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We present an efficient variance-reduced particle simulation technique for solving the linearized Boltzmann
transport equation in the relaxation-time approximation used for phonon, electron, and radiative transport, as
well as for kinetic gas flows. The variance reduction is achieved by simulating only the deviation from
equilibrium. We show that in the limit of small deviation from equilibrium of interest here, the proposed
formulation achieves low relative statistical uncertainty that is also independent of the magnitude of the
deviation from equilibrium, in stark contrast to standard particle simulation methods. Our results demonstrate
that a space-dependent equilibrium distribution improves the variance reduction achieved, especially in the
collision-dominated regime where local equilibrium conditions prevail. We also show that by exploiting the
physics of relaxation to equilibrium inherent in the relaxation-time approximation, a very simple collision
algorithm with a clear physical interpretation can be formulated.
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I. INTRODUCTION

Solution methods for the Boltzmann transport equation
have received renewed attention in connection with the re-
cent focus on small-scale devices, where particle-mediated
�molecule, phonon, electron, or photon� transport occurs
over length scales that are on the order of or smaller than the
mean free path �1�.

The relaxation-time approximation is a widely used sim-
plification to the Boltzmann collision integral that provides a
reasonably accurate description of a number of collisional
phenomena. It is commonly used for rarefied gas flows
�2–5�—where it is referred to as the Bhatnagar-Gross-Krook
�BGK� model—as well as for electron �6,7�, phonon �1,8,9�,
and radiative �5� transport. One of the disadvantages of the
BGK model is that it yields a Prandtl number of unity, mak-
ing the study of simultaneous heat and momentum transfer
problems �2� difficult. To address this deficiency, a modified
relaxation model with a variable Prandtl number, known as
the ellipsoidal statistical model �2�, has been developed.

Solving the Boltzmann equation, in general, remains a
formidable task due to the high dimensionality of the distri-
bution function and the complexities associated with the col-
lision integral. Particle methods are the prevalent solution
method for simulating the Boltzmann equation due to their
natural treatment of the advection operator, ability to capture
traveling discontinuities in the velocity distribution function,
and straightforward application to complicated geometries.
For dilute gas flows, the most widely used such method is
the direct simulation Monte Carlo �DSMC� method �10�.

When simulating systems close to equilibrium �e.g., low-
Mach-number dilute gas flows, electron transport in the low-
field limit, etc.�, traditional particle methods �such as DSMC�
exhibit an unacceptably low signal-to-noise ratio. For ex-
ample, using equilibrium statistical mechanics �11�, one can

show that the relative statistical uncertainty in any flow ve-
locity component is given by

�ui

u0
=

1
�MNcell

1

Ma��
, �1�

where �ui
is the standard deviation in component i of the

flow velocity, u0 is a reference velocity, M is the number of
independent samples, Ncell is the number of particles per
computational cell, Ma is the local Mach number �based on
u0�, and � is the ratio of specific heats. Thus, as Ma becomes
small �typical of gas flows in microdevices�, the computa-
tional cost becomes prohibitive.

Most of the previous approaches to reducing the statistical
uncertainty associated with particle simulations �i.e., vari-
ance reduction� have focused on the original Boltzmann
�hard-sphere-type� collision model. Baker and Hadjiconstan-
tinou �12� originally proposed the concept of variance reduc-
tion by simulating only the deviation from equilibrium
within the context of the original Boltzmann equation. Chun
and Koch �13� proposed a variance-reduced particle scheme
for the linearized hard-sphere model by introducing ghost
particles and particle weights to simulate the deviation from
a fixed equilibrium distribution; this approach required a par-
ticle cancellation scheme �leading to a discretized velocity
space� in order to prevent an unbounded increase in the num-
ber of simulated particles. Baker and Hadjiconstantinou
�14,15� proposed an alternative variance-reduced particle
scheme in terms of deviational particles �particles represent-
ing the deviation from equilibrium� that may be positive or
negative; this approach again required a particle cancellation
scheme for stability.

Building on the ideas of Baker and Hadjiconstantinou
�14,15�, Homolle and Hadjiconstantinou �16,17� proposed a
particle scheme which uses a special formulation of the hard-
sphere collision operator to achieve stability without particle
cancellation. This scheme is known as low-variance devia-
tional simulation Monte Carlo �LVDSMC�. Further theoreti-
cal analysis of deviational methods can be found in �18�.
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In this paper, we present a deviational method for treating
the relaxation-time approximation which, as discussed
above, is widely used within the applied physics community.
This work takes advantage of the similarities between the
BGK and the LVDSMC collision operators to develop a
stable algorithm �not requiring a particle cancellation
scheme�. As explained in detail below, in the method pro-
posed here we simulate the deviation from a space-
dependent equilibrium distribution; this results in a substan-
tially different algorithm compared to methods which
simulate the deviation from a spatially homogeneous equilib-
rium distribution, such as the one recently proposed by Had-
jiconstantinou et al. �19�. In particular, we show that under
linearized conditions, the resulting collision algorithm is
very simple and efficient. This algorithm is also in line with
the physical interpretation of the collision integral; specifi-
cally, the action of the collision integral can be implemented
as a relaxation of the underlying equilibrium distribution to-
ward the local equilibrium distribution and removal of devia-
tional particles from the simulation. In terms of variance re-
duction achieved, our results suggest that use of a spatially
dependent equilibrium distribution improves variance reduc-
tion, especially at low Knudsen numbers where local equi-
librium conditions prevail. In this paper we also demonstrate
that deviational methods can be appropriately symmetrized
to achieve second-order convergence in time; additionally,
we introduce the use of the generalized ratio-of-uniforms
method in deviational methods as a means of increasing the
efficiency of sampling distributions.

Pareschi �20� and Dimarco and Pareschi �21� also studied
the relaxation-time approximation and developed a discrete
velocity approach which decomposes the distribution func-
tion into a convex combination of an equilibrium and a non-
equilibrium distribution, with the latter represented by posi-
tive particles. These studies �20,21�, which were primarily
focused on the Euler hydrodynamic limit, studied the effect
of a time-varying equilibrium distribution, which unfortu-
nately becomes nonequilibrium upon action of the advection
operator, thus requiring reconstruction.

A brief outline of the paper is as follows: background
material for the relaxation-time approximation and variance
reduction is introduced in Sec. II; our particle method for the
linearized Boltzmann equation is developed in Sec. III and
summarized in Sec. IV, where the order of time convergence
is also discussed. Several validation test cases are consid-
ered, and the results are presented in Sec. V. We conclude in
Sec. VI by discussing the features and differences of the
present method to other methods. Finally, the application of
the generalized ratio-of-uniforms method, an efficient tech-
nique for sampling distributions, is outlined in the Appendix.

Although our method is applicable to any physical system
which can be modeled by the Boltzmann equation in the
linearized relaxation-time approximation, for simplicity we
will develop the theory based on a dilute gas flow model;
extension to other systems of interest is straightforward.

II. BACKGROUND

The Boltzmann equation in the relaxation-time approxi-
mation is given by

� f

�t
+ c ·

� f

�x
+ a ·

� f

�c
= −

f − f loc

tr
, �2�

where f�x ,c , t� is the particle distribution function, t is the
time, x is the spatial coordinate, c is the particle velocity, a is
the external force field per unit mass, and tr is the relaxation
time. For the sake of simplicity, we will assume that a is
zero; extension to a�0 directly follows. The local equilib-
rium particle density function is a Maxwell-Boltzmann dis-
tribution,

f loc =
n

�2�RT�3/2exp�−
�c − u�2

2RT
� , �3�

in terms of the local density n, velocity u, and temperature T.
For convenience, this equation is made dimensionless

based on the reference number density n0, temperature T0,
most probable speed c0=�2RT0, and a characteristic length

scale L. The dimensionless variables are therefore f̂ =c0
3f /n0,

t̂=c0t /L, ĉ=c /c0, and x̂=x /L, yielding

� f̂

� t̂
+ ĉ ·

� f̂

� x̂
= −

tr,0

tr

f̂ − f̂ loc

k
. �4�

Here, tr,0 is the relaxation time at reference conditions and
k=c0tr,0 /L is a modified Knudsen number, which is related to
the standard definition of Kn �ratio of the mean free path to
L� by k=

��
2 Kn. The local equilibrium distribution in dimen-

sionless form is f̂ loc= n̂��T̂�−3/2e−�ĉ − û�2/T̂, which is now de-
fined in terms of the dimensionless number density n̂=n /n0,

mean velocity û=u /c0, and temperature T̂=T /T0.
Variance reduction is achieved by simulating the particle

distribution function f̂ = f̂MB+ f̂d in two parts: an equilibrium

�Maxwell-Boltzmann� distribution f̂MB and the deviation

from the equilibrium distribution f̂d. The distribution f̂MB

= n̂MB��T̂MB�−3/2e−�ĉ − ûMB�2/T̂MB is characterized by the param-

eters �n̂MB, ûMB, T̂MB� which may be spatially variable; the

distribution f̂d, which represents a deviation from the equi-
librium distribution, is characterized by signed particles.

Evolution rules for f̂MB and f̂d are derived below.

III. PARTICLE METHOD FOR THE LINEARIZED
BOLTZMANN EQUATION

The particle simulation can be initialized after selecting

an initial equilibrium distribution f̂MB. Although this choice

is in principle arbitrary, an appropriately chosen initial f̂MB

reduces the number of particles required to simulate the de-
viation therefrom and thus minimizes the computational cost.
If the system is initially at equilibrium, it is typically wise to

identify f̂MB with the initial equilibrium distribution; this re-
quires no deviational particles to describe the system initial
state �nonequilibrium then originates at the walls or source
terms which generate deviational particles as explained in
later sections�. If the system initial state is nonequilibrium,

then an appropriate initial f̂MB is a nearby equilibrium state;
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the deviational distribution is then generated by sampling

f̂d= f̂ − f̂MB.
As in DSMC, a parameter known as the effective number,

Neff, is used to relate the number of simulated particles to
physical particles. However, in contrast to DSMC, where the
number of simulated particles is solely determined by Neff
and the number of physical particles, in the present method
the number of simulated particles depends on the departure

from equilibrium since particles are used to simulate f̂d, a
fraction of the total distribution. Formally, we represent the

deviational distribution as f̂d=Neff	psp��x̂− x̂p���ĉ− ĉp�,
where x̂p are the particle positions, ĉp are the particle veloci-
ties, and sp�=�1� are the particle signs.

Typical of particle methods, the simulation proceeds by
using a splitting method, whereby integration in time with
time step �t̂ is split into a collisionless advection substep and
a collision substep. During the collision substep, the effect of
collisions is simulated in a spatially homogeneous fashion
within spatial cells of characteristic linear dimension �x.
With this in mind, in our simulation we take the parameters

�n̂MB, ûMB, T̂MB� to be constant within each cell. This choice
also impacts the advection substep as explained below.

The collision and advection substeps are now discussed in
more detail.

A. Collision substep

Introducing f̂ = f̂MB+ f̂d into the right-hand side of Eq. �4�
yields �after appropriate linearization�


 � f̂

� t̂
�

coll

=
f̂ loc − f̂MB

k
−

f̂d

k
. �5�

As shown in a previous method by Hadjiconstantinou et al.

�19�, the collision step may be simulated by treating f̂MB as
constant �e.g., absolute equilibrium� and treating the first and
second terms on the right-hand side as a source and a sink
term for deviational particles, respectively. Here, however,

we proceed by allowing f̂MB to vary as a function of space
�18� and be updated once every time step by introducing an

arbitrary change � f̂MB. In other words, we write


 � f̂

� t̂
�

coll

�t̂ = 
�t̂

k
� f̂ loc − f̂MB� − � f̂MB� + � f̂MB −

�t̂

k
f̂d.

�6�

In the linearized regime, it is possible to make the brack-
eted term in the right-hand side �above� equal to zero by

choosing � f̂MB appropriately; this change in f̂MB is accom-

plished by updating the properties �n̂MB, ûMB, T̂MB�. The final
term is implemented by deleting deviational particles with
probability �t̂ /k.

We now proceed to find the appropriate form of � f̂MB that
makes the first term on the right-hand side of Eq. �6� equal to

zero by expanding f̂MB and f̂ loc about a fixed equilibrium

distribution f̂0=�−3/2e−ĉ2
, where ĉ= �ĉ�; the result for f̂MB is

f̂MB = �1 + �MB + 2ĉ · ûMB + �ĉ2 − 3
2�	MB� f̂0, �7�

while a similar result is obtained for f̂ loc. Here, �= n̂−1 and

	= T̂−1 are the perturbations from the equilibrium density
and temperature, respectively. From Eq. �7� we obtain

� f̂MB = ���MB + 2ĉ · �ûMB + �ĉ2 − 3
2��	MB� f̂0, �8�

which can be used to show that, to linear order, the first term
on the right-hand side of Eq. �6� is identically zero when the
Maxwell-Boltzmann properties are updated according to

��MB =
�t̂

k
�� − �MB� , �9�

�ûMB =
�t̂

k
�û − ûMB� , �10�

�	MB =
�t̂

k
�	 − 	MB� . �11�

Note that this step does not require f̂MB to be time dependent
but is rather understood as a type of change of basis which is
performed once every time step. For further discussion of
this point the reader is referred to Ref. �18�.

The two nontrivial tasks in performing the collision
step—changing the Maxwell-Boltzmann properties and de-
leting deviational particles—mirror the physics inherent in
the relaxation-time approximation; specifically, the equilib-

rium part of the simulated distribution f̂MB approaches the

local equilibrium distribution f̂ loc, while the deviational part

f̂d decays to zero. Solving the nonlinear Boltzmann equation
�in the relaxation-time approximation� can be performed by
generating additional particles at each time step �22�.

B. Advection substep

In the advection substep, we numerically implement

� f̂

� t̂
+ ĉ ·

� f̂

� x̂
= 0, �12�

which for a spatially dependent f̂MB gives

� f̂d

� t̂
+ ĉ ·

� f̂d

� x̂
= − ĉ ·

� f̂MB

� x̂
. �13�

Simple advection of deviational particles, as is performed in
ordinary DSMC, provides a homogeneous solution of Eq.
�13�, while additional particles must be generated from the
cell interfaces at every time step to satisfy the inhomoge-
neous term. According to Refs. �16–18�, the additional par-
ticles are generated from a difference in fMB fluxal distribu-
tions: i.e.,
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Fadv�t̂ = 
 � f̂d

� t̂
�

adv,gen

Sn�t̂ = Snĉn�t̂� f̂−
MB − f̂+

MB� , �14�

where Sn is the �dimensionless� surface area of the cell inter-
face, ĉn= ĉ ·n is the normal component of the particle veloc-

ity, f̂�
MB are the Maxwell-Boltzmann distributions for adja-

cent cells, and n is the cell-interface surface-normal pointing

from f̂−
MB to f̂+

MB.
Using Eq. �7�, distribution �14� can be written as

Fadv�t̂ = Snĉn�t̂
��MB− − �MB+� + 2ĉ · �ûMB− − ûMB+�

+ �ĉ2 −
3

2
��	MB− − 	MB+�� f̂0, �15�

Implementation consists of generating �R3d3ĉFadv�t̂ /Neff de-
viational particles sampled from the distribution Fadv and
advecting them for a uniformly distributed random fraction
of the time step away from the interface at which they are
created. These particles are efficiently generated using the
ratio-of-uniforms method �23� as outlined in the Appendix.
For isothermal �24� flow parallel to the boundary surface, the
generation term reduces to a particularly simple form:


ĉxĉz f̂
0 where ĉx is normal to the boundary and ĉz is in the

flow direction, resulting in a product of a Gaussian and ana-
lytically invertible distributions.

C. Boundary conditions

The boundary conditions are enforced according to the
Maxwell accommodation model �4,18�,

f̂�ĉ� = �1 − 
� f̂�ĉ − 2��ĉ − ûb� · n�n� + 
 f̂b�ĉ� �16�

for �ĉ− ûb� ·n�0, where in the interest of simplicity, the ex-
plicit time dependence of the distribution function is sup-

pressed. In Eq. �16�, f̂ is evaluated at the boundary; n is the
normal vector pointing into the gas. The �linearized� bound-
ary distribution is

f̂b = �1 + �b
�1� + �b

�2� + 2ĉ · ûb + �ĉ2 − 3
2�	b� f̂0, �17�

where ûb is the boundary velocity and 	b is the temperature
perturbation of the boundary. The number density perturba-
tion consists of two parts: �b

�1� and �b
�2�; both are discussed

below. For simplicity, we assume that the wall normal com-
ponent of the boundary velocity is zero �ûb ·n=0�. Mass con-
servation is enforced by balancing the inward and outward
particle fluxes, i.e.,

�
ĉn�0

d3ĉĉn f̂b = − �
ĉn�0

d3ĉĉn f̂ , �18�

which, upon substitution of f̂ = f̂MB+ f̂d and Eq. �17�, may be
written in two parts as

�
ĉn�0

d3ĉĉn
�b
�2� + 2ĉ · ûb + �ĉ2 −

3

2
�	b� f̂0 =

− �
ĉn�0

d3ĉĉn
�MB + 2ĉ · ûMB + �ĉ2 −
3

2
�	MB� f̂0

�19�

and

�
ĉn�0

d3ĉĉn f̂0�1 + �b
�1�� = − �

ĉn�0
d3ĉĉn f̂d. �20�

Introducing f̂ = f̂MB+ f̂d and Eq. �17� into Eq. �16� yields

f̂d�ĉ� = �1 − 
� f̂d�ĉ − 2ĉnn� + 
�1 + �b
�1�� f̂0�ĉ�

+ 
��b
�2� − �MB + 2ĉ · �ûb − ûMB�

+ �ĉ2 − 3
2��	b − 	MB�� f̂0�ĉ� �21�

for ĉn�0, where the properties �MB, ûMB, and 	MB are from
the cell adjacent to the boundary. The first and second terms
on the right-hand side correspond to the ordinary DSMC
procedures—i.e., deviational particles are specularly re-
flected with probability 1−
 and diffusely reflected with
probability 
—while the third term requires additional par-
ticles to be generated at the boundary. Specular reflections
are accomplished by changing the sign of the normal com-
ponent of the particle velocity according to ĉ→ ĉ−2ĉnn. Dif-
fusely reflected particles are “absorbed” by the wall and re-
drawn from the fluxal wall distribution, where the constant
�b

�1� is automatically determined �see Eq. �20�� by ensuring
that the same net mass of particles that was absorbed is also
emitted. Specifically, if N+ positive and N− negative particles
are diffusely reflected from a boundary surface during a time

step, we emit �N+−N−� particles drawn from ĉn f̂0 for ĉn�0
with sign sgn�N+−N−�, which leads to a reduced number of
particles by canceling pairs of positive and negative particles
striking the boundary �16,17�.

The third term in Eq. �21� is implemented by generating
additional particles in a similar manner to the advection rou-
tine, namely, particles are generated by sampling the distri-
bution

Fb�t̂ = Snĉn�t̂
��b
�2� − �MB + ĉ · �ûb − ûMB�

+ �ĉ2 − 3
2��	b − 	MB�� f̂0 �22�

at each boundary surface. The density perturbation �b
�2� is

determined from the mass conservation statement �19�. Per-
forming the integration results in �b

�2�−�MB= 1
2 �	MB−	b�

−��ûMB·n.

D. Property evaluation

The perturbed hydrodynamic properties are evaluated ac-
cording to their usual definitions as moments of the distribu-
tion function �see, for example, Ref. �4��. By using the for-

mal representation of the distribution function f̂ = f̂MB
+Neff	psp��x̂− x̂p���ĉ− ĉp� and integrating over a single
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computational cell �with volume Vcell�, the hydrodynamic
properties can be reduced to the following expressions:

� = �MB +
Neff

Vcell
	

p�cell
sp, �23�

û = ûMB +
Neff

Vcell
	

p�cell
spĉp, �24�

	 = 	MB − �� − �MB� +
2

3

Neff

Vcell
	

p�cell
spĉp

2, �25�

P = � + 	 , �26�

Pij = �ij��MB + 	MB� + 2
Neff

Vcell
	

p�cell
sp�ĉi�p�ĉj�p, �27�

q̂ = −
5

2
�û − ûMB� +

Neff

Vcell
	

p�cell
spĉpĉp

2. �28�

Here, Pij = pij / p0−�ij is the perturbed pressure tensor, P
= p / p0−1 is the perturbed pressure, and q̂=q / �p0c0� is the
dimensionless heat flux vector.

E. Linearized body force

A standard technique for simulating pressure driven flow
�25,26� and thermal creep �26,27� �or a combination of both
effects� in the linear regime is to introduce an effective
“body force,” which results in an additional substep in the
splitting algorithm for time integration, namely,


 � f̂d

� t̂
�

body

�t̂ = ĉz

 + �5

2
− ĉ2��� f̂0�t̂ . �29�

Here, 
=− L
p0

dp
dz and �= L

T0

dT
dz denote the dimensionless pres-

sure and temperature gradients, respectively, assumed to be
in the z direction.

According to Allshouse and Hadjiconstantinou �28�, the

body force due to the pressure gradient, ĉz
 f̂0�t̂, can be ap-
plied by shifting the Maxwell-Boltzmann velocity by the
amount �ûMB,z= 1

2
�t̂ every time step. The thermal creep por-
tion of the body force term is applied �29� by generating
particles from the distribution,

F��t̂ = Vcellĉz� 5
2 − ĉ2�� f̂0�t̂ . �30�

This distribution was efficiently sampled by the generalized
ratio-of-uniforms method as outlined in the Appendix.

IV. IMPLEMENTATION

Based on previous discussions �30,31� indicating higher
convergence rates for appropriately symmetrized algorithms,
a symmetric version of the above-described algorithm was
implemented. Here, the advection and body force substeps
are split into half substeps on either side of the collision

substep; half steps are performed as described above, only
with a time step of 1

2�t̂. The algorithm is summarized below.

ALGORITHM: Symmetrized time splitting

1. half advection step for all cells

a. advect deviational particles x̂→ x̂+ �t̂
2 ĉ

b. enforce boundary conditions for all deviational particles
which cross a boundary during step 1.a

i. with probability 1−
, perform specular reflections
ĉ→ ĉ−2ĉnn

ii. otherwise �i.e., with probability 
� absorb particle and
count total sign N+−N− absorbed

iii. emit �N+−N−� particles from the fluxal wall distribution

ĉn f̂0 for ĉn�0 with sign sgn�N+−N−�

iv. generate particles by sampling Fb
�t̂
2

2. half linearized body force step for all cells

a. shift velocity by �ûMB,z= 1
2
 �t̂

2

b. generate particles by sampling F�
�t̂
2

3. full collision step for all cells

a. backward deletion step: delete particles with probability
1− �1+ �t̂

2k �−1

b. update properties �, û, and 	 using Eqs. �23�–�25�
c. change Maxwell-Boltzmann distribution using Eqs.

�9�–�11�

d. forward deletion step: delete particles with probability �t̂
2k

4. half linearized body force step for all cells �repeat step 2�
5. half advection step �repeat step 1�
6. sample properties �, û, 	, Pij, P, and q̂ using Eqs. �23�–�28�
7. repeat steps 1–6 until final time is reached

For comparison purposes �see Sec. V�, a nonsymmetrized
algorithm was also implemented. This algorithm performs
only steps 1, 2, 3.b–3.d, 6, and 7, where steps 1.a, 1.b.iv, 2,
and 3.d are of duration �t̂ rather than �t̂

2 .

V. RESULTS

We validate the method presented here by considering
three archetypal problems—namely, pressure driven flow,
thermal creep flow, and heat flux between plates held at dif-
ferent temperatures—within a one-dimensional parallel plate
geometry with a wall separation of L. The heat flux calcula-
tion is also used to demonstrate second-order time conver-
gence for the symmetrized algorithm, as well as to quantify
the level of relative statistical uncertainty. All simulations,
except where indicated, were performed using the symme-
trized version of the algorithm.

A. Pressure driven flow and thermal creep

Using the linearized body force formulation of Sec. III E,
we calculated the flow rate induced by a pressure gradient
�
=�, �=0� and temperature gradient �
=0, �=�� in the
direction parallel to the confining plates where 0���1.
Both diffusely reflecting �
=1� and 
=0.8 cases were con-
sidered. Our results are compared to those of Loyalka �26�
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�obtained by numerical solution of the linearized Boltzmann
equation� and are shown in Figs. 1 and 2. In these figures,

Q̇p=2ūz / �
c0� denotes the dimensionless flow rate for pres-

sure driven flow, while Q̇T=2ūz / ��c0� denotes the dimen-
sionless flow rate due to thermal creep; the overbar denotes a
spatial average across the system width �L�. Excellent agree-
ment is obtained in all cases.

B. Heat flux between parallel plates at different temperatures

Figure 3 shows a comparison between our simulation re-
sults for the heat flux between diffusely reflecting parallel

plates held at a temperature difference �T and the results of
Bassanini et al. �32�; the heat flux is normalized by the free
molecular flow �k→�� value q̇fm=

c0p0
��

�T
T0

. Excellent agree-
ment between the two sets of results is observed.

We also validate our algorithm by simulating the evolu-
tion of the temperature field between parallel plates resulting
from an impulsive increase in the wall temperature to Tb�x̂
=0, t̂�0�=T0+�T with �T /T0=0.04, which is near the limit
where linearization is appropriate. We compare the results
from our algorithm with those from a DSMC simulation
�which uses the relaxation-time approximation� as shown in
Fig. 4 for diffusely reflecting walls and Fig. 5 for 
=0.7.
Both methods used Ncell=50 cells, approximately 105 par-
ticles �33� and a time step of Ncell�t̂=0.1. The results were
averaged over M =400 independent samples for the variance-
reduced method and over M =8000 for DSMC. Although the
variance-reduced simulation used fewer samples, it produced
noise-free results in contrast to the relatively noisy DSMC
results. Despite the differences in uncertainty level, the re-
sults show excellent agreement.

C. Validation of second-order convergence in time

In order to demonstrate second-order convergence of the
symmetrized version of the algorithm, we simulated the
steady-state heat flux between parallel plates for k=0.1 using
both the symmetrized and nonsymmetrized versions of the
algorithm. These computations were performed using Ncell
=200 computational cells and approximately 5�105 par-
ticles in the simulation in order to achieve high spatial reso-
lution and low noise; the solutions were further averaged
over M =1000 independent samples once steady state was
reached. The accuracy was evaluated by comparison with a
reference solution q̇ref obtained using the symmetrized algo-
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FIG. 1. Dimensionless pressure driven flow rate Q̇p=2ūz / �
c0�
between parallel plates vs Knudsen number for diffusely reflecting
boundaries ��� and 
=0.8 ��� compared to the results of Loyalka
�26� �solid lines�.
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FIG. 2. Dimensionless thermal creep flow rate Q̇T=2ūz / ��c0�
between parallel plates vs Knudsen number for diffusely reflecting
boundaries ��� and 
=0.8 ��� compared to the results of Loyalka
�26� �solid lines�.
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FIG. 3. Heat flux between fully accommodating parallel plates
held at a temperature difference �T vs Knudsen number ���. The
heat flux is normalized by the free molecular flow value q̇fm

=
c0p0

��

�T
T0

and compared to the results from Bassanini et al. �32� ���.
The solid line is presented only to guide the eyes.
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rithm with time step Ncell�t̂=0.01. The difference between
q̇ref and the true solution is due to finite cell size and finite
number of samples used �31�. Shown in Fig. 6 is the frac-
tional difference Eq̇= �q̇− q̇ref� / q̇ref in the heat flux for a range
of time steps �t̃=Ncell�t̂. Clearly, the symmetrized algorithm
achieves second-order time convergence with substantially
reduced error compared to the nonsymmetrized algorithm.

D. Variance reduction

In this section we discuss some measures of the variance
reduction achieved by the proposed method. Using the
steady heat transfer problem described above as a prototype

problem, we measured the relative statistical uncertainty �in-
verse of the signal-to-noise ratio� in the temperature, quanti-
fied here by �T /�T, where �T is the temperature standard
deviation. Figure 7 shows the results obtained for k
=0.1,1 ,10 for a computational cell in the center of the simu-
lation domain with Ncell�950 particles. This is compared to
a nonvariance-reduced particle method, here represented by
DSMC; the relative statistical uncertainty for DSMC was
estimated using the theory developed in Ref. �11�. We ob-
serve that, as expected, the variance-reduced method exhibits
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FIG. 4. Transient temperature field resulting from an impulsive
change in boundary temperature of magnitude �T /T0=0.04 for k
=1 and 
=1. The variance-reduced results �solid lines� are com-
pared to DSMC results �symbols� for t̂=0.04 ���, t̂=0.2 ���, t̂=1
���, and t̂=4 ���.
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FIG. 5. Transient temperature field resulting from an impulsive
change in boundary temperature of magnitude �T /T0=0.04 for k
=1 and 
=0.7. The variance-reduced results �solid lines� are com-
pared to DSMC results �symbols� for t̂=0.04 ���, t̂=0.2 ���, t̂=1
���, and t̂=4 ���.
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FIG. 6. Numerical error in the heat flux Eq̇= �q̇ref− q̇� / q̇ref be-
tween fully accommodating parallel plates at k=0.1 vs time step
�t̃=Ncell�t̂, comparing the nonsymmetrized ��� and symmetrized
��� algorithms. The solid lines are proportional to �t̃ and �t̃2,
respectively.
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FIG. 7. Normalized statistical error in temperature versus tem-
perature difference for heat transfer between parallel plates at k
=0.1 ���, k=1 ���, and k=10 ���; these results are compared to a
standard particle simulation method represented by the DSMC
�solid line�. The results for DSMC were estimated using the theory
developed in Ref. �11�.
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a constant signal-to-noise ratio in the limit of small deviation
from equilibrium, as opposed to DSMC which exhibits a
signal-to-noise ratio that is significantly smaller and which
continues to decrease as �T decreases. Although the exact
speedup will be implementation dependent, the deviational
algorithm described here is sufficiently similar to DSMC that
Fig. 7 may be used to provide an order-of-magnitude esti-
mate of the speedup achieved �which scales as the square of
�T /�T�. We also observe that the variance reduction
achieved has a Knudsen number dependence, with the vari-
ance reduction increasing with decreasing Knudsen number;
this result can be explained by recalling that local equilib-
rium conditions set in as k→0.

Using the same prototype problem, we compare the vari-
ance reduction achieved by the present approach with that
achieved by the approach of Hadjiconstantinou et al. �19�
�which simulates the deviation from a spatially homogeneous
equilibrium distribution�. A comparison between the two
methods as a function of k is shown in Fig. 8; this compari-
son was performed at one value of �T since as shown above,
in deviational methods, �T /�T is independent of �T /T0 for
small �T /T0. Here, the wall temperatures were taken to be
T0 and T0+�T, while the temperature parameter of the spa-
tially homogeneous equilibrium distribution in the method of
Hadjiconstantinou et al. �19� was taken to be T0 to represent
the general case when the local value of the hydrodynamic
properties is different from the equilibrium value. Figure 8
shows that, for the problem studied here, the present method
provides a measurable improvement in variance reduction in
the whole range of Knudsen numbers of interest �0.1�k
�10�; the difference becomes large for k�1 and k�1 in
particular, where as a result of the local equilibrium condi-
tions the difference in variance reduction observed is more
than a factor of 50.

VI. CONCLUSION

We have presented an efficient variance-reduced particle
simulation method for simulating the linearized Boltzmann
equation in the relaxation-time approximation. The proposed

method exploits the physical interpretation of the relaxation-
time approximation to formulate a particularly simple colli-
sion algorithm. Numerical results show that, in addition to
the constant signal-to-noise ratio expected of variance reduc-
tion methods, compared to algorithms simulating the devia-
tion from a spatially homogeneous distribution, the proposed
algorithm leads to a reduced number of particles for the same
level of variance reduction. This difference is most signifi-
cant in the limit k�1, where local equilibrium conditions
allow the present algorithm to be significantly more efficient.
These features enable the simulation of near-equilibrium
phenomena with significantly reduced statistical uncertainty
compared to nondeviational methods such as DSMC.
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APPENDIX: THE RATIO-OF-UNIFORMS SAMPLING
METHOD

For computational efficiency, the samples from distribu-
tions �15�, �22�, and �30� were generated using the general-
ized multivariate ratio-of-uniforms method �23�. The ratio-
of-uniforms method for sampling a function F�ĉ� is based on
a variable transformation: F=H3r+1, ĉ=� /Hr. Thus, the func-
tion can be rewritten as

Fd3ĉ = �
0

F

dFd3ĉ = �3r + 1��
0

F1/�3r+1�

dHd3� . �A1�

The distribution is sampled by choosing values uniformly
distributed in �H ,�� which are accepted when H�F1/�3r+1�,
while the parameter r can be chosen to maximize the accep-
tance probability. According to Wakefield et al. �23�, r= 1

2
results in an optimal method for sampling a Gaussian distri-
bution, and this is the value adopted.

The key difficulty for application is finding reasonable
bounds for H and �. The approach adopted here is to break
the desired distribution into a linear combination of functions
for which tight analytic bounds are known; from these, the
bounds for the overall distribution are derived. Specifically,
we are interested in the following distributions:

Fx = ĉx f̂0, �A2�

Fxx = ĉx
2 f̂0, �A3�

Fxy = ĉxĉy f̂0, �A4�

Fxcc = ĉxĉ
2 f̂0. �A5�

Note that Fx and Fxy take on both positive and negative
values: for sampling such distributions, we sample �F� and
determine the particle sign according to s=sgn�F�. The de-
sired bounds were evaluated �assuming r= 1

2 � according to
the formulas in Ref. �23�,
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FIG. 8. Normalized variance in temperature vs Knudsen number
for heat transfer between parallel plates. Variance observed using
the present method �black� is significantly reduced compared to the
method of Hadjiconstantinou et al. �19� �white�, especially for k
�1.
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�HZ� � aZ = sup
ĉ�R

3
�FZ�2/5, �A6�

��i� � bi,Z = sup
ĉ�R

3
�ĉi��FZ�1/5, �A7�

where Z� �x ,y ,z ,xy ,yz ,zx ,xx ,yy ,zz ,xcc ,ycc ,zcc�.

The bounds for Eqs. �A2�–�A5� were analytically evalu-
ated and the results are presented in Table I. When the real
distribution function is a linear combination of the above
distributions, i.e., F=	ZAZFZ, it is straightforward to show
that the following overall bounds hold:

�H� � a� = �	
Z

�AZ�aZ
5/2�2/5

, �A8�

��i� � bi
� = �	

Z

�AZ�bi,Z
5 �1/5

. �A9�

Here, a� and bi
� are the bounds actually used in computa-

tions.
Note that it is essential to include the Jacobian of trans-

formation �3r+1� in the determination of the number of trial
samples to generate when integrating a distribution. For ex-
ample, when sampling F on ĉ�R3, it is necessary to gen-
erate �3r+1�a��2b��3 /Neff=20a��b��3 /Neff trial samples.
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