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We study low-temperature properties of the XY spin model on a negatively curved surface. Geometric
curvature of the surface gives rise to frustration in local spin configuration, which results in the formation of
high-energy spin clusters scattered over the system. Asymptotic behavior of the spin-glass susceptibility sug-
gests a zero-temperature glass transition, which is attributed to multiple optimal configurations of spin clusters
due to nonzero surface curvature of the system. It implies that a constant ferromagnetic spin interaction on a
regular lattice can exhibit glasslike behavior without possessing any disorder if the lattice is put on top of a
negatively curved space such as a hyperbolic surface.
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The minimum energy principle that a physical system
obeys may be broken by applying external conditions. One
such condition, which has profound consequences in the er-
godicity of the system, is geometric confinement to a curved
surface. A typical example is an ensemble of classical elec-
trons confined to a spherical surface �1�. It exhibits so many
quasistable configurations that a unique ground state is
hardly observed within a feasible time scale �2�. These long-
lived states result from the incompatibility between crystal-
line order and surface curvature. In fact, partial disorders
such as defects and dislocations are necessary in order for
local crystalline order to propagate through a curved surface,
wherein various possible configurations of disorders cause
many frustrated states. Such a curvature-induced frustration
has also been observed on more general geometries �2,3�.

Another important consequence of nonzero surface curva-
ture is a breakdown of an orientational order. When interact-
ing constituents on a curved surface have orientational de-
grees of freedom, they can no longer show perfect
orientational order. The loss of perfect orientational order is
due to the noncommutative property of parallel transport of
vectors �4�. On a curved surface, parallel transport of a vec-
tor along a closed loop does not maintain its direction but
yields a rotation after the round trip. This makes it impos-
sible for all vectors to orient the same direction yielding
multiple frustrated states at low temperatures even if the sys-
tem does not possess any disorder �5�. These facts imply a
novel class of orientational glasses free from any kind of
disorder, which is in contrast with ordinary spin glasses
dominated by certain disorder �see, e.g., Refs. �6,7� for at-
tempts at glass formation in absence of intrinsic disorder�.
Understanding the nature of such curvature-induced glass
transition, if it exists, should be crucial from viewpoints of
statistical physics and soft material sciences. Particularly in

the latter field, systems with curved or fluctuating geometries
are accessible to synthesize �8�, although the interplay be-
tween the geometry and thermodynamic properties of al-
lowed ordered states still remains to be explored �9�.

There are two well-established approaches to analyze the
orientational order of a physical system: discrete lattice
simulations and continuum limit approximations. The former
approach is preferable to study actual evolutions of orienta-
tional order. On curved surfaces, however, one cannot con-
struct regular lattices with congruent polygons, in general.
Hence, the resulting lattice usually involves structural de-
fects as mentioned in the first paragraph. These defects may
give additional contributions to the allowed orientational
configuration, thus should be removed when we are to ex-
tract purely curvature effects. This can be achieved by em-
ploying a surface having constant negative Gaussian curva-
ture called a hyperbolic surface �10�. This curved surface
enables to construct a wide range of regular lattices �called a
hyperbolic lattice� on it, serving as a platform to address the
issue.

In this Rapid Communication, we consider effects of
curvature-induced frustration on the orientational order in the
XY spin model defined on a hyperbolic lattice. Monte Carlo
�MC� simulations are used to evaluate the spin configura-
tions at low temperatures revealing the formation of high-
energy spin clusters distributed in the system. We propose
that these configurations are multiply degenerate due to
curvature-induced frustration, which may lead to a zero-
temperature glass transition as supported by calculating the
spin-glass susceptibility.

The hyperbolic lattice we have used is depicted in Fig.
1�a� in terms of the Poincaré disk representation �11�. The
lattice consists of equilateral heptagons in the metric of the
hyperbolic surface so that we call it a regular heptagonal
lattice. Seven vertices in the central heptagon make the first
layer denoted by l=1, which are surrounded in a concentric
way by the second �l=2� and third �l=3� layers. The number
of vertices N�l� increases exponentially with l, making this
lattice infinite dimensional. This infinite-dimensional prop-
erty has been found to yield various nontrivial thermody-
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namic properties of physical systems defined on this lattice
�12�. The relevance to the mean-field behavior observed in
small-world networks has also been discussed �13�.

Let us imagine two XY spins i and j confined in the sur-
face and a geodesic between them. On the analogy of the
continuum limit, we suppose that i’s phase is experienced by
j after parallel transported to j’s position along the geodesic.
The Hamiltonian is then given by

H = − J�
�ij�

cos��i − � j − �ij� , �1�

where J is the coupling constant, the sum is over all nearest
pairs in the system, and �i represents the spin variable at the
ith site. Nonzero surface curvature manifests in the presence
of the additional angle �ij. The angle �ij describes the
amount that i’s phase acquires after the parallel transport. In
the language of differential geometry, this additional angle
stems from the affine connection �4� between two neighbor-
ing sites along the geodesic line. Figure 1�b� illustrates how
to actually determine �ij: we obtain positions of i and j on
the Poincaré disk by hyperbolic tessellation �10�. If they lie
on a line through the origin of the Poincaré disk, the geode-
sic is represented by a straight line yielding �ij =0. Other-
wise, the geodesic appears as an arc of a circle that meets the
circumference of the Poincaré disk at a right angle. The po-
sitions of i and j together with the origin of this circle make
an angle, which determines �ij.

The spins at sites i and j are parallel when �i−� j −�ij
=0. �Note that �ij =−� ji to keep the spin-spin interaction
symmetric.� Accordingly, parallel transport of the ith spin
along seven edges of a heptagon alters the value of �i caus-
ing frustration in local spin configuration. It should be em-
phasized that the local frustration in our system has no rela-
tion with any quenched disorder and originates purely from
the intrinsic geometry of the surface. Such a disorder-free
frustration is in contrast with disorder-driven frustrations in
random gauge XY models �14�. It is also notable to see how
this differs from such frustrations as observed in the triangu-
lar antiferromagnetic Ising �AFI� model �7�: while the hex-
agonal symmetry in AFI allows the presence of loose spins
as well as the fully ordered configuration, none of these can
be found in our system. We point out that the sum of �ij
around each heptagon is conserved as �P�ij =2�f with
f =−1 /6; here �P represents the summation around a

plaquette in a counterclockwise direction and f characterizes
the strength of frustration. The quantitative invariance of f
for all constituent heptagons is analogous to that in the uni-
formly frustrated XY model on a flat plane �15�. The latter
model describes a superconducting film penetrated by exter-
nal magnetic flux �16� and phase ordering in it is still under
active investigations �17�. It is known that the uniformly
frustrated XY model exhibits glassy behavior on a square
lattice when f is irrational �15,18�. We should notice, never-
theless, that a direct analogy between the two systems is
hindered by topological differences between planar and hy-
perbolic lattices. In fact, the hyperbolic lattices show glassy
behavior for a rational f as demonstrated below.

To equilibrate the system described by Eq. �1�, we employ
MC simulations incorporated with the parallel tempering
�PT� method �19�. It is a numerical technique devised to take
averages efficiently over the state space. In this method, MC
calculations are carried out simultaneously at different tem-
peratures, which significantly saves computational cost for
equilibrating large-scale frustrated systems. Suppose that we
have spin configurations ��i	Tk

and ��i	Tk+1
running at tem-

peratures T=Tk and Tk+1, respectively. Without loss of gen-
erality, we may set Tk�Tk+1. Performing the standard
Metropolis algorithm on the configurations, we regularly
check their energies E���i	Tk

� and E���i	Tk+1
� and exchange

these configurations with a probability of
min�1,e−�E���i	Tk

�−E���i	Tk+1
���1/Tk+1−1/Tk��. That is, when ��i	Tk+1

is trapped in a local energy minimum, PT makes it probe a
wider region of the state space by passing it to a higher
temperature, Tk. If it finds a state with a sufficiently low
energy, the vicinity can be checked in more detail by lower-
ing its temperature again.

Figure 2 plots the resulting spin configurations at high and
low temperatures. In the former two figures, there appears no
regularity in the distribution of high-energy bonds �denoted
by bonds with darker tone�. On the contrary, at low T, high-
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FIG. 1. �a� A heptagonal lattice with l=3 in the Poincaré disk.
The circumference of the disk represents the points at infinity. �b�
Parallelism between two spins in the Poincaré disk. Parallel trans-
port of an arrow from ith to jth site along the geodesic curve �dot-
ted� rotates the arrow by �ij.
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FIG. 2. �Color online� Snapshots of spin configurations with
l=7, where a darker line represents a higher-energy bond. �a� A
high-temperature regime with T=1.00 and �b� a closer look at the
surface. �c� A low-temperature regime with T
0.06 and �d� its
magnified image, where clustering structures are clearly visible.
The bond energy and temperature T are in units of J and J /kB,
respectively.

BAEK, SHIMA, AND KIM PHYSICAL REVIEW E 79, 060106�R� �2009�

RAPID COMMUNICATIONS

060106-2



energy bonds are merged into localized regions forming clus-
ters. It implies that the formation of such high-energy clus-
ters is energetically favorable: even though frustration cannot
be removed, they may be shifted and confined into small
regions, lowering the energy in other regions instead. Fur-
thermore, we have observed that the locations of such high-
energy clusters remain floating by thermal fluctuations.
Thereby the distribution of high- and low-energy bonds is
not unique making the ground state degenerate. Indeed, we
find that each high-energy cluster in Fig. 2 appears as a to-
pological defect, i.e., a negative vortex to reduce the free-
energy cost induced by the curvature �20�. It is noteworthy
that those plots show a similarity to the results in Ref. �21�,
which reports that defects of a glass-forming liquid in a
negatively curved space are concentrated in local regions at
low T. The origin of negative vortices differs inherently from
thermal dissociation of a vortex-antivortex pair on a hyper-
bolic surface whose properties were considered in Ref. �22�.
Still, we note that if the interaction between vortices be-
comes short ranged due to curvature �22�, this effect may be
relevant in exhibiting glassy features.

The glassy behavior is quantified by the relaxation time t0
for the system to evolve from the configurations obtained in
PT. To this aim, we calculate autocorrelation

C�t� =
1

N�
�
t�=1

� ��
j=1

N

ei��j�t+t��−�j�t���� , �2�

with the standard Metropolis algorithm for �=104 MC time
steps. We extract t0 by fitting C�t� with a stretched-
exponential function, C�t��exp�−�t / t0�b� �23�, characteriz-
ing very slow relaxation in glasses. Figures 3�a� and 3�b�
display the measurements for l=7 and fitting results. The

relaxation behavior is described quite well by the simple
Arrhenius form, t0�exp�� /T�, in which � indicates the ac-
tivation energy. It is noteworthy that the persistent linearity
of log t0 with respect to 1 /T shown in Fig. 3�b� �i.e.,
T-independent activation energy �� is commonly observed in
supercooled liquids such as v-SiO2 and v-GeO2, in which
spatiotemporal fluctuation of local configuration leads to
critical slowing down �24�.

The presence of a glass transition as well as transition
temperature can be probed by observing the divergence of
the spin-glass susceptibility designated by �SG. In perform-
ing PT to calculate �SG, we prepare two replicas 	 and 
 for
each T and N. Then we obtain the spin-glass susceptibility
�SG=NS�� ; t0�� /�, where

S��;t0�� � �
t�=1

� � 1

N
�
j=1

N

ei��j
	�t0�+t��−�j


�t0�+t����2

, �3�

with the measurement time � after some equilibration time t0�
�25�. Figure 4�a� gives the T dependence of �SG�T ,N� with
varying N’s. Our simulation code can properly handle the
numerical precision up to l=7, and the cases for l�5 are
excluded due to finite-size effects. We see that �SG begins to
increase at low T. In order to evaluate the glass transition
temperature Tg, �SG is plotted against N on a log-log scale in
Fig. 4�b�. Strikingly, all the results of �SG give no sign of
attaining a power law of N at any finite T we have tried. This
implies that a true singularity lies only at T=0. We thus
conclude that Tg=0; i.e., this system undergoes a zero-
temperature glass transition. More detailed finite-size analy-
sis remains to be done largely due to lack of available system
sizes. One interesting point is that a hyperbolic lattice does
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FIG. 3. �Color online� �a� Autocorrelations of spin configurations, given in Eq. �2�, together with fitting results with a stretched-
exponential form. The results are obtained for T=0.250, 0.167, 0.125, 0.100, 0.083, and 0.067, from bottom to top. �b� Relaxation time t0 as
a function of inverse temperature from the stretched-exponential fit. Inset: b as a function of 1 /T from the same fit. It approaches unity at
high T leading to a simple exponential form.
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FIG. 4. �Color online� �a� Spin-glass susceptibility �SG as a function of T. �b� �SG plotted against N−1 at T=0.100, 0.083, 0.071, and
0.063, from bottom to top. It does not exhibit a power law with respect to N for any finite T.
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not possess scale invariance as it has its own length scale,
i.e., the radius of curvature �26�, which may modify the na-
ture of the singularity.

In summary, we have demonstrated an apparent zero-
temperature orientational glass transition in the XY spin
model on a negatively curved surface. MC simulations re-
vealed that lowering T makes high-energy bonds gather to
form clusters, which remain floating with very long relax-
ation times. The long lifetime fluctuation in cluster distribu-
tion follows an Arrhenius-type relaxation at low T and the
singularity of spin-glass susceptibility is expected to arise
only at Tg=0. These observations are consequences of geom-

etry of the surface, where curvature-induced frustration in
local �and thus global� spin configurations yields ground-
state degeneracy.
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