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Lattice Uehling-Uhlenbeck Boltzmann-Bhatnagar-Gross-Krook hydrodynamics of quantum gases
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We present a semiclassical lattice Boltzmann method based on quantum kinetic theory. The method is
directly derived by projecting the Uehling-Uhlenbeck Boltzmann-Bhatnagar-Gross-Krook equations onto the
tensor Hermite polynomials following Grad’s moment expansion method. The intrinsic discrete nodes of the
Gauss-Hermite quadrature provide the natural lattice velocities for the semiclassical lattice Boltzmann method.
Gases of particles of arbitrary statistics can be considered. Simulation of one-dimensional compressible gas
flow and two-dimensional hydrodynamic flows are shown. The results indicate distinct characteristics of the

effects of quantum statistics.
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I. INTRODUCTION

Lattice Boltzmann method (LBM) is based on the kinetic
equations for simulating fluid flow, see [1,2]. The LBM
originated from its predecessor, the lattice-gas cellular au-
tomata (LGCA) models [3]. Over the past two decades, sig-
nificant advances in the development of the lattice Boltz-
mann methods [4—7] based on classical Boltzmann equations
with the relaxation-time approximation of Bhatnagar, Gross,
and Krook (BGK) [8] have been achieved. The lattice Bolt-
zmann methods have demonstrated its ability to simulate hy-
drodynamic systems, magnetohydrodynamic systems, multi-
phase and multicomponent fluids, multicomponent flow
through porous media, and complex fluid systems, see [9].
The lattice Boltzmann equations (LBESs) can also be directly
derived in a priori manner from the continuous Boltzmann
equations [10,11]. Most of the classical LBMs are accurate
up to the second order, i.e., Navier-Stokes hydrodynamics,
and have not been extended beyond the level of the Navier-
Stokes hydrodynamics. A systematical method [12,13] was
proposed for kinetic theory representation of hydrodynamics
beyond the Navier-Stokes equations using Grad’s moment
expansion method [14]. The use of Grad’s moment expan-
sion method in other kinetic equations such as quantum ki-
netic equations and Enskog equations can be found in
[15,16].

Despite their great success, however, most of the existing
lattice Boltzmann methods are limited to hydrodynamics of
classical particles. Modern development in nanoscale trans-
port requires carriers of particles of arbitrary statistics, e.g.,
phonon Boltzmann transport in nanocomposite and carrier
transport in semiconductors. The extension and generaliza-
tion of the successful classical LBM to quantum lattice Bolt-
zmann method for quantum particles is desirable. Analogous
to the classical Boltzmann equations, a semiclassical Boltz-
mann equation for transport phenomenon in quantum gases
has been developed by Uehling and Uhlenbeck (UUB) [17].
Following the work of Uehling and Uhlenbeck based on the
Chapman-Enskog procedure [18], the hydrodynamic equa-
tions of a trapped dilute Bose gas with damping have been
derived [19]. In [15], the quantum Grad expansion using
tensor Hermite polynomials has been applied to obtain the
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nonequilibrium density matrix which reduces to the classical
Grad moment expansion if the gas obeys the Boltzmann sta-
tistics. The full Boltzmann equations is mathematically dif-
ficult to handle due to the collision integral in different types
of collisions. To avoid the complexity of the collision term,
the relaxation-time model originally proposed by BGK [8]
for the classical nonrelativistic neutral and charged gases has
been widely used. Also, BGK-type relaxation-time models to
capture the essential properties of carrier scattering mecha-
nisms can be similarly devised for the Uehling-Uhlenbeck
Boltzmann equations for various carriers and have been
widely used in carrier transports [20]. Recently, kinetic nu-
merical methods for ideal quantum gas dynamics based on
Bose-Einstein and Fermi-Dirac statistics have been presented
[21,22]. A gas-kinetic method for the semiclassical
Boltzmann-BGK equations for nonequilibrium transport has
been devised [23]. It is noted that the approaches presented
in [21-23] are based on the semiclassical kinetic description,
i.e., the particle motion (velocity or momentum) and position
are treated in classical mechanics manner while the particles
can be of quantum statistics. We also emphasize that several
quantum lattice-gas cellular automata methods [24-28] have
been recently presented which are applying and extending
the concept of classical LGCA models to treat the time evo-
lution of wave functions for spinning particles and the
Schrodinger equation or the Dirac equation directly. For a
more detailed review, see [29].

In this work, we derive a different semiclassical lattice
Boltzmann method for the Uehling-Uhlenbeck Boltzmann-
BGK (UUB-BGK) equations based on Grad’s moment ex-
pansion method by projecting the UUB-BGK equations onto
Hermite polynomial basis. We also apply the Chapman-
Enskog method [18] to the UUB-BGK equations to obtain
the relations between the relaxation time, viscosity, and ther-
mal conductivity which provide the basis for determining
relaxation time used in the present semiclassical LBM. Hy-
drodynamics based on moments up to second and third order
expansions are presented. Computational examples illustrat-
ing the methods are given and the effects due to quantum
statistics are delineated.

This paper is organized as follows. Section II gives a brief
description of basic semiclassical kinetic theory. The projec-
tion of Uehling-Uhlenbeck Boltzmann-BGK equations onto
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the Hermite polynomials is derived in Sec. III. The lattice
Boltzmann equations for quantum gases is given in Sec. IV.
Some computational examples and discussion of results are
given in Sec. V. Concluding remarks are given in Sec. VL.

II. BASIC THEORY

We consider the Uehling-Uhlenbeck Boltzmann-BGK
equations

of P
a.r.
ot

_ £0)
Vif=- (f—ﬂ), (1)

T
where m is the particle mass and f(j,X,1) is the distribution
function which represents the average density of particles
with momentum p at the space-time point ¥, ¢. In Eq. (1), 7
is the relaxation time which is in general dependent on the
macroscopic variables and f*) is the local equilibrium distri-
bution given by

2 -1
f(o)_{e p|:(p mit) L]—G} ’ (2)
2mkgT  kgT
where # is the mean macroscopic velocity, T is the tempera-
ture, u is the chemical potential, kg is the Boltzmann con-
stant, and 6=-1 denotes the Fermi-Dirac (FD) statistics,
0=+1 the Bose-Einstein (BE) statistics, and 6=0 the
Maxwell-Boltzmann (MB) statistics. Once the distribution
function is known, the macroscopic quantities, the number

density, number density flux, and energy density are defined,
respectively, by

aen= | Lo G)
where o= (n nii, € PaB,Q )7 and 1)
=(1,¢." e CB,_C ¢)T. Here, £&=p/m is the particle ve-
locity and ¢= § i is the thermal velocity. The gas pressure is
defined by P(¥,1)=P,,/3=2€/3. Just as in the classical case
one can derive from Eq. (1) a set of general transport equa-
tions. Multiplying Eq. (1) by 1,7, or 5*/2m, and integrating
the resulting equations over all p, then one obtains the gen-
eral hydrodynamical equations

J
Ve (i) =0, (4)
ot
J JP
n(—+ﬁ-V,g>ua+—a§=0, (5)
ot &Xﬁ
Jde >
E"'Vi‘(fﬁ)"'Vf'Q'*'DaﬁPaB:O’ (6)

where D ,5=(du,/ dxg+dugl/ dx,)/2 is the rate of strain ten-
SOr.

For the zeroth order equilibrium distribution function, the
hydrodynamical variables can be explicitly expressed in
terms of Boson or Fermi function, see [30]. For example, the
number density n(x,7) is given by
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d3p

n(x,r) = X

— 0= I g%/z[Z(x 1], (7)

where A=[27h?/mkzT(%,1)]"? is the de Broglie thermal
Wavelength and £ is the Planck constant. The stress tensor
P;j, pressure P, and heal flux vector Q; become

P,;=Po,

kgT
i s P = ngﬂ(Z)a 0,=0. (®)
Here z(%,t)=e*®V%sT s the fugacity. The function g, repre-
sents either the Bose-Einstein or Fermi-Dirac function of or-
der v which is defined as

1 )

1—1Z
T, 7ler o™= 2( 2 ©)

g,(2) =

where I'(v) is the gamma function. Furthermore, the corre-
sponding hydrodynamic equations integrated from the zeroth
order solution give the “quantum Euler equations” in which
the heat flux and the shear viscosity are zero in this case.

The first-order distribution function for the UUB-BGK
equations according to the Chapman-Enskog procedure as-
sumes the form [23]:

SO =0 g -
e r{c . VT{ mc? ~ 585/2(Z)]
- T | 2kgT  2g35(2)

m Ju 1
+kBTz9x CuCu= 3 ,qu (11)

The viscosity 7 and thermal conductivity « for a quantum
gas can be derived in terms of the relaxation time as

o171, (10)

kBTgsxz(Z) (12)
83/2(2)
_ kg 287/2(2) B §85/2(Z)]
- ‘2’" nkBT{zgs/z(Z) 2 g3n(2) ’ (13)

The relaxation times for various scattering mechanisms of
different carrier transport in semiconductor devices including
electrons, holes, phonons, and others have been proposed
[20]. The hydrodynamic equations integrated from the first-
order distribution f!) give the “quantum Navier-Stokes equa-
tions.”

III. EXPANSION OF DISTRIBUTION FUNCTION USING
GRAD’S METHOD

In this section, following the approaches in [12-16], we
adopt the Grad’s moment approach and seek solutions to Eq.

(1) by expanding f(%,,7) in terms of Hermite polynomials,
. cw ] .
fELn = w(z:)E ;aW(x, NH"(Q), (14)

where {— e w(g) 3,Ze 212 s the weighting function, a

and HW({) are rank n tensors and the product on the right-
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hand side denotes full contraction. Here and throughout the
paper, the shorthand notations of Grad [14] for fully symmet-
ric tensors have been adopted. The expansion coefficients
a" are given by

a"(%,1) = f & LOH(Q)dL. (15)

Some of the first few tensor Hermite polynomials are given
here, HO()=1, H(D)=¢ HP(D=04-8, HHWD
={ili8— 0~ u— L 6j» ete.

It is evident from Eq. (15) that all the expansion coeffi-
cients are linear combinations of the velocity moments of f.
The first few expansion coefficients can be easily identified
with the familiar hydrodynamic variables:

a(°)=ffd2=n, a<‘>=fffdf=m7’
aO):ff(Z?— &dl=p +n(i*- ),

3(3):Jf(23— [8)dl = Q+ii(a® - 2nit), (16)

where d{ =dp/h3. The macroscopic hydrodynamic variables
can also be expressed in terms of the low-order Hermite
expansion coefficients,

n=a, ni=a", P=a®-n(ii-9),

Q=2a®%—ia® + 2niiii. (17)

We also have e=%[a§i2)—n(ﬁii—3)]. It is evident that the five
fundamental hydrodynamic variables, p, i, and 7, and the
momentum flux tensor P can be completely determined by
the first three Hermite expansion coefficients along them,
while the third order moment, the heat flux vector Q, is
completely determined by the fourth coefficient.

The orthogonality of Hermite polynomials implies that
the leading moments of a distribution function up to the Nth
order are preserved by truncations of the higher-order terms
in its Hermite expansion. Thus, a distribution function of the
UUB-BGK equation can be approximated by its projection
onto a Hilbert space spanned by the first N Hermite polyno-
mials without affecting the first N moments. Here, up to Nth
order, (¥, Z ,1) has exactly the same velocity moments as
the original f(x, Z ,1). This guaranties that a quantum gas dy-
namic system can be constructed by a finite set of macro-
scopic variables.

To derive the lattice UUB-BGK method, we look for ap-
proximate solution to the UUB-BGK equation and mean-
while keep the representation in a kinetic theory setting. It is
emphasized that, as a partial sum of Hermite series with
finite terms, the truncated distribution function fN can be
completely and uniquely determined by its values at a set of
discrete abscissas in the velocity space. This is possible be-
cause, with f truncated to order N, the integrand on the right-
hand side of Eq. (15) can be expressed as
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ELOH() = 0(dg(E, L), (18)

where g(xX ,Z ,1) is a polynomial in ¢ of a degree no greater
than 2N. Using the Gauss-Hermite quadrature, a™ can be
precisely calculated as a weighted sum of functional values

of q(%,Z,1):

0 1
al)(%,1) = j o(0)q(®,{,0dl = 2 waq(%,4,1)
—_® 1

i
w, Lz ez
=2 — & LOH" (), (19)
1 w(g,)
where w, and Za,azl, ..., are, respectively, the weights

and abscissas of a Gauss-Hermite quadrature of degree =2N.
Thus, fV is completely determined by the set of discrete

functional values, fY(x, Za,t); a=1,...,l, and therefore its
first N velocity moments, and vice versa. The set of discrete

distribution functions fV(%, fa,t) now serve as a new set of
fundamental variables (in physical space) for defining the
fluid system in place of the conventional hydrodynamic vari-
ables.

Next, we expand the equilibrium distribution (% in the
Hermite polynomial basis to the same order as fN, ie.,

FOF 2, 0)=~fON&, Z,1), and we have

N
R N 1 R
FONGE L) = ()2 ;ag")(f,t) CHO(G),  (20)
n=0 "*-

al(i,1) = f FO& L nH ™. (21)

These coefficients ag’) can be evaluated exactly and we have

ago) =n= T3/283/2(Z)» ag)

af)z)=n{ﬁﬁ+(TM—l)5],
832(2)

<
ay) = n{ﬁ[iﬁ+ (T—gS/Z( )
832(2)

1 ) ou ] , (22)
where n, @, and T are in nondimensional form hereinafter.
Denote ;])Ewaf(o)(za)/w(fa) and for N=3, we get the
explicit Hermite expansion of the Bose-Einstein
(or Fermi-Dirac) distribution at the discrete velocity £, as
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ﬁﬁ:wan{l +Zu~ﬁ+%l(ﬁ-fa)2—u2+ (TM— 1)@2-0)} + iﬁl(a- Za)2-3u2+3<7g5L(Z)- 1)(55-10-2)]},

g3n(2)

where D= J;,.

We note that the above development follows closely the
works presented in [12,13] for the classical statistics. We also
note that for the case of Maxwell-Boltzmann statistics, =0,
the ag’) and fflo) are of the same form as Egs. (22) and (23)
except that all the g,(z) in them are set equal to z. Thus, we
can recover the classical counterpart [12].

IV. SEMICLASSICAL LATTICE BOLTZMANN-BGK
METHOD

Once we have obtained f and fOV at the discrete veloc-
ity abscissas {,, we are ready to derive the governing equa-

tions for (Za) in the physical configuration space. We have
the set of governing equations for f,,a=1,...,[, as

> = _ A0
afa(-:vt) +Za-V£fa(f,t)=— Ua(x’t) f<a ]

where fg)) is given by Eq. (23) and 7 by Eq. (12). Applying
Gauss-Hermite quadrature to the moment integration, we
have the macroscopic quantities, the number density, number
density flux, and energy density. Moreover the macroscopic
variables become

1 1
n(F0) = 2 fo@r), ni=2 ful,,
a=1 a=1

1
n<DTM + u2> =S (25)
83/2(2) a=1

In summary, Egs. (24) and (25) form a closed set of differ-
ential equations governing the set of variables f,(X,f) in the
physical configuration space. All the macroscopic variables
and their fluxes can be calculated directly from their corre-
sponding moment summations.

We discretize Eq. (24) in configuration space (xX,7) by
employing first-order upwind finite-difference approximation
for the time derivative on the left-hand side and, choosing
the time step Ar=1, we then have the following standard
form of the lattice UUB-BGK method:

- 1
fa(f+§a’t+ 1)_fa(f»t):_;[fa_f§0)]' (26)

The selection of fa is made to maximize the algebraic degree
of precision for the given number of abscissas /. Here, stan-
dard D1Q5 and D2Q9 lattices and their corresponding
weights can be employed. The relaxation time 7 in Eq. (26)
can be related to the kinematic viscosity v through the stan-
dard Chapman-Enskog analysis of the semiclassical lattice

83/2(Z)
(23)

Boltzmann method with the D2Q9 lattice model. Since the
details of Chapman-Enskog analysis are well described in
[31,32] and several others, here we only present the results

. v83(2) N o
T Tgsplz) 27

Lastly, it is necessary to specify a value for each lattice at the
boundaries when fluid flow is simulated with lattice Boltz-
mann methods. An interesting presentation of boundary con-
ditions in a rarefied quantum gas has been given [33]. Most
traditional boundary-condition methods of classical LBM
can be applied here.

(27)

V. RESULTS AND DISCUSSION

In this section, we report some numerical examples to test
the theory and to illustrate the present semiclassical lattice
Boltzmann method. For validation and comparison purposes,
we apply the numerical methods to one-dimensional quan-
tum gas flows in a shock tube. We consider constant relax-
ation time 7=0.001 to test the applicability of the present
methods. We employ the D1Q5 discrete velocities scheme as
follows:

L | Wy
0 8/15

+\5-\10| (7 +210)/60°
+\5+10 | (7 =2410)/60

The expansion equations up to the N=3 order, i.e., Eq. (23),
is used for this one-dimensional problem.

The computational domain is 0 =x=1 and is divided into
uniform cells of size 1/L, where L is the number of cells.
The diaphragm is initially located at x=0.5. The initial con-
ditions at the left and right sides of the diaphragm in the
shock tube are (n;,u;,€)=(1.0,0.0,1.0) and (n,,u,,¢)
=(0.7,0.0,1.5). The relaxation is set to constant 7=0.001.
Here, we adopt the conventional finite-volume schemes as
those described in [34], in which Eq. (24) is solved by first-
order upwind scheme. In this case, Eq. (24) is treated as a
system consisting of five one-dimensional linear wave equa-
tions. After applying first-order upwind scheme, the discrete
equations become

fZS‘ —fui Jai=faic1 + (fZ,m ~fai __
ot Ox 4 Ox

A9
+ éf; (fz,l Tfit,z) ,

(28)

where {=max({,,0) and {,=min({,,0), and the superscript
n denotes the time level. We first performed a grid refine-
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FIG. 1. Convergence of solution with refined grids. (a) Density and (b) temperature.

ment test using L=100, 200, and 400 cells to ensure the
convergence of solution which are shown in Fig. 1. The con-
vergence of solution is evident. Next, we compare the differ-
ent behaviors due to the three statistics, namely, BE, FD, and
MB statistics. The initial conditions at the left and right sides
of the diaphragm in the shock tube are (n;,u;,T))
=(1.0,0.0,2.0) and (n,,u,,T,)=(0.7,0.0,1.8), and the same
constant relaxation time is used. The results using L=200
cells for the three statistics are shown in Fig. 2. The main
features of a typical shock tube flow, namely, the shock
wave, contact discontinuity, and the expansion fan, are well
represented. We can clearly delineate the difference of three
statistics. It is shown that under different statistics although
the initial temperature, density, and relaxation time are the
same, the pressure, internal energy, and the temperature are
different. It is noted that the results of MB statistics always
lie between those of BE and FD statistics.

Next we consider a uniform two-dimensional viscous
flow over a circular cylinder in a quantum gas to illustrate

-

Density
o o o
~ o o ©
(] (8] [<e] (&}

©
3

o
o
o T T

@ ‘ X

the present semiclassical lattice Boltzmann method in
practical flow simulation. We used the N=2 expansion
equation set for this case. The computation domain is
(=1,1) X (=1,1) and set by 201 X 201 lattices, and the cylin-
der is set at the center of the computation domain with the
radius D=0.1. Uniform Cartesian grid system is used. The
free stream velocity is U.,=0.1, free stream temperature
T.=0.5, and the Reynolds number Re.=U.D/v. We con-
sider two cases with Re,,=20 and Re,,=40. The kinetic vis-
cosity v of the fluid could be obtained from the given
Reynolds number and the relaxation time 7 is calculated
according to Eq. (27), rather than the classical one
TC:§+ %, and both of them come from the Chapman-Enskog
analysis [31,32] which considers the numerical viscosity in
lattice Boltzmann scheme. The equilibrium density distribu-
tion function with the given free stream velocity and density
is used to implement the boundary conditions at the far fields
and at the cylinder surface. A boundary treatment using the
immersed boundary velocity correction method proposed in

21

Temprature
©

% s
| L L L L R

(b) X

o
o
N
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o

FIG. 2. Shock tube flow in a quantum gas. The effect due to different particle statistics; BE: Bose-Einstein, FD: Fermi-Dirac, MB:

Maxwell-Boltzmann. (a) Density and (b) temperature.
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FIG. 3. Streamlines of uniform flow over a circular cylinder in a
quantum gas with z=0.2 and Re,,=20. (a) BE, (b) MB, and (c) FD
gases.

[35-37], which enforces the physical boundary condition, is
also adopted here. The D2Q9 velocity lattice used is as fol-
lows:

L | wa
0,0) | 4/9
( V’E’ O)fs 1/9 '

(=43, +\3) | 1/36

Here, the subscript fs denotes a fully symmetric set of points.
The streamline patterns for all three statistics, BE, MB, and
FD gases for the case of Re,,=20 are shown in Fig. 3. For
this low Reynolds number, the flow patterns are symmetric,
and the wake vortices are larger for the FD gas and smaller
for the BE gas as compared with the classical MB gas. Simi-
larly, the results for the case Re.=40 are shown in Fig. 4.
The flow patterns are symmetric and the vortices in the wake
region become larger as compared with Re,,=20 case. Again,
the size of the vortex for the MB gas is always larger than
that of BE gas and smaller than that of FD gas. This reflects
the fact that the Maxwell-Boltzmann distribution always lies
in between the Bose-Einstein and Fermi-Dirac distributions.
Theoretically, as comparing with particles of classical statis-
tics, the effects of quantum statistics at finite temperatures
(nondegenerate case) are approximately equivalent to intro-
ducing an interaction between particles [30]. This interaction
is attractive for bosons and repulsive for fermions, and oper-
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FIG. 4. Streamlines of uniform flow over a circular cylinder in a
quantum gas with z=0.2 and Re.,=40. (a) BE, (b) MB, and (c) FD
gases.

ates over distances of order of the thermal wavelength A.
Our present simulation examples seem to be able to illustrate
and explore the manifestation of the effect of quantum sta-
tistics.

VI. CONCLUDING REMARKS

To conclude, a wunique lattice Uehling-Uhlenbeck
Boltzmann-BGK method is derived for dilute quantum gas
hydrodynamics and beyond. The method is obtained by first
projecting the UUB-BGK equations onto the Hermite poly-
nomial basis as pioneered by Grad. The equilibrium distribu-
tion of lattice Boltzmann equations for simulating fully com-
pressible flows is derived through expanding Bose-Einstein
(or Fermi-Dirac) distribution function onto Hermite polyno-
mial basis which is done in a priori manner and is free of
usual ad hoc parameter matching. Second, finite order ex-
pansions up to third order are considered and compared with
traditional classical lattice Boltzmann-BGK methods. The
present work can be considered as an extension and gener-
alization of the work of Shan and He [12] for quantum gas
and share equally many desirable properties claimed by
them, such as free of drawbacks in conventional higher-order
hydrodynamic formulations. Moreover, our development re-
covers their classical results when the classical limit is taken.
The hydrodynamics beyond the semiclassical Navier-Stokes
equations can also be explored if higher than third order
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expansion is taken. The present construction provides quan-
tum Navier-Stokes order solution and beyond. Several com-
putational examples of both Bose-Einstein and Fermi-Dirac
gases in one-dimensional shock tube flow and two-
dimensional flows over circular cylinder have been simu-
lated, and the results are very encouraging and exhibit simi-
lar flow characteristics of their corresponding classical cases.
The effect of quantum statistics on the hydrodynamics is
clearly delineated. The experimental results for quantum hy-
drodynamics are rare and we only validate our results with
the corresponding classical counterpart. The external poten-
tial term can be added to the UUB-BGK equations to treat
external force or other interaction potential for more com-
plex systems. Lastly, the present development of semiclassi-

PHYSICAL REVIEW E 79, 056708 (2009)

cal lattice Boltzmann method provides a unified framework
for a parallel treatment of gas systems of particles of arbi-
trary statistics.
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