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We present an improved space-discretization scheme for the numerical solutions of the time-dependent
Schrödinger equation. Compared to the scheme of W. van Dijk and F. M. Toyama �Phys. Rev. E 75, 036707
�2007��, the present one, which contains more terms of second-order partial derivatives, greatly reduces the
error resulting from the spatial integration. For a �2l+1�-point formula with �2l+1� terms of second-order
partial derivatives, the local truncation error can decrease from the order of ��x�2l to ��x�4l, while the previous
one contains only one term of second-order partial derivative. Two well-known numerical examples and the
corresponding error analysis demonstrate that the present scheme has an advantage in the precision and
efficiency over the previous one.

DOI: 10.1103/PhysRevE.79.056705 PACS number�s�: 02.60.�x, 02.70.�c, 03.67.Lx, 03.65.�w

I. INTRODUCTION

The development of accurate and efficient integration
methods for the time-dependent Schrödinger equation
�TDSE� has received considerable attention in recent years
because the solutions of the TDSE are instructive for gaining
insight into the quantum behavior of the systems described
by the TDSE in various fields of physics �see �1� and its
references�. In this paper, we consider the TDSE,

�i�
�

�t
− H���x,t� = 0, ��x,t0� = ��x� , �1�

where the operator H is a time-independent Hamiltonian,

H = −
�2

2m

�2

�x2 + V�x� , �2�

and ��x� is a given wave function at initial time t0. The time
evolution of the system described by Eq. �1� can be ex-
pressed in terms of an operator acting on the wave function
at time t, which gives the wave function at a later time t+�,
as

��x,t + �� = e−iH�/���x,t� . �3�

The Crank-Nicolson �CN� implicit integration method has
been widely used for solving Eq. �3� numerically because of
its unitarity and unconditional stability. Whereas the CN
method has low accuracy with an error of O�h2 ,�3�, where h
and � are spatial and time step sizes, respectively, several
authors have proposed some schemes to improve it. Mişicu
et al. introduced a seven-point formula with an error of
O�h6� for the second-order spatial derivative and an im-
proved time-integration scheme with an error of O��5� �2�.
Moyer used a Numerov scheme for the spatial-integration
method with an error of O�h6� �3�. Puzynin et al. indicated
how to generalize the time development to higher order
�4,5�. Iitaka introduced an explicit scheme for the time evo-

lution by extending the second-order difference scheme to
fourth-, sixth-, and higher-order accuracy �6�. Dias et al.
used a high-order method based on the Taylor expansion of
the evolution operator to solve the time evolution of the
wave function numerically �7�. Recently, van Dijk and
Toyama �DT� put forward a �2r+1�-point formula for the
second-order spatial derivative, which reduced the error in
the integration over space on the order of O�h2r�, and ex-
tended the work of Puzynin et al. on the Padé approximant
method for the time evolution operator as well �1�.

In this paper, we present an improved method of spatial
integration for finding the numerical solution to the TDSE.
We derive this scheme in Sec. II. In Sec. III, two numerical
illustrations are presented and an example on error analysis
for explaining the obtained results is provided and, in the
final section, a summary is given.

II. DERIVATION

Following �1�, we employ the Padé approximant in the
calculation of the time evolution operator. The �L /L� diago-
nal Padé approximant of the exponential function e−i� can be
expanded as

e−i� � �1 + �
n=1

L

�n�− i��n�/�1 + �
n=1

L

�n�i��n� , �4�

which can be further transferred into

e−i� = �− 1�L	
	=1

L
� + z	

�L�

� + z̃	
�L� , �5�

where 
z1
�L� ,z2

�L� , . . . ,zL
�L�� are the roots of the denominator of

the right-hand side of Eq. �4� and 
z̃1
�L� , z̃2

�L� , . . . , z̃L
�L�� are the

complex conjugates of 
z1
�L� ,z2

�L� , . . . ,zL
�L��. The coefficients of

Eq. �4� are identical with those obtained by the following
Obrechkoff one-step difference equation �8,9�:
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y�x +
h

2
� − y�x −

h

2
� − �

n=1

L

�nhn


�y�n��x +
h

2
� − �− 1�ny�n��x −

h

2
�
 = ELT�h� , �6�

where ELT�h� is the local truncation error. Expanding the
left-hand side of Eq. �6� into a �2L+1�-order Taylor series
and solving a system of linear equations, we can obtain the
coefficients �n �n=1,2 , . . . ,L� and the local truncation error,

ELT�h� = �− 1�L h2L+1y�2L+1����
22L�2L − 1� ! ! �2L + 1� ! !

, �7�

where x−h /2���x+h /2. The time evolution operator in
Eq. �3� can be expressed by the �L /L� diagonal Padé approx-
imant as

e−iH�/� = �− 1�L	
	=1

L

K	
�L� + O��2L+1� , �8�

where

K	
�L� =

H + ��/��z	
�L�

H + ��/��z̃	
�L� . �9�

Since the Hamiltonian H is time independent, the commuta-
tive relation �K


�L� ,K	
�L��=0 holds. Using expression �8� in Eq.

�3�, we obtain

��x,tn + �� = �− 1�L	
	=1

L

K	
�L���x,tn� . �10�

Defining

��x,tn +
s

L
�� = �− 1�Ks

�L���x,tn +
s − 1

L
�� , �11�

one can solve for ��x , tn+�� recursively, starting with

��x,tn +
1

L
�� = �− 1�K1

�L���x,tn� . �12�

As for the spatial integration, DT employed a
�2r+1�-point formula for the second-order spatial derivative
�1�,

�2

�x2��x,t� +
1

h2 �
k=−r

r

ck
�r���x + kh,t� = O�h2r� . �13�

We use the following �2M +1�-point difference formula, in
which we take full advantage of second-order partial deriva-
tives of the wave function and the wave function itself as
well, to improve the DT scheme,

�2

�x2 �
k=−M

M

ak
�M���x + kh,t� +

1

h2 �
k=−M

M

ck
�M���x + kh,t� = ELT�h� ,

�14�

where we set a0
�M�=1. By letting all of ak

�M� be zero except for
k=0, one would reduce Eq. �14� to the DT scheme. By mak-
ing expansions of the left-hand side of Eq. �14� with Taylor
series to the order of O�h4M−2�, one would obtain 2M +1
associate equations and determine the coefficients
a−M

�M� , . . . ,aM
�M� and c−M

�M� , . . . ,cM
�M� by solving these equations.

Because Eq. �14� is invariant under the change of h to −h,
the coefficients satisfy the relation 
a−k

�M� ,c−k
�M��= 
ak

�M� ,ck
�M��

for k=1,2 , . . . ,M. For example, the coefficients for M
=1,2 , . . . ,4 are given in Table I. From Eqs. �9� and �11�, we
have

�H +
�

�
z̃s

�L����x + kh,tn +
s

L
��

= �− 1��H +
�

�
zs

�L����x + kh,tn +
s − 1

L
�� �15�

for k=0, �1, �2, . . . , �M. Multiplying both sides of Eq.
�15� by ak

�M� for k=0, �1, �2, . . . , �M and adding the
2M +1 equations, we have

TABLE I. The coefficients ak
�M� and ck

�M� up to M =4.

M k=0 1 2 3 4

1 ak
�1� 1 1

10

ck
�1� 12

5 − 6
5

2 ak
�2� 1 344

1179
23

2358

ck
�2� 265

131 − 320
393 − 155

786

3 ak
�3� 1 329913

725308
18387

362654
619

725308

ck
�3� 813155

543981 − 263655
725308 − 130977

362654 − 49483
2175924

4 ak
�4� 1 1375194944

2412048335
271939448

2412048335
16267712

2412048335
330907

4824096670

ck
�4� 6442681595

5788916004 − 115253824
1447229001 − 580942096

1447229001 − 105962944
1447229001 − 25410683

11577832008
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�
k=−M

M

ak
�M��H +

�

�
z̃s

�L����x + kh,tn +
s

L
��

= �− 1� �
k=−M

M

ak
�M��H +

�

�
zs

�L����x + kh,tn +
s − 1

L
�� .

�16�

Remembering

H��x,t� → −
�2

2m

�2

�x2��x,t� + V�x���x,t� , �17�

and denoting v�x�=2mV�x��h /��2 and �=2mh2 /�, we re-
write Eq. �16� as

�
k=−M

M �− h2ak
�M� �2

�x2 + ak
�M��v�x + kh� +

�

�
z̃s

�L�
�

��x + kh,tn +

s

L
�� = �− 1� �

k=−M

M


�− h2ak
�M� �2

�x2 + ak
�M��v�x + kh� +

�

�
zs

�L�
�

��x + kh,tn +

s − 1

L
�� . �18�

Using Eq. �14� to eliminate the second-order partial deriva-
tives in the two sides of Eq. �18�, we have

�
k=−M

M �ck
�M� + ak

�M��v�x + kh� +
�

�
z̃s

�L�
���x + kh,tn +
s

L
��

= �− 1� �
k=−M

M �ck
�M� + ak

�M��v�x + kh� +
�

�
zs

�L�
�

��x + kh,tn +

s − 1

L
�� . �19�

We assemble the wave function as a vector

�n = 
�0,n,�1,n, . . . ,� j,n, . . . ,�J,n� �20�

for the time tn= t0+n� �n=0,1 , . . . ,N�, where the component
� j,n is for xj =x0+ jh �j=0,1 , . . . ,J�, and assume � j,n=0 for
anytime with x�x0 and x�xJ. Then Eq. �19� can be rewrit-
ten as the matrix equation

�Bs
�L����n+s/L = �− 1�Bs

�L��n+�s−1�/L, �21�

where Bs
�L� is a �2M +1�-diagonal matrix and the matrix

�Bs
�L��� is the complex conjugate of matrix Bs

�L�. The elements
of matrix Bs

�L� are given by

bj,j�k
�L,s� = ck

�M� + ak
�M��v j�k +

�

�
zs

�L�� . �22�

We employ the LU decomposition �10�, which writes the
matrix �Bs

�L��� of the left-hand side of equation �21� as the
product of a lower triangular matrix and an upper triangular
matrix, to solve the matrix equation �21�.

III. RESULTS AND DISCUSSION

In this section, we use two examples and an error analysis
to evaluate the precision and efficiency of our present
method.

A. Propagation of a wave packet

The first example is to solve the problem of the propaga-
tion of free-particle wave packets �1,11�. The free wave-
packet propagation with its initial wave function,

��x,0� = �2��0
2�−1/4eik0�x−x0�e−�x − x0�2/�2�0�2

, �23�

has the following analytical solution:

��x,t� = �2��0
2�−1/4�1 + i�t/�2m�0

2��−1/2


exp�− �x − x0�2/�2�0�2 + ik0�x − x0� − i�k0
2t/�2m�

1 + i�t/�2m�0
2�

� .

�24�

We set �=1, m=1 /2, �0=1 /20, k0=50�, and let the packet
travel from t0=0, with its center at 0.25 to the destination
time td=0.004, with its center at 1.5 as shown in Fig. 1. To
reduce the error for the normalization of the packet, the
range of spatial integration is set from −0.75 to 3.25. We use
the DT method and our present method to calculate the wave
function under the following conditions:

�1� L=10 with the time step size � from 0.000 026 666 7
to 0.0008 and

�2� M =r=6, 8, and 10 with the spatial step size h
=0.012, 0.01, 0.008, and 0.006.

We calculate the magnitude of error by comparing the
obtained ��x , td� with the analytical one using the formula
�4�

e1 = max
x

���x,td� − �exact�x,td�� . �25�

The numerical results for errors and CPU run time �12� as a
function of � are summarized in Figs. 2 and 3, where the
lines of A1 �blue empty circle�, A2 �blue empty square�, A3
�blue empty diamond�, and A4 �blue empty triangle� are ob-
tained by the DT method with the spatial step sizes of h
=0.012, 0.01, 0.008, and 0.006, respectively, and B1 �red
filled circle�, B2 �red filled square�, B3 �red filled diamond�,
and B4 �red filled triangle� by our present method with the
same respective values of spatial step size as those employed
in the DT method. For the cases of 
M =r=10, h=0.008 and

Traveling �

t�0 t�0.004

0.25 1.5
x

�2.8

�1.4

0

1.4

2.8
Re�Ψ�x, t��

FIG. 1. The real part of wave packet described by Eq. �24�.
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0.006� �B3 and B4 in Fig. 2�a�� and 
M =r=8, h=0.006� �B4
in Fig. 2�b��, we use a modern computational software pack-
ages of MATHEMATICA for multiple precision calculations
�13� considering the results would be reaching an accuracy
of equal to or less than 10−16, which is the standard precision
in most computing systems. From Figs. 2 and 3, we conclude
that:

�1� The error is not affected by the change in the time step
size � within a certain range; nevertheless, the logarithm of
e1 to the base 10 approaches an asymptote when � becomes
larger.

�2� For the cases of M =r and same 
L ,h ,��, the two
methods take almost the same CPU run time as shown in
Figs. 3�a� and 3�b� and, compared to the DT method, our
present method can improve the accuracy dramatically: for
some cases it increases about 9 orders of magnitude; for
examples, 
h=0.01, M =r=10� �A2 and B2 in Fig. 2�a��, 
h
=0.008, M =r=8� �A3 and B4 in Fig. 2�b��, and 
h=0.006,
M =r=6� �A4 and B4 in Fig. 2�c��. For the extreme case of


h=0.006, M =r=10� �A4 and B4 in Fig. 2�a��, it has im-
proved by about 14 orders of magnitude.

�3� From Fig. 3�c�, we see that the calculation with the
same parameters 
L ,h ,�� and M =r with multiple precisions
would take almost three times the CPU run time as that
under the floating precision.

B. Oscillation of a coherent wave packet

The TDSE of the oscillation of a coherent state for the
harmonic oscillator is

i�
�

�t
��x,t� = �−

�2

2m

�2

�x2 +
1

2
Kx2���x,t� . �26�

The time evolution of the oscillation of coherent states has
been discussed recently in connection with the quantum aba-
cus �14�. The exact expression for the time-dependent wave
function �15� can be written as

�exact =
�1/2

�1/4exp�−
1

2
�� − �0 cos �t�2

− i�1

2
�t + ��0 sin �t −

1

4
�0

2 sin 2�t�
 , �27�

where the time evolution of the initially displaced ground-
state wave function is considered,

��x,0� =
�1/2

�1/4e�−1/2��2�x − a�2
, �28�

with �4=mK /�2, �=�x, �0=�a, and �=�K /m. We set m
=1, �=1, a=10, and �=1 /5. Apart from the phase factor
e−i�t/2, the period of oscillation is 10�. We use the two
schemes to calculate the wave function from t=0 to td
=11T=110�, as van Dijk and Toyama chose in �1�, and the
spatial domain x� �x0 ,xJ�= �−30,30� under the following
conditions:

�1� L=20 and 15 with the time step size � from 110� /300
to 110� /30 and

�2� M =r=6 with h=0.3, 0.4, 0.5, and 0.6.
The numerical results of the logarithm of e1 to the base 10

as a function of the logarithm of � to the base 2 are summa-
rized in Fig. 4, where the lines of A1 �blue empty circle�, A2
�blue empty square�, A3 �blue empty diamond�, and A4 �blue
empty triangle� are calculated by the DT method with the
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FIG. 2. �Color online� The logarithm of e1 to the base 10, plot-
ted as a function of the logarithm of � to the base 2, for the propa-
gation of a wave packet with L=10 and �a� M =r=10, �b� M =r
=8, and �c� M =r=6.
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FIG. 3. �Color online� The CPU time�s�, plotted as a function
of �.
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FIG. 4. �Color online� The logarithm of e1 to the base 10, plot-
ted as a function of the logarithm of � to the base 2, for the oscil-
lation of a coherent wave packet with the parameters of M =r=6
and �a� L=20 and �b� L=20 and 15.
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spatial step size of h=0.6, 0.5, 0.4, and 0.3, respectively, and
B1 �red filled circle�, B2 �red filled square�, B3 �red filled
diamond�, and B4 �red filled triangle� by our present method
with the same respective spatial step sizes as those chosen in
the DT method. For the cases of 
M =r=6, h=0.3, L=20 and
15� �B4 in Fig. 4�, we use the multiple precisions. Figure
4�a� shows that our present method surpasses the DT method
by about 5 and 10 orders of magnitude when M =r=6 is used
with the spatial step size h=0.6 and h=0.3, respectively.
From Fig. 4, we can also see that the logarithm of e1 to the
base 10 approaches an asymptote as � becomes larger and
the asymptote will move toward the larger time step size �
when the higher-order Padé approximant is employed.

C. Error analysis

The above examples show that the numerical precision for
the TDSE is not affected by the change in � or the order
parameters of the Padé approximant method within a certain
range. In what follows we shall investigate the source of the
error in the framework of the space discretization and the
Padé approximant method for the time evolution operator
and explain the interesting findings obtained in the calcula-
tion.

In the following discussion, we set �=1. Denoting �H as
the error resulting from the space discretization, which
should be a function of the spatial step size h, we can sepa-
rate the Hamiltonian H in Eq. �3� into H0, which is employed
in the calculation, and �H. For the final time td= t0+n�, Eq.
�3� becomes

��x,td� = ��x,t0 + n�� = �exp�− iH0��exp�− i�H���n��x,t0� .

�29�

On the other hand, �exp�−i�H���n�1− in�H� for the case
n�H��1 and exp�−iH0�� can be expressed into the sum of
M�H0 ,�� and an error �M�H0 ,��, and �M�H0 ,�� /M�H0 ,��
�1, so

�exp�− iH0���n = �M�H0,�� + �M�H0,���n � M�H0,��n

+ n�M�H0,��M�H0,��n−1. �30�

Hence, regardless of the higher-order infinitesimal, ��x , td�
can be approximately expressed as

�M�H0,��n + nM�H0,��n−1�M�H0,��

− iM�H0,��nn��H���x,t0� , �31�

where M�H0 ,��n��x , t0� and M�H0 ,��n−1��x , t0� are just the
numerical wave functions of ��x , td� and ��x , td−��. Denot-
ing the error of the calculated wave function as
maxx���x , td�−�exact�x , td�� according to Eq. �25�, we obtain
the error

et = max
x
��M�H0,��

�
�td − t0���x,td − ��

+ �− i�H��td − t0���x,td�� . �32�

Assuming maxx���x , td−����maxx���x , td��, Eq. �32� can be
simplified to

et = �td − t0�max
x

���x,td�����M�H0,��
�

�2

+ ��H�2.

�33�

In the following, we will compare the calculated e1 as
shown in Fig. 4 with the error et predicted by Eq. �33�. Since
�H is the error due to discretization of space, it should be
O�h4M� for the �2M +1�-point formula in our present
method. Thus we set

�H = Psh
4M , �34�

where the parameter Ps is dependent on the order of spatial-
integration method. When H0��1, �M�H0 ,�� /�
= PtH0�H0��2L according to Eq. �7�, where the parameter Pt
is dependent on the order of the Padé approximant. If H0�
�1, we should express �M�H0 ,�� as

�M�H0,�� = �exp�− iEH0
�� − �− 1�L	

	=1

L

K	
�L��EH0

�� ,

�35�

where EH0
is used to represent the energy level of the

system. In the second problem we have tested,
��td− t0�maxx ��x , td��= ��110�−0�0.5023�=173.58 and e1
=7.38
10−15 when M =r=6 and 
L ,h ,��
= 
20,0.3,11� /20� are employed, so we have

Ps =
7.38 
 10−15

173.58 
 0.324 = 0.00015. �36�

According to expressions �34� and �36�, we obtain the errors
from the spatial integration to be 7.35
10−12, 1.56
10−9,
and 1.24
10−7 for the spatial step sizes h=0.4, h=0.5, and
h=0.6, respectively, which agree with the calculations as
shown in Fig. 4. If a is large, according to �15�, the energy
level EH0

is approximately equal to 1
2Ka2 while EH0

= 1
2KA0

2

from the classical point of view and A0 is the amplitude of
the oscillator, then EH0

=2. The practical amplitude of the
oscillator is greater than a. We plot log10 et in Fig. 5 accord-
ing to Eqs. �33�–�36� with L=15 and 20, where the estimated
energy EH0

=2 and 5 are used for Figs. 5�a� and 5�b�. Com-
paring Fig. 5 with Fig. 4�b�, we can see that Fig. 5�b� is in
better agreement with Fig. 4�b� than Fig. 5�a�, which means
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FIG. 5. �Color online� The logarithm of et to the base 10, plotted
as a function of logarithm of � to the base 2, for the diagonal Padé
approximant of �15,15� and �20,20�, which are denoted by L=15
�blue empty circle� and L=20 �red filled diamond�, respectively, in
which �a� EH0

=2 and �b� EH0
=5.
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the energy value of the system approximates 5 and the cor-
responding classical amplitude A0�15.8114. From the
above error analysis, we can immediately draw the following
points:

�1� the error �H, which is ascribed to the space discreti-
zation, plays a primary role when the time step size � is
small; however, �M�H0 ,�� /� resulted from the Padé approx-
imant method for the time evolution operator will be the
leading error as � gradually increases and

�2� the higher-order Padé approximant leads to the larger
domains of the time step size �, in which �H is the primary
error.

IV. SUMMARY

By two well-known numerical examples, we demonstrate
that the present space-discretization scheme presented in this

paper greatly improve the spatial integration giving many
orders of magnitude improvement in the precision of the
results. This method should be a significant tool for solving
the time-dependent Schrödinger equation.
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