�n�

=
	m,n

�p0mqmn� + p0m�qm�n��

1 − 	n,m
�p0�mqmn� + p0�m�qm�n��

. �21�

Together with the normalization constraint P+ P�=1, the
probabilities P and P� are fully determined from either one
of the conditions in Eq. �21�. The mean displacement can
now be derived by averaging over all possible step combina-

tions �including the split-off points n� and m�� and takes the
following form:

��x̃� = 	
n,m

n��Pp0m + P�p0�m��qmn + qmn��

+ �Pp0m� + P�p0�m���qm�n + qm�n��� . �22�

Here we approximate the step length by n, irrespective of
whether the step starts or ends in a minimum or split-off
point. Note that the mean displacement now depends on the
parameters �on, �off, and a. In particular, the rescaled on time
�on enters through the values of the parameters �1 and �2 in
the step probabilities. For �on	 �1−a�2, �1=�2=0 and Eq.
�22� reduces to the corresponding Eq. �15� pertaining to dis-
crete behavior.

We have obtained the mean displacement ��x̃� according
to the split-off approximation by numerical evaluation of Eq.
�22� for �off=1 and a=0.1 and 0.3. The results are displayed
in Fig. 7 as a function of the rescaled on time �on. For the
sake of comparison, we have also included the corresponding
values following from the Brownian dynamics simulation.
The maximum value ��x̃�max, as given by Eq. �16�, is recov-
ered for �on� �1−a�2. Note that the value �off=1 is suffi-
ciently large for the application of Eq. �16� �see, e.g., Fig. 5�.
With decreasing values of �on, the mean displacement de-
creases and changes sign at a critical value of the rescaled on
time �on

� . Irrespective of the value of the asymmetry param-
eter a, the prediction based on the split-off approximation is

FIG. 7. �a� Mean displacement ��x̃� in the extended on-off
ratchet versus the rescaled on time �on for a rescaled off time �off

=1.0 and asymmetry parameter a=0.1. The solid curve refers to the
results from the split-off approximation, whereas the symbols indi-
cate the results from the Brownian dynamics simulations. The
dashed curve refers to the results from the split-off approximation
with �2=0 for all values of �on. The vertical dashed lines indicate
the onset of the discrete regime at �on= �1−a�2 and the threshold of
the split-off approximation with �2=0 at �on= �1−a�2 /4. �b� As in
panel �a�, but for asymmetry parameter a=0.3.
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in perfect agreement with the results of the Brownian dy-
namics simulations in the range �1−a�2 /4��on� �1−a�2.
The prediction even reproduces the behavior of ��x̃� for
smaller values of the rescaled on times �with deviations for
a=0.3�. In particular, for the present combination of param-
eters, the split-off approximation is sufficient to predict the
point of direction reversal �on

� .
In order to compare the predictions based on the split-off

approximation with the relevant results of the Brownian dy-
namics simulations for values of �off smaller than 1, we now
consider the points of direction reversal of the mean dis-
placement with coordinates �off

� and �on
� �i.e., those coordi-

nates for which ��x̃�=0�. The corresponding contour curves
following from the simulations as well as from the split-off
approximation are displayed in Fig. 8 for some typical values
of the asymmetry parameter a. The predictions of the points
of direction reversal based on the split-off approximation are
in perfect agreement with the simulation results for the larger
values of the asymmetry parameter a=0.3 and 0.4, irrespec-
tive the value of the rescaled off time �off. In the case of
smaller values of a, i.e., for a=0.1 and 0.2, the split-off
approximation only gives accurate results for a sufficiently
large value of �off�0.05. Furthermore, it should be noticed
that for �off�0.1, the point of direction reversal of the mean
displacement �on

� occurs at a constant but a dependent value,
irrespective of the value of �off.

The split-off approximation also allows the calculation of
the mean displacement ��x̃� for large values of �off �in prac-
tice for �off�0.1�. In the same way as for the derivation of
Eq. �16�, we obtain

lim
�off→�

��x̃� =
1

2

1

2
− a� −

1

2
�1

2 + �2
2. �23�

In the case of discrete behavior with �1=�2=0, the latter
expression correctly reduces to Eq. �16� for �on	 �1−a�2.

Furthermore, Eq. �23� allows the derivation of an expression
for the point of direction reversal �on

� . We first solve
lim�off→���x̃�=0 for the split-off parameter �1 with �2=0
and use �1 in Eq. �17� to calculate the rescaled on time

�on
� = �1 − a�2�1 − � 1

2
− a

�1 − a�2�
1/2

� . �24�

Note that in the limit of �off→�, the value of �on
� only de-

pends on the asymmetry parameter a. The predicted values
for �on

� are displayed in Fig. 9 as a function of the asymmetry
parameter a. Excellent agreement with the corresponding re-
sults from the Brownian dynamics simulations is observed
for a�0.45. Furthermore, we note that the predicted values
for �on

� fall within the region �on� �1−a�2 /4, where the split-
off approximation applies for �2=0. Our a priori choice of
�2=0 is hence justified.

In principle, the split-off approximation can be carried to
higher levels by including split-off points on all slopes. We
have however refrained from doing so because the math-
ematical expressions become rather involved and there is not
much gain in physical insight. Furthermore, very small val-
ues of �on are of little interest from a practical point of view
because the corresponding mean displacements are vanish-
ingly small.

IV. PARTICLE SEPARATION

A novel feature of the extended on-off ratchet is that the
magnitude and the direction of the mean displacement can be
varied by adjusting the parameters �off and �on. In the follow-
ing we discuss how this feature can be used to improve the
separation in microfluidic sieve devices. In the introduction
we already proposed two designs for such devices �see Fig.
1�. Here, our objective is to translate the parameters of the
extended on-off ratchet model to real design parameters. In
particular, we will explore how we can experimentally con-
trol the magnitude and direction of the mean displacement of
the particles induced by the sieve devices.

In the classical sieve as well as in our proposed designs,
the rectification of the Brownian motion is based on the in-

FIG. 8. Contour curves for ��x̃�=0. These curves trace the
points of direction reversal of the mean displacement with coordi-
nates �off

� and �on
� . The symbols refer to Brownian dynamics simu-

lation results with asymmetry parameters a=0.1 ���, a=0.2 ���,
a=0.3 ���, and a=0.4 ���. The solid curves represent the corre-
sponding predictions based on the split-off approximation. The
dashed curves serve as a guide to the eye. Notice that the latter
predictions deviate from the simulation results for a�0.3 and �off

�

�0.05.

FIG. 9. Points of direction reversal of the mean displacement �on
�

versus the asymmetry parameter a. The solid curve represents the
prediction based on the split-off approximation in the limit of large
values of �off. The symbols refer to the corresponding results from
the Brownian dynamics simulations. The dashed curve demarcates
the region �on� �1−a�2 /4, where the split-off approximation with
�2=0 applies.
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teraction between electrophoretically driven particles and
asymmetrically shaped obstacles. Before we discuss particle
separation, we need to define the time scales for diffusion
and drift. For a particle with an electrophoretic mobility �E
in an electric field with strength E, the electrophoretic veloc-
ity is given by vE=�EE. In contact with an obstacle, the
direction of the velocity changes and acquires a component
vE,x in the direction perpendicular to the electric field. As-
suming that the face of the obstacle is tilted by the angle 

from the direction of the electric field, the transverse compo-
nent amounts to vE,x�
�=vE sin 
 cos 
. We now introduce
the largest possible tilt angle 
max=atan�L /h� for obstacles
with lateral extension L and height h �see panel �b� of Fig. 1�
and define the characteristic drift time tdrift=L /vE,x�
max� in
full analogy to Eq. �4�. The diffusion time tdiff=L2 /D re-
mains the same and the Peclet number reads tdiff / tdrift
=LvE,x�
max� /D. Accordingly, it can be tuned by adjusting
the strength of the electric field.

In the classical sieve device, charged particles are driven
through rows of identical obstacles with the help of an ex-
ternally applied electric field. Between the rows of obstacles,
particles freely diffuse in the direction perpendicular to the
applied field. The particles can only pass the rows through
gaps between the obstacles. Hence, the particles are dis-
placed in the direction perpendicular to the electric field each
time they pass a row. Due to the asymmetric shape of the
obstacles, the mean displacement has a nonzero value. As a
consequence, the direction of the net flow of the particles is
tilted from the direction of the electric field. If the associated
tilt angle depends on particle-specific properties, different
types of particles will move in different directions. For suf-
ficiently large values of the Peclet number, the mean dis-
placement and hence the tilt angle can be calculated by
means of step probabilities between the gaps of adjacent
rows of obstacles �5,6,9�.

For large values of �on, the extended on-off ratchet model
is in the regime of discrete steps described in Sec. III A. This
case is directly implemented by the modified classical sieve
of panel �a� in Fig. 1, where every second row of obstacles is
replaced by a row of obstacles with half the spatial period-
icity and inverse asymmetry. The shapes of the obstacles in
subsequent rows reflect the spatial dependencies of the po-
tentials V1 and V2 �see panel �a� of Fig. 2�. We have also
chosen the shape of the obstacles to be invariant under re-
versal of the direction of the electric field. The off time of the
ratchet is determined by the time the particles need to cross
the distance d between the rows under the influence of the
electric field and is given by toff=d /vE. Accordingly, the
value of toff and hence the rescaled off time,

�off =
dD

�EEL2 �25�

can experimentally be tuned by adjusting the strength of the
electric field E. Suppose that a suspension contains two types
of particles A and B with different values for D /�E �5�. In
order to separate these particles in a sieve with a rescaled off
time for direction reversal �off

� , the rescaled off times pertain-
ing to the two types of particles have to be tuned such that
�off,A��off

� ��off,B. As a consequence, the net flows of both

types of particles are tilted in opposite directions from the
direction of the electric field. The methods presented in Sec.
III A can be used to determine the value of �off

� for a device
specific value of the asymmetry parameter a. Note that for
large values of �on, the value of a has to exceed 0.25 to
observe direction reversal of the mean displacement �see Fig.
5�. According to Ref. �9�, the sieve device can be operated in
combination with a periodic reversal of the direction of the
electric field. In this case, only a few rows of obstacles are
necessary and the device can be downsized in y direction
without reducing the resolution of the separation process.
Note that our extension of the classical sieve device leads to
a separation of both types of particles even in the case of a
nonlocalized injection of the particles.

In the classical sieve and its modification as described
above, all particles eventually have to pass through the gaps
in the rows of obstacles. Accordingly, this design does not
allow the implementation of the nondiscrete regime, which
we treated by the split-off approximation in Sec. III B. We
therefore propose an alternative design illustrated in panel
�b� of Fig. 1, where the sawtooth-shaped obstacles now line
the two opposing walls of a channel. The profiles of the walls
mimic the spatial dependencies of potentials V1 and V2.
Rather than driving the particles through subsequent rows of
obstacles, the particles are driven back and forth between the
two opposing walls of the channel with the help of a peri-
odically inverted electric field. Note that the electric field is
applied perpendicular to the direction of the channel. We
define the time periods T+ and T− to indicate the periods over
which the electric field points up and downwards, i.e., in the
positive and negative y direction, respectively.

For a simplified analysis of the channel device, we set
T+�d /vE. As a consequence, the particles always reach the
upper wall of the channel, meaning that they completely drift
into the grooves of the sawtooth profile. The performance of
the proposed device now depends on the period T− of the
pulsed electric field, the distance between the rows d, the
height of the sawtooth profiles h, and the electrophoretic ve-
locity of the particles vE. Four different regimes can be iden-
tified. In the first regime with T−�h /vE, the particles are
trapped within one spatial period of the upper row of ob-
stacles and no mean displacement occurs. Note that the lim-
its of the four regimes, which we present here, are approxi-
mate values because of the Brownian motion in y direction.
In the second regime with h /vE�T−� �d+h� /vE, the par-
ticles only interact with the upper row of obstacles. Hence
the channel functions as a simple on-off ratchet. The value of
the induced mean displacement is determined by the off time
toff�2�T−−h /vE� and is negative due to the inverse asym-
metry of the profile. For sufficiently large values of toff, the
displacement is given by ��x̃�=−�1 /2−a� /2 �25�. In the
third regime with �d+h� /vE�T−� �d+2h� /vE, the particles
interact with both rows of obstacles, however, they will not
always drift into the grooves of the sawtooth profile of the
lower wall before their electrophoretic direction is reversed
by switching the electric field. In this regime, the mean dis-
placement can approximately be described by the split-off
approximation of the extended on-off ratchet. The off time is
determined by the time the particles need to cross the dis-
tance d between the upper and lower rows. Hence, the res-
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caled off time is given by Eq. �25�. The time during which
the particles are in contact with the lower row of obstacles
determines the on time ton�T−− �d+h� /vE. Its rescaled value

�on = sin 
max cos 
max
�EET− − �d + h�

L
�26�

can be tuned by adjusting the product ET− properly. Note
that in this regime changes in T− only affect �on whereas �off
remains constant. In the fourth regime with T−� �d
+2h� /vE the particles always reach the walls of the channel
before their electrophoretic velocity changes direction. In
this regime, the channel is equivalent to our sieve design
proposed above.

The equations derived under the split-off approximation
require minor modification in order to describe the mean
displacement in the third regime. For given values of h and
L, we have already defined the maximum tilt angle 
max
=atan�L /h�. It occurs for asymmetry parameter a=0. For
nonzero a we define the tilt angle of the longest slope of the
two obstacles, 
a�
max. Compared to the drift velocity in-
duced by the sawtooth potential in Sec. II, the electrophoretic
velocity vE,x�
a� exhibits a different dependence on the
asymmetry parameter a and the adjusted split-off parameter
�1 now reads

�1 = �1 − a� − �on
vE,x�
a�

vE,x�
max�
. �27�

Due to our choice for T+, the second split-off parameter �2
=0 is zero.

We performed two-dimensional Brownian dynamics
simulations of a particle in the proposed channel device. The
interaction between the particle and a wall was modeled with
a short-ranged repulsive potential Vwall. For a reduced
particle-wall distance r̃ in units of L, the potential is given by
Vwall�r̃� /kBT= �r̃ /b�−12 with b=1.25�10−3. The asymmetry
parameter and the reduced lengths of the channel geometry

were set to a=0.1, h̃=0.1, and d̃=4, and the Peclet number
was chosen as tdiff / tdrift�20. Figure 10 shows the mean dis-

placement ��x̃� as a function of the reduced period T̃− in
units of tdiff. We have demarcated the four regimes with in-

creasing T̃− as discussed above. In each regime, the results of
the simulations are compared to the predictions of the corre-
sponding model, i.e., zero displacement in regime I, simple
on-off ratchet in regime II, extended on-off ratchet with non-
discrete behavior in regime III, and extended on-off ratchet
with discrete behavior in regime IV, respectively. In all four
regimes the predictions are in good agreement with the re-
sults from the simulations. Most of all, the reversal of the
drift direction in the third regime is correctly predicted by
the extended on-off ratchet within the split-off approxima-
tion. Deviations between the extended ratchet model and the
simulation data are due to four main reasons. First, the one-
dimensional model neglects diffusion of the particle in y di-
rection. Second, the model does not take into account that on
and off times depend on the exact position of the particle at
times when the electric field is reversed. Third, the model
assumes that the particles can diffuse freely in x direction
even in the vicinity of the obstacles. Fourth, the simulation
was performed for Peclet number tdiff / tdrift�20, whereas the
model refers to tdiff / tdrift�1. Although the extended ratchet
model is a simplification of the actual particle dynamics in
the channel geometry, it offers a fairly good prediction of the
mean displacements.

Now we assume that particles of types A and B with dif-
ferent values for �E are present in the channel. The suspen-
sion should be sufficiently diluted so that particle interac-
tions can be neglected. To each particle type belongs a curve
similar to the one plotted in Fig. 10. However, the limits of
the different regimes depend on the properties of the par-
ticles. Particles A and B are effectively separated when they
move in opposite directions along the channel. This means

one has to identify values for T̃−, where the signs of the mean
displacements ��x̃� of particles A and B differ. The involved
parameters can be used to tune the system appropriately.

V. CONCLUSIONS

We have introduced an extension of the standard on-off
ratchet by including a second asymmetric sawtooth potential
with half the periodicity and inverse asymmetry in the
ratchet cycle. As a result of this additional potential, Brown-
ian particles exhibit direction reversal of their mean displace-
ment. Analysis of the Langevin equation reveals that the mo-
tion of the particles and, hence, their mean displacement
depend on four dimensionless parameters: the Peclet number,
the asymmetry of the potentials, and the rescaled on and off
times. We have derived analytical expressions for the mean
displacement, based on the method of discrete steps and the
split-off approximation. We show that these expressions are
valid in relevant regions of the parameter space and that they
can be used to predict locations in parameter space where
direction reversal occurs. We have concentrated on the ratio
1:2 for the periods of the two sawtooth potentials. However,
the formalism presented here can also be applied to other
ratios, albeit some expressions will require modifications due
to changes in the symmetry of the system.

FIG. 10. Mean displacement ��x̃� of a particle in a channel

device as a function of the reduced time period T̃− in units of tdiff.
The geometry of the channel is defined by the asymmetry parameter

a=0.1 and the reduced lengths h̃=0.1 and d̃=4 in units of L. The
symbols refer to results from two-dimensional Brownian dynamics
simulations. The solid line refers, respectively, to predictions from
the conventional and the extended on-off ratchet model. The verti-
cal lines demarcate the different operational regimes of the channel
device, as discussed in the text.
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We have demonstrated that our ratchet model offers op-
portunities for the separation of particles in microfluidic de-
vices. In particular, we have shown that the application of
direction reversal can overcome the major drawbacks of the
classical sieve designs. Therefore, we have proposed two dif-
ferent designs with significantly reduced system sizes with-
out sacrificing the resolution of the separation process. Ex-
ploiting direction reversal in the non-discrete ratchet regime
allows a reduction in the device to a single channel. Further-
more in both designs nonlocalized injection is possible,
which leads to an increased throughput. We demonstrate that
the model of the extended on-off ratchet is able to describe
the dynamics of a single particle in the proposed sieve de-
vices. However, one should bear in mind that the model is a
simplification. Many-particle effects due to electrostatic and

hydrodynamic interactions among the particles are not in-
cluded. Hydrodynamic interactions between the particles and
the obstacles are also neglected. However, the interplay be-
tween Brownian motion and hydrodynamic wall effects is
not expected to impair particle separation �8�. Furthermore,
we have assumed a homogeneous electric field that is not
disturbed by the presence of the obstacles. For a classical
sieve, it has been shown that the efficiency of the device will
be reduced if the electric field cannot penetrate the obstacles
�28�. Further numerical studies including collective effects
due to electrostatic and hydrodynamic interactions are in
progress. It should be noted, however, that the impact of
collective phenomena can always be made vanishingly small
by sufficiently diluting the suspension.
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