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We investigate the macroscopic properties of frictionless nonconvex particles using molecular dynamics.
The calculations are based on a simple and efficient method to simulate complex-shaped interacting bodies.
The particle shape is represented by Minkowski operators. A multicontact time-continuous interaction between
bodies is derived using simple concepts of computational geometry. Three-dimensional simulations of hopper
flow show that the nonconvexity of the particles strongly affects the jamming on granular flow. Also the model
allows the representation of complex bodies with rough surfaces as in friction studies and the reproduction of
a wide range of friction and dilatancy angles as in true triaxial tests.
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I. INTRODUCTION

Most of our technology is still based in moving parts, and
hence the development of durable and/or low friction sur-
faces and thin lubricating films has become an important
factor in the construction of many devices. The study of the
friction in these kind of surfaces is extremely important and
cannot be restricted to the simple Amonton’s friction law for
sliding. Moreover, there is a huge complexity involved and
chaotic behavior has been reported �1� making the search for
simple models even more difficult. One of the features that
produce macroscopic friction is microscopic roughness.
Nonconvex bodies sliding against each other have multiple
contact points, each of them providing a repulsive force op-
posing relative movement. A macroscopic model based on a
continuum assumption may not be suitable for this phenom-
enon.

Molecular dynamics �MD� is an alternative to this prob-
lem. MD is the art of modeling complex systems as a col-
lection of particles interacting with each other. The most
typical approach for this is to solve the dynamics of interact-
ing rigid bodies, where their real shapes are approximated by
polyhedra �2�. The most difficult aspect for the simulations is
to model contact interactions. Contact force methods have
been proposed for two-dimensional �2D� models using poly-
gons �3,4�. However, the extension of this method to three-
dimensional �3D� simulations has proven to be extremely
difficult. One reason is because the calculation of the overlap
between two polyhedra is computationally very expensive.
This is the main reason why most of the commercial codes
for particulate systems are still based on simulations with
spheres or clumps of spheres representing complex-shaped
particles �5�.

Recently an alternative solution to model of complex-
shaped particles has been proposed �6�. The method intro-

duces the concept of spheropolygons, which is the object
resulting from dilating a polygon by a sphere. The method
not only guarantees energy balance but also proves to be
much more efficient than previous models to represent com-
plex particle shape �7�. In 3D models, the dilation of a poly-
hedra by a sphere has a precise mathematical meaning using
the Minkowski operator. In our knowledge, Liebling and
Pournin �8,9� were the first to introduce the Minkowski op-
erators in particle-based simulations. In order to calculate the
interactions, they assumed a single contact point between the
particles �8�. This approach, however, leads to forces discon-
tinuities in time and numerical errors such as abrupt creation
of mechanical energy. Using a single contact per particle pair
makes extremely difficult if not impossible to model noncon-
vex particles and therefore its application for fields such as
tribology is limited.

In this Rapid Communication we present a solution to this
problem by �i� introducing a 3D MD technique using
spheropolytopes and �ii� defining a multicontact law for two
bodies that solves most of the problems encountered in pre-
vious models. With it we will show the results of three sets
of simulations dealing with nonconvexity friction: the hopper
granular flow, the true triaxial test and the rough surface
sliding.

II. MODEL

Spheropolytopes are generated from the Minkowski addi-
tion of a polytope by a sphere, which is nothing more than
the object resulting from sweeping a sphere around a poly-
tope �see Fig. 1�. A polytope is a generic mathematical con-
cept that can refer to polygons, polyhedra, or polygonal
curves in 3D. The polytope is regarded as a collection of
features in the 3D Euclidian space: vertices, edges, and
faces. The interaction between two spheropolytopes is calcu-
lated as a function of the distance between their features. The
MD is implemented in a simple, efficient, and elegant algo-
rithm based on the fact that only distances, and neither
Minkowski sum nor volume overlaps need to be calculated.
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The algorithm has also proven to comply with the conserva-
tion laws of physics and the statistical equilibrium �6�. We
believe that this model will lead to a wide range of applica-
tions of MD, as complex particle shape and realistic interac-
tions can be captured in a unified framework using well-
established concepts of MD and computational geometry.

Using the formulas of distance between the features of
two spheropolytopes we calculate the interaction between
them. The force F� ij on the i-spheropolytope by the
j-spheropolytope is taken as a superposition of the interac-
tion between each pair of edges F� �Ei ,Ej� and each pair of
vertex face F� �Vi ,Fj� for the spheropolytope pair,

F� ij = �
Ei,Ej

F� �Ei,Ej� + �
Vi,Fj

F� �Vi,Fj� + �
Vj,Fi

F� �Vj,Fi� . �1�

The force F�Gi ,Gj� associated to the two features �edge-edge
or vertex-face� is assumed to depend on the overlapping
length � between them ��Gi ,Gj�=Ri+Rj −d�Gi ,Gj�, with

d�Gi ,Gj� being the distance between the features of the
spheropolytopes and Ri being the spheroradius of the ith
spheropolytope. The point of contact between the two fea-
tures is calculated by taking the spheres of radius Ri and Rj

centered in the closest points X� i and X� j and finding the inter-
section between the line connecting these two points and the
line connecting the two intersection points of the spheres.
From the point of application of the contact forces we get the
torque associated to the contact force. Once all the forces and
torques are calculated we integrate Newton’s second law us-
ing the Verlet algorithm for the translation coordinates. The
Euler equations form angular momentum is integrated using
the Fincham leap frog algorithm, based on the quaternion
formalism, for the orientation coordinates �10�.

Since the formulas of distance are continuous functions
on the degrees of freedom of the spheropolytopes, the total
force is continuous too. For example, there are no jumps in
the calculation of forces from a vertex changing the face that
is in contact with; the interaction will smoothly change from
one face to the other as the vertex start moving around the
other particle. This avoids the problem of discontinuity in
time of the forces in previous models �2�. Different forces
can be included in this model: for example, a force derived
from a potential function of the distance leads to conserva-
tive systems. Forces depending on the relative velocities at
the contact points lead to dissipative granular materials.
Forces depending on the history of relative velocity at the
contacts represent frictional granular systems. More sophis-
ticated forces can be used to simulate biomolecules. The
electrostatic interaction between molecules can be modeled
by allowing the forces to depend on the closest points be-
tween the features. In this Rapid Communication, a simple
contact force between features is calculated as F� �Gi ,Gj�
=−kn��Gi ,Gj�n� , where kn is an elastic constant. Dissipative
forces proportional to the relative velocity at the contact are
also included to allow relaxation of the systems.

III. HOPPER FLOW

We will start with an interesting application of this model:
the study of the effect of particle shape on the jamming phe-

FIG. 2. �Color online� Top: spheropolytopes generated as sphere
� line segment �rice�, sphere � tetrahedron �tetra�, and sphere �

polyline �yermis�. Bottom: final stage of granular flow when the
particles are discharged from a hopper. Simulations run without
microscopic friction. Convex particles �rice and tetras� flow com-
pletely through the hopper. Nonconvex particles �yermis� jam,
which proves the existence of macroscopic friction due to
nonconvexity.
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FIG. 3. Left: a yermis geometry with four different aspect ratios:
0.3, 0.4, 0.5, and 0.6. The closer is the aspect ratio to 1, the closer
the particle is to a convex �spherical� shape. Right: hopper flow
rates for different aspect ratios. There is a critical aspect ratio
around 0.25, below which particles jam without microscopic
friction.

FIG. 1. �Color online� For the representation of arbitrary-shaped
particles we introduce the mathematical concept of Minkowski
sum. Given two sets of points P and Q in an Euclidean space, their
Minkowski sum is given by P � Q= �x� +y� �x� � P ,y� �Q�. This opera-
tion is geometrically equivalent to the sweeping of one set around
the profile of the other without changing the relative orientation
�Fig. 1�. The spherotetrahedron �right� is obtained by sweeping a
sphere across a tetrahedron profile �left�.
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nomenon of granular flow. The flow may happen when par-
ticles are discharged through a small opening, but particles
may become jammed when the opening is smaller than a
critical value. Modeling of gravity flow has been done using
circular or spherical particles �11�, but the effect of shape on
flow has not been fully investigated. In particular, nonconvex
particles are expected to jam more easily than convex or
circular particles.

Granular flow with convex and nonconvex particles is
presented using the same three particles geometries shown in
Fig. 2. The simplicity of our model allows us to represent the
hopper and the container as spheropolytopes. Contrary to
previous findings �4� our convex-shaped particles do not be-
come clogged in the hopper. This is because we have not
introduced a static frictional force. However, as a striking
result, the nonconvex particles do get stuck even though
there is no static friction.

In order to quantify the effect of nonconvexity in jam-
ming, we check the granular flow for the yermis geometry
varying the aspect ratio �see Fig. 3� defined as r

l+r , with r
being the spheroradius and l the length of the cylinders con-
forming the particle, and keeping the volume constant. In
Fig. 3 the results for several simulations of steady flow rate
vs aspect ratio are shown. We can see that the higher the
aspect ratio, the greater the flow rate. Therefore we can con-
clude that friction due to nonconvexity of the particles hin-
ders the free flow. There is a critical aspect ratio around 0.27
that will always ensure flow through the hopper and marks
the transition from the jammed state to the free state.

IV. TRUE TRIAXIAL TEST

Another test to check macroscopic friction produced by
nonconvex shapes is the true triaxial test. This is shown in
Fig. 4, where six walls �spheroplanes� enclose a sample of
yermis grains. Initially we apply a confining pressure to the
walls and then, after a consolidation time, we set a fixed
velocity in the upper wall to ensure constant strain rate. This
gives us the stress path for the common conventional drained
triaxial test �12,13�.

The most important results are shown in Fig. 4 for the
yermis geometry with aspect ratio equal to 0.3. As can be
seen, after the consolidation the sample shows a failure point
after which it reaches the well-known critical state �14�. This
failure is the peak in the deviatoric �q� to pressure �p� ratio
versus deviatoric strain ��d�. The critical state is shown
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FIG. 4. Results from the true triaxial test for a sample formed of
yermis grains with aspect ratio equal to 0.3. Top-left: deviatoric to
pressure ratio versus deviatoric strain. Top-right: deviatoric to pres-
sure ratio versus volumetric strain Bottom-left: friction angle mea-
sured by the Drucker Prager criterion. The error bars are obtained
by doing the experiment with different confining pressures. A small
error bar indicates that the friction angle is almost independent of
the chosen pressure as expected. Bottom-right: dilatancy angle mea-
sured for each one of the samples for both expansion an compres-
sion tests. Friction coefficient of 0.25 using the Cundall model �3�.
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FIG. 5. Experimental setup
for the study of friction due to
roughness between surfaces. The
spheropolytope surface is just a
face with several edges pumping
out of it �left�. Two of these sur-
faces are put in contact and one of
them is pulled by a spring �right�.
Bottom: spring force vs distance
covered by the spring tip for two
different spring velocities show-
ing the stick-slip �dashed� and
smooth �solid� behaviors reported
in literature.
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clearly in the volumetric strain �v versus deviatoric strain �d
curve as the asymptotic state. All of these features are known
to be present in drained tests on soil samples �12,13�. This
reproduced behavior is part of the validation of our method.

We can apply the Drucker-Prager failure criterion �15� to
find the friction angle as a function of the aspect ratio; the
results are shown in Fig. 4.

As can be seen, the friction angle for both the compres-
sion and the expansion tests decreases with the aspect ratio
showing one interested dependence of the macroscopic fric-
tion in the microscopic geometry. Obviously in the yermis
geometry the particles are interlocked which gives the
sample a higher strength.

Another important quantity is the dilatancy angle defined
as the slope of the volumetric versus deviatoric strain after
the minimum reached when the sample start the expansion. It
is an indication of how easy is to change the volume by shear
deformation. In Fig. 4 it can be seen that samples with a high
aspect ratio are not so susceptible to change their volumes as
samples with low �nonconvex� geometries. While with the
sphere geometry we have that grains easily roll one over
each other due to shearing, with a nonconvex shape, the
grains should overcome the interlocking effect requiring an
initial expansion before they can move freely.

V. ROUGH SURFACE SLIDING

Following the thesis that nonconvexity causes a form of
friction, the proposed model can also study the interaction
between rough surfaces. In Fig. 5 a experimental setup is
shown which is very easy to implement with our model: two
rough surfaces sliding against each other with the upper one

being pulled by a spring moving with a certain velocity. Sev-
eral experiments reported show a stick-slip behavior for low
spring velocities and a smooth phase for high spring veloci-
ties �16,17�. The virtual experiment reproduces this phenom-
enon and serves as a validation for the proposed model �Fig.
5� �18,19�.

VI. CONCLUSIONS

Modeling interacting particles using spheropolytopes has
several advantages with respect to other existing particle-
based models: �i� the possibility to model nonconvex par-
ticles �in our case yermis, hoppers, rough surfaces, etc�, �ii� a
realistic representation of the surface curvature of particles,
�iii� guaranteed compliance with physical laws, �iv� numeri-
cal consistency guaranteed by the continuity in the proposed
contact law and �v� efficiency given by a simple model for
the contact law relying only on distance calculations. This is
radically different from previous approaches where the con-
tact forces are calculated with geometric overlaps.

The most interesting aspect of this model is to provide a
general framework for generic particle shape and contact in-
teractions. Spheropolytopes is a very general shape which
can be used to represent biomolecules, polymers, rocks, me-
teors, etc. Since it provides an easy way to model nonconvex
particles due to its multicontact basis, it can be used also for
the study of tribology with some examples presented in this
Rapid Communication.
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