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The distance of closest approach of particles with hard cores is a key parameter in statistical theories and
computer simulations of liquid crystals and colloidal systems. In this Brief Report, we provide an algorithm to
calculate the distance of closest approach of two ellipsoids of arbitrary shape and orientation. This algorithm is
based on our previous analytic result for the distance of closest approach of two-dimensional ellipses. The
method consists of determining the intersection of the ellipsoids with the plane containing the line joining their
centers and rotating the plane. The distance of closest approach of the two ellipses formed by the intersection
is a periodic function of the plane orientation, whose maximum corresponds to the distance of closest approach
of the two ellipsoids.
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I. INTRODUCTION

The distance of closest approach of particles with hard
cores is a key parameter in statistical theories and computer
simulations of liquid crystals and colloidal systems. Al-
though ellipsoids are the simplest nonspherical shapes, no
analytic solution exists for the distance of their closest ap-
proach. For this reason, in liquid crystal theories, sphero-
cylindrical hard cores are often used, for which the excluded
volume and the shape of the excluded region can be exactly
determined �1,2�. The latter is important for the determina-
tion of the effective single-particle potential in mean-field
theories �2�. In computer simulations of ellipsoids, overlap
criteria are typically used �3,4�. We have recently succeeded
in obtaining a closed-form analytic expression for the dis-
tance of closest approach of two hard ellipses of arbitrary
size and eccentricity �5�. Here we present an algorithm for
finding the closest approach of two ellipsoids based on this
analytic result. This algorithm may be useful for calculating
excluded volumes and related quantities, such as elastic con-
stants, for liquid crystals and colloids, and it may also pro-
vide an overlap criterion for ellipsoids in computer
simulations.

II. DESCRIPTION AND SOLUTION OF THE PROBLEM

Consider two ellipsoids, each with a given shape and ori-
entation, whose centers are on a line with a given direction.
We wish to determine the distance between the centers when
the ellipsoids are in point contact externally. This distance of
closest approach is a function of the shapes of the ellipsoids
and their orientation. There is no analytic solution for this
problem, since solving for the distance requires the solution
of a sixth-order polynomial equation �5�. Here we present an
algorithm to determine this distance based on our analytic
results for the distance of closest approach of ellipses in two

dimensions �2D�, which can be implemented numerically.
Our algorithm consists of three steps.

�1� Constructing a plane containing the line joining the
centers of the two ellipsoids and finding the equations of the
ellipses formed by the intersection of this plane and the el-
lipsoids.

�2� Determining the distance of closest approach of the
ellipses; that is, the distance between the centers of the el-
lipses when they are in point contact externally.

�3� Rotating the plane until the distance of closest ap-
proach of the ellipses is a maximum. The distance of closest
approach of the ellipsoids is this maximum distance.

We detail steps 1 and 3 in the sections below. Step 2 is
described in Refs. �5,6�.

A. Step 1: Ellipses formed by the intersection of the ellipsoids
and the plane

The shapes of the ellipsoids are specified by the lengths a,
b, and c of their principal axes; the orientations are given by

the unit vectors l̂, m̂, and n̂ along the principal axes �Fig. 1�.
The equations of the ellipsoids have the form
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FIG. 1. �Color� Two externally tangent ellipsoids intersecting
with a plane containing the line joining the centers. The semiaxes of
the ellipsoid on the left are 10, 4, and 2, while those of the one on
the right are 8, 6, and 2. The vector joining the centers has direction
�1,0 ,0�. The distance of their closest approach is 14.7163.
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r · � l̂l̂

a2 +
m̂m̂

b2 +
n̂n̂

c2 � · r = 1. �1�

We next assume that their centers are on a line whose direc-

tion is given by d̂.
We construct a plane which contains the line connecting

the centers of the ellipsoids. The normal to the plane is p̂,

and we define ŝ= p̂� d̂.
Since we want to rotate the plane, we define the initial

direction of the normal p̂0 as

p̂0 =
d̂ � l̂1

	d̂ � l̂1	
. �2�

If p̂0=0, then

p̂0 =
d̂ � m̂1

	d̂ � m̂1	
. �3�

We denote rotation by the angle �, then

p̂ = �cos ��p̂0 + �sin ���p̂0 � d̂�, � � �0,�� . �4�

The unit vectors along the principal axes of the ellipsoids can
be expressed in term of these coordinates,

l̂ = lxd̂ + lyŝ + lzp̂ , �5�

m̂ = mxd̂ + myŝ + mzp̂ , �6�

n̂ = nxd̂ + nyŝ + nzp̂ . �7�

Substitution into the equations of the ellipsoids, and not-
ing that in the plane r̂ · p̂=0, gives, for the intersection of
each ellipsoid with the plane,

r · 
� lx
2

a2 +
mx

2

b2 +
nx

2

c2�d̂d̂ + � lylx

a2 +
mymx

b2 +
nynx

c2 �ŝd̂

+ � lxly

a2 +
mxmy

b2 +
nxny

c2 �d̂ŝ + � ly
2

a2 +
my

2

b2 +
ny

2

c2�ŝŝ� · r = 1,

which can be written as

rAr = 1, �8�

where

A = �d̂d̂ + �ŝd̂ + �d̂ŝ + �ŝŝ , �9�

and we note that A is in 2D, in the space formed by the

orthogonal vectors d̂ and ŝ.
We next write

A = uI − vk̂k̂ . �10�

If u, v, and k̂ are determined, the equation of the ellipse in
the plane is obtained in standard form �5,6�. We write

k̂ = cos �d̂ + sin �ŝ ,

and then

A = ��d̂d̂ + �ŝd̂ + �d̂ŝ + �ŝŝ�

= uI − v�cos �d̂ + sin �ŝ��cos �d̂ + sin �ŝ� .

Solving for �, v and u gives

v = �4�2 + �� − ��2, �11�

� =
1

2
tan−1� − 2�

� − �
� , �12�

and

u = � + v sin2 � . �13�

This enables writing the equations for the ellipses in standard
form, and the analytic results of Refs. �5,6� can be used to
determine the distance of closest approach d��� for the two
ellipses as function of the orientation � of the plane. The
maximum distance of closest approach of the ellipses is the
distance of closest approach dc of the two ellipsoids.

B. Step 3: Maximizing the distance of closest approach of the
ellipses as function of orientation of the plane

1. Uniqueness of the maximum

As the plane is rotated about the line joining the centers of
the ellipsoids, the distance of closest approach of the ellipses
has only one maximum and one minimum as function of the
angle of rotation in the interval �0,��. Consider the intersec-
tion of the two ellipsoids with the plane with arbitrary orien-
tation. The distance of closest approach of the ellipses is d�
�	dc�. If the two ellipsoids are now placed so that their
centers are separated by distance d�, they will interpenetrate,
and their intersection will be one or two simple closed
curves. Since the two ellipses on the plane are now tangent
to each other at the point of contact, this point must be on
one of the intersection curve as well as on the plane. If there
are two intersection curves, this point will be on the curve
which is closer to the line of centers. Furthermore, this point
is the only point that the plane shares with the intersection
curve. That is because if the plane were to share two points
with the intersection curve, then either there should be an-
other two ellipses on the plane tangent to each other, which
is geometrically impossible, or the two ellipses share two
common points, which contradicts the fact that they are tan-
gent. Thus the plane has only one point in common with the
intersection curve. Since the plane contains only one point
on the intersection curve, there are at most two orientations �
of the plane containing only one point on the intersection
curve. Therefore there are at most two values of � giving the
same distance d�, which guarantees that there is a unique
maximum and a unique minimum within the interval �0,��.

2. Fast algorithm to locate the maximum

Standard numerical methods exist to find the extrema of
functions. For example, the line search algorithm is an effi-
cient method of unconstrained optimization �7�. More effi-
cient special schemes exist which exploit special properties
of functions. The golden section search is a fast scheme to
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determine the extremum of a unimodal function �8�. Since
d��� possesses a maximum as well as a minimum, the golden
section search is not applicable. We have developed a fast
algorithm, a modified version of the golden section search, to
find the maximum of a periodic function with a single maxi-
mum and a single minimum per period.

We note that the maximum value of � must occur between
�1=0 and �2=�. As in the golden section search, we choose
two points �3 and �4 inside the interval ��1 ,�2�, and they
must satisfy

�4 − �1 = �2 − �3 =
1



��2 − �1�, 
 =

1 + �5

2
. �14�

We next examine the relative positions of the first three left-
most values of the function. The three possible scenarios are
illustrated in Fig. 2. In two of them, Figs. 2�a� and 2�b�, the
interval size can be reduced by discarding one subinterval at
one end. In the next step, the remaining three points are
relabeled, and one more point is chosen from the larger sub-
interval according to Eq. �14�. In the third case, Fig. 2�c�, the
derivative at the first point must be evaluated in order to
decide in which of the two subintervals the maximum is
located. If the derivative is positive, the maximum is in the
subinterval immediately to the right of the first point. If it is
negative, the maximum is in the second disjoint subinterval.
If the derivative is zero, the maximum is at the first point.
Once the subinterval containing the maximum is identified,
the appropriate subintervals are discarded, and two new
points are chosen according to Eq. �14� in the remaining
subinterval. The process is then repeated until the size of

interval reaches the specified tolerance. This algorithm is
fast, with the same speed of convergence as the golden sec-
tion search, i.e., the size of the search interval converges
linearly to zero.

C. Computational details

To make the results presented in this Brief Report more
accessible, we have provided our source code in FORTRAN

and C implementing this algorithm in the Appendix of Ref.
�9�. In both programs, we used double precision throughout.

We note that in our implementations there may be a loss
of accuracy for ellipsoids with large aspect ratios �e.g.,
�200� when using double precision. In the ellipse program,
when the aspect ratio gets large, the ratios of the coefficients
in the quartic equation get extremely large, and large number
cancellations and/or rounding errors can lead to inaccurate
results. If the aspect ratios of the ellipsoids are large
��200�, quadruple precision should be used. Benchmarks of
computation time are given in the Appendix of Ref. �9�.

We point out that the existing overlap criteria proposed by
Vieillard-Baron �3� and by Perram and Wertheim �4� can also
be used to determine the distance of closest approach. This
can be accomplished via a 1D search �as in our case�, essen-
tially by varying the center-to-center distance and avoiding
overlap. However, Ref. �3� works only for identical ellip-
soids of revolution, whereas our scheme works in general.
Reference �4� works for general ellipsoids; however, an op-
timization algorithm is required to determine overlap, mak-
ing this scheme effectively a 2D search. Finally, our algo-
rithm provides information that others do not, namely, the
contact point.

III. CONCLUSION

We have developed an algorithm to calculate the distance
of closest approach of two arbitrary hard ellipsoids. The al-
gorithm is based on analytic results in the 2D case; it consists
of determining the distance of closest approach of two el-
lipses formed by the intersection of a plane with the ellip-
soids as the plane is rotated. The distance of closest approach
of the ellipsoids is the maximum distance of closest approach
of the ellipses. We have shown that there is only a single
maximum and have developed a fast algorithm to find it. We
expect these results to be useful in theoretical and numerical
studies of condensed-matter systems consisting of ellipsoidal
particles.
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If f1 ≤ f4 ≤ f3 or f4 ≤ f1 ≤ f3,
then θc ∈ [θ1, θ4], the interval [θ4, θ2]
is discarded, and a new point is
chosen between θ1 and θ3.

If f3 ≤ f4 ≤ f1 or f4 ≤ f3 ≤ f1,
(c.1) if f ′(θ1) ≥ 0 then θc ∈ [θ1, θ3],

and the interval [θ3, θ2] is discarded;
(c.2) if f ′(θ1) < 0 then θc ∈ [θ4, θ2],

and the interval [θ1, θ4] is discarded.
In both cases, two new points are
chosen in the new interval.

(a)

(b)

(c)

If f1 ≤ f3 ≤ f4 or f3 ≤ f1 ≤ f4,
then θc ∈ [θ3, θ2], the interval [θ1, θ3]
is discarded, and a new point is
chosen between θ4 and θ2.

FIG. 2. Diagram illustrating scenarios for identifying the sub-
interval containing the maximum.
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