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Acceleration of quantum optimal control theory algorithms with mixing strategies
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We propose the use of mixing strategies to accelerate the convergence of the common iterative algorithms
utilized in quantum optimal control theory (QOCT). We show how the nonlinear equations of QOCT can be
viewed as a “fixed-point” nonlinear problem. The iterative algorithms for this class of problems may benefit
from mixing strategies, as it happens, e.g., in the quest for the ground-state density in Kohn-Sham density-
functional theory. We demonstrate, with some numerical examples, how the same mixing schemes utilized in
this latter nonlinear problem may significantly accelerate the QOCT iterative procedures.

DOI: 10.1103/PhysRevE.79.056704

I. INTRODUCTION

Quantum optimal control theory [1-4] (QOCT) answers
the following question: A system can be driven, during some
time interval, by one or various external fields whose tempo-
ral dependence is determined by a set of “control” functions.
Given an objective (e.g., to maximize the transition probabil-
ity to a prescribed final state, the so-called target state), what
are the control functions that best achieve this objective?

In the more general context of dynamical systems, opti-
mal control theory is widely used for engineering problems,
and its modern formulation was established in the 1950s [5].
The translation of these ideas to quantum mechanics was
initiated in the 1980s [6—18]. Recently, the field has received
increasing attention due to the parallel advances in experi-
mental control techniques: femtosecond and attosecond laser
sources with pulse shaping devices [19-21] and learning
loop algorithms [22]. These new developments call for cor-
responding theoretical efforts.

The computational solution of the QOCT equations may
impose an enormous burden. Any algorithm requires mul-
tiple forward and backward propagations of the quantum
system under study. This can be very cumbersome, depend-
ing on the level of theory employed to model the process.
The development of efficient algorithms is therefore essen-
tial. And, in fact, rather efficient schemes already exist
[23-26]. The most effective choices are closely related and
can be grouped in a unified framework [27]. The equations to
be solved are nonlinearly coupled initial-value partial differ-
ential equations and must be solved iteratively. These itera-
tive procedures can be described in the following way: one
input field is passed to an “iteration functional” that tests its
performances and produces an improved “output” field. This
output field can then be used as input for the iteration func-
tional. Upon solution, output and input fields coincide at the
“fixed point” of the iteration functional.

We must therefore search for the fixed point of some non-
linear functional. One prominent example of this kind of
fixed-point problems is the Kohn-Sham (KS) formulation of
density-functional theory (DFT) [28]. In this field, it was
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soon realized that the naive use of the output produced in one
iteration as input for the next one leads to poor (or no) con-
vergence, and this observation suggested the use and devel-
opment of “mixing” techniques [29-31]: the input for each
iteration is a smart combination of the output of the previous
iteration and several inputs or outputs of former iterations.
The result is typically a very significant acceleration in the
convergence—and even the possibility of finding a solution
in cases where no mixing (or trivial “linear” mixing) is un-
able of finding one.

In this work, we propose the use of those mixing strate-
gies to accelerate the convergence of the iterative algorithms
used in QOCT. We demonstrate how they can significantly
reduce the iteration count—yet the performance and degree
of gain, of course, depend on the details of each particular
model. The procedure should be viewed as a scheme to ac-
celerate (and not substitute) the existent iterative algorithms;
in particular, it will be made evident that the mixing should
be switched on after a couple iterations have been made and
the control function is not too far away from the solution—
fortunately, it is precisely this “far from convergence” regime
where the existent algorithms behave better.

The description of the proposed methodology is provided
in Sec. II. Some numerical evidence supporting the advan-
tages of its use is shown in Sec. III. Atomic units are used
throughout.

II. METHODOLOGY

We recall the essential equations of QOCT, making no
attempt to state them in full generality—the basic ideas can
be generalized in different ways suitable for a broad class of
situations; however the reader should find no difficulties to
translate our suggested enhancements to those variations.

We consider a system characterized in the absence of ex-

ternal fields by a Hamiltonian I:Io. One external ‘“control”

operator s(t)f/ may drive it during some time interval, where
(1) is a “control function.” The system is therefore governed
by

H(t)=Hy+e()V, 0=t=<T, (1)

which drives the system from its initial state |W,) to a final
state |W(7)). The purpose of the QOCT algorithms is to find
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that £(7) that maximizes the value of a target—in mathemati-
cal terms, a functional of the evolution of the state, J,[W¥]. In
many cases it depends only on the value of the state at the
end of the propagation. And in most cases it takes the form

of the expectation value of some operator 0,

LW = (W(D)|O]W(T)). 2)

In order to produce a physically meaningful process, the
maximization of J; must be constrained: on one hand, one
should limit the search space of &; on the other hand one
must ensure that the evolution |W(7)) indeed follows from
Schrodinger’s equation. In mathematical terms, this trans-
lates into the maximization of the functional,

W, x.e]l=N[W]+Jle] + 5[V, x.e], 3)
T

Jle]l=- aJ dte’(1), (4)
0

T
LW, x.e]=-21Im f dt()((t)|i% —Hy-e()V|W(2)).
0

(5)

The J, functional penalizes the “fluence” of the control
field—ensuring that the maximization procedure does not
lead to infinite values. The J; functional ensures that W(z)
satisfies the Schrodinger equation, and it introduces a new
“Lagrange-multiplier” wave function, y. The Euler-Lagrange
equations satisfied at the stationary points of J are

) =y + o) VI (0), ©
[P (0)) =|¥y), (7)

d A .
i~ IX(0) = [+ £()V]|x(1), (8)
(1)) = O[¥(D)), 9)
ae(r) = Im{x(0)| V¥ (1)). (10)

Numerous modifications and extensions to these equations
are possible, for example, the possibility to include dissipa-
tion [32], to account for multiple objectives [33], to deal with
time-dependent targets [34-36], to add spectral and fluence
constrains [37], or to work with more general inhomoge-
neous integrodifferential equations of motion [38]. In order
to keep the present discussion as simple as possible, we have
chosen to present this “standard” set of equations, but we
stress that the algorithmic enhancements discussed below
may be applied to the modified versions.

The control equations [Egs. (6)—(10)] are coupled and one
must look for a self-consistent solution. This requires an it-
erative scheme, which we choose to write here, for reasons
that will become clear later, in “functional” form: an “itera-
tor” F takes an input control function & and produces an
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output, which is then used as input for the following itera-
tion.

The simplest option would be what can be called a
“straight iteration:” given a trial control function ¢® (k is the
iteration index), the output F[e®] is constructed by taking
the following steps:

(1) Propagate from |¥(0))=|W,) to [W(T)) with &®.

(2) Propagate backward from |x(7))=0|W(T)) to |x(0)),
also with e®(z). During the evolution, we calculate the out-
put field F{e™®],

aF[e®](r) = Im(x (1) | VW (1)). (11)

(3) Define e**V=F[¢®] and repeat from step 1 until con-
vergence is reached (Fle]=¢).

This procedure was already used, for example, in the
seminal work of Kosloff et al. [13]. As discussed by Somloi
et al. [26], doing such a straight iteration in general does not
lead to convergence. One possible way to cure this problem
is to set eV =gW 4 yF[eM]; the parameter y may be set by
performing a line-search optimization, such that ¢+ pro-
duces the maximal objective J. This idea is in fact a first-
order approach to the schemes discussed below.

One monotonically convergent algorithm was introduced
in Ref. [24]—we will refer to this algorithm as ZR98. It can
be described in the following way: given the trial control
function €%, the output F[e®] is constructed by taking the
following steps:

(1) Propagate from |W(0))=|W,) to [W(T)) with &®.

(2) Propagate backward from |x(T))=O|¥ (7)) to |x(0)),
with & defined as

a& (1) = Im{x()| VW (1)). (12)

€ must be obtained “on the fly” from the values of the propa-
gating |x(¢)) and the previously obtained |W(z)).

(3) Propagate forward from |¥'(0))=|¥,) to |¥'(T)), us-
ing the output field F[e¢®](r), which is now defined as

aFLe®](1) = Im{x()|V|¥' (1)). (13)

One can then simply define e**")=F[¢®] and proceed to the
next iteration (note that in this case one does not need to
perform explicitly step 1 again since it repeats step 3 in the
previous iteration). The solution, i.e., the optimal field, is
obtained when the iteration finds a fixed point: Fle]=e¢.

At this point, some remarks are in order:

(i) The seminal algorithmic work presented in Ref. [23]
deals with a slightly modified version of the previous
scheme, suitable for a particular (but very common) type of
target—the objective is to maximize the population of a

given target state Wy, , and therefore the operator O is the
projection onto that state. In this case, the generating func-
tionals can be defined in such a way that the propagations for
W and y are decoupled [note that in Egs. (6)—(10), V¥ and y
are coupled through Eq. (9)],

() = g+ 60 V), (14)
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[P(0)) =|¥,), (15)

d ) )
i Ix(0) =[Ho+ 20 VIIx(), (16)
|X(T)> = |\I,target>’ (17)
ae(t) = Im(x ()| V¥ (1)). (18)

This algorithm, presented in Ref. [23], is essentially the same
as the one defined by Egs. (6)—(10), except for the fact that
the initial-value point for the propagation of y is now given
by Eq. (17). In the following, we will refer to this scheme as
ZBROS.

(ii) The formulation of Krotov as implemented by Tannor
et al. [25] can also be viewed as a modification of the pre-
vious scheme and, as discussed in Ref. [27], both schemes
can be written as members of the same family.

(iii) A remarkable property of both ZR98, ZBR98 and
Krotov’s schemes is their monotonic convergence. Also, and
most importantly, they typically provide very fast improve-
ments during the first iterations—when the trial field is very
far from the solution field. Unfortunately, this rate of conver-
gence slows down as the iteration count grows.

(iv) The previous description of the Z(B)R98 algorithms
suggests that the cost, per iteration, is that of two wave func-
tion propagations. However, this can only be possible if, at
every time step in either the forward or backward step, the
wave functions are stored and then retrieved from memory
when performing, respectively, the following backward or
forward step. In practice, this can be time consuming, and
the best way is actually to propagate once again with the
same field but in the opposite time direction. In this case, one
needs, in fact, four propagations per iteration.

We propose now to utilize the simpler straight iteration
but with an important change: we do not use e**V=F[®].
Instead, we can use the sophisticated mixing algorithms that
have proved so useful in the field of Kohn-Sham density-
functional theory [28], such as, for example, the one pre-
sented in Ref. [30] (which we will call modified Broyden’s
algorithm). Other options would be equally valid—for ex-
ample, the work presented in Ref. [31]. One can use them
exactly in the same way as they are used in electronic-
structure calculations. The only external ingredient that the
algorithms necessitate and which is different for each prob-
lem is a dot product definition for the relevant variables,
which in the QOCT case are the control functions. We take
the obvious choice,

T
(&1]&y) = f dre(t)ey(t). (19)
0

In essence, the gist of Broyden’s scheme (and of all of the
other so-called mixing strategies) consists of making use, in
order to define ¢**!), not only of F[£¥] but also of a number
s of previous iteration values,

PHYSICAL REVIEW E 79, 056704 (2009)

8(k+1) = Gmixing[{s(k_j)7F[S(k_j)] ;;(]) . (20)

The functional G, is chosen in some way designed to
minimize the distance D between input and output,

D(Flel,e) = (F[e] - e|F[e] - &), (1)

These functionals are essentially based on approximations
to the conventional Newton-Raphson iteration. Let us define
T[e]=F[e]-&; in the vicinity of % (the kth iteration ap-
proximation to the solution), the functional T can be linear-
ized,

Mel~ eV +I%[e -], (22)

where J® is the Jacobian of T evaluated at e®. This can be
rewritten as

-+ GW[Me]-1e™]]=0, (23)

where G®P=—(J®)~1 Newton’s iteration follows immedi-
ately from this formula by assuming %+ to be the solution

vector (Te%*D]=0),
D = ¢® 4 GOITTeMT]. (24)

Since the Jacobian (let alone its inverse) may be difficult to
compute, quasi-Newton-Raphson schemes utilize approxi-
mations to it; in Broyden’s family of schemes, these are also
built iteratively. Therefore, the matrices G*' do not verify
Eq. (23) until convergence.

Johnson’s proposal [30], in particular, consists of generat-
ing G**V by minimizing the following functional:

k
E = of|G*Y - GW|| + X w2|Ae™ + GRDAT™|?,

n=1

(25)

where Ag™=gtD_g)  ATW=T[emD]-T[e"], and o,
are a set of real positive constant weights. The idea is there-
fore to minimize the error in the inverse Jacobian (first term
in the definition of E) at the same time making sure that the
new guess for G verifies Eq. (23) as closely as possible—not
only for the last iteration ¢® but also for all the previous
ones.

The minimization of E with respect to G**1 leads to an
iterative formula; this formula can then be plugged into Eq.
(24). The final result reads

k-1
8(k+1) = s(k) + G(I)T[S(k)] - E wn)/knu(n)’ (26)
n=1
where
U™ = GOAT™ 1 Ag™, (27)
k-1
Y= Z wn<AT(n)|T(k)>Bnlv (28)
n=1
Bu= (@l +a)y, (29)
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In this manner, the new field %! can be obtained from
information gathered in the previous iterations. It only re-
mains to choose an appropriate initial guess for the inverse
Jacobian, G; we merely set it equal to some constant times
the identity, al. This constant a can be freely chosen [it
ultimately determines the amount of “output” field to be uti-
lized in the mixture, as it can be understood inspecting Eq.
(26)], and it is a matter of experience to determine a reason-
able value—likewise for the w; constants. In typical DFT
codes, the w; constants are not adjusted for each run; the
same values are used for all systems. « is usually set initially
to some “aggressive” value (i.e., large value, meaning a large
proportion of the output is used), and, if convergence is not
found, it is reduced in a subsequent run. We expect that the
same strategy should hold for QOCT runs.

A careful analysis of Eq. (26) also reveals that we do not
need to manipulate or store objects of size N?, where N is the
dimension of the problem field . The cost of the operations
is of order sN, where s is the number of previous iterations to
be considered in the formula. This is the key reason to utilize
this modification of Broyden’s scheme since in a typical
QOCT problem the dimension N is given by the number of
time steps in the propagation, which can be easily of the
order of 10°.

Regarding numerical details, we have implemented the
QOCT machinery in our electronic-structure OCTOPUS code
[39]. Since one of the tasks of this code is to solve the KS
DFT problem, the mixing strategies cited above are imple-
mented. This platform is specialized in the time-dependent
version of DFT (TDDFT) and therefore contains sophisti-
cated time-propagation schemes [40], utilized for the results
shown below. We have recently employed our QOCT
machinery—without making use of the mixing strategies—to
model the control of electrons trapped in two-dimensional
semiconductor quantum nanostructures [41].

III. RESULTS
A. Asymmetric double well

As a first example, we will use a simple but prototypical
example: the transfer of a wave packet from one to another
well in an asymmetric double well potential. The field-free
Hamiltonian is

X 1# 2 X
— Tt o+ (31)
20x~ 64 4 256

Hy=

The potential is depicted on top of Fig. 1. Qualitatively simi-
lar potentials appear in many areas in physics, and in quan-
tum chemistry they are sometimes used to model isomeriza-
tion problems [42]. The external control couples to the

system through the dipole operator: V=-%.

The ground state, \I’g, is localized in the left, deeper, well.
The first excited state, which will be our target, W e, 18
localized in the right well. These states are also depicted in

Fig. 1. The target operator O is in this case the projection
|V arger( W targer> and therefore the preferred algorithm to start
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=

FIG. 1. Asymmetric potential well (thick line), together with the
initial (dotted line) and target (dashed line) states.

with is the one presented in Ref. [23], ZBR98. In addition,
we will use straight iteration assisted by Broyden’s mixing.

Figure 2 displays four QOCT runs, each of them consid-
ering a different initial guess for the solution field,

(1) = E, cos(wt). (32)

We try the optimization with four different values of E, as
displayed on each of the panels. Both the values of the total
functional J and of the objective J; are displayed. Before
describing the results, we should point out that, as discussed
above, there are some adjustable parameters to completely
define the mixing algorithm: (i) the number s of previous
iterations considered in the construction of the algorithm—
which is set to four in this case; (ii) a number « that specifies
the amount of output field, aF[e®], that is utilized in the
mixing—we use a=0.1; (iii) also, it is sometimes advisable
to stop the algorithm every given number of steps and restart
erasing the memory from previous iterations—in Fig. 2,
however, we have chosen to put the straightforward algo-
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FIG. 2. Convergence histories for both the ZBR98 algorithm
and the straight iteration scheme assisted with the modified Broy-
den mixing scheme. Each panel displays the results obtained with a
different initial guess (see text).
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FIG. 3. Convergence histories for both the ZBR98 algorithm
and the straight iteration scheme assisted with the modified Broy-
den mixing scheme. The modified Broyden scheme, however, is
only applied after the third iteration.

rithm. We have made no attempt to optimize the method by
taking advantage of this freedom.

The results are very promising: except for the case (top
left) where the initial laser field has very low amplitude
(Ey=0.01), leading to a very small initial overlap J;, in all
the other cases Broyden’s mixing converges faster and in fact
converges to a different better maximum. Unfortunately, the
exception in the top left corner is very disappointing since
the procedure yields the zero field—which is also a solution
of the QOCT equations but certainly not the desired one.

And that exception is indeed especially important since it
exemplifies an important weakness of using straight iteration
together with Broyden’s algorithm: the algorithm behaves
very poorly if the initial guess is not good enough. Fortu-
nately, this is precisely the regime where most of the already
existent algorithms behave better—and therefore one can de-
vise a “hybrid” procedure: a few iterations with, for example,
ZBR98, followed by the mixing iterations. Figure 3 displays
the results obtained in this way: at iteration number three, the
ZBR98 procedure is stopped. Then, after a couple of irregu-
lar iterations (that irregularity can however be controlled by
a more careful selection of the parameter a mentioned
above), the results are significantly better.

B. Morse potential

For our second example, we have chosen a case that has
already been discussed in the literature: the vibrational exci-
tations in a Morse potential model for the OH bond. This
potential function is given by (all quantities are given in
atomic units hereafter) [43]
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FIG. 4. Convergence histories for both the ZBR98 algorithm
(lines with circles) and for the straight iteration scheme assisted
with the modified Broyden mixing scheme (lines with squares) for
the case of the Morse potential. Both the values for the J, (“target
functional,” lower lines) and for the total J functional (upper lines)
are shown. Inset: optimized control field.

V(x) = Dofexp[— Blx — ro)]- 1}* = Dy, (33)

where, for the OH case, the parameters are chosen to be
Dy=0.1994, B=1.189, and ry=1.821. The coupling to the
external function is given now by a dipole potential operator
approximated by the function

V(x) = pox exp(=x/r%), (34)

where u,=3.088 and r*=0.6. The objective is now to popu-
late the first excited state, starting from the Morse ground
state. The total propagation time is 7=30000 a.u.
(=0.725 ps); the initial trial input field is the zero field, and
the penalty factor is a=1. This is precisely the first example
discussed by Zhu er al. [23] to demonstrate the performance
of the ZBR98 algorithm. We have replicated those calcula-
tions with our codes, and in the following we demonstrate
how the addition of mixing strategies significantly boosts the
performance of the original scheme [44]

The results are shown in Fig. 4. First of all, we should
note that the attempt to apply a straight iteration scheme
right from the zeroth iteration—whether or not assisted by
mixing techniques—will fail since the initial input field is
already a solution to the QOCT equations. This solution,
however, is an unstable point, and the ZBR98 in this case
relies on numerical error to abandon this unstable solution
and then proceeds until convergence into a maximum. The
behavior of this algorithm is summarized by the circles in
Fig. 4, which show both the values of J; and J at each itera-
tion step. These results are almost exactly the same as the
ones given in Ref. [23]. Also, the final converged field
(shown in the inset of Fig. 4) coincides with the one reported
in that work.

In order to speed up the convergence, we utilized the
modified Broyden’s mixing algorithm to accelerate the
straight iteration scheme, starting from the field obtained af-
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ter the first ZBR9S iteration. The results are shown in Fig. 4
with squares; the thick black curve in particular refers to the
convergence of the J functional. It may be seen how the final
converged value, J(0)=0.885, is obtained in a few iterations.
In order to achieve the same level of convergence, ZBR98
necessitates around 50 iterations. Once again, it should be
noted that in a usual implementation, each straight iteration
step will be half as costly as a ZBR9S step.

IV. CONCLUSIONS

To summarize, ideas borrowed from a particular field of
computational physics (e.g., density-functional theory tech-
niques) have been used successfully in the completely differ-
ent context of QOCT algorithms. The reason for success is,
of course, the underlying parallelism in the equations if re-
garded with the appropriate “abstract eye.”

This work by no means proves, in mathematical rigor, the
universal advantage of using mixing strategies for all QOCT
problems. However, we have observed important speedups in
most cases (as in the ones presented in this paper), and we
feel that the analogy with the KS DFT problem provides
convincing evidence about the usefulness of employing mix-
ing for QOCT. Two important features of previous algo-
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rithms are, unfortunately, lost: the monotonic convergence
(this could be cured, nevertheless, by adapting the mixing
scheme proposed by Bowler and Gillan [31]), and the usual
large gains during the first iterations when the initial guess is
far from the solution.

This excellent performance of both Z(B)R98 or Krotov’s
algorithm for the first iterations suggests the use of the mix-
ing schemes not as a substitute but as a complement—as
demonstrated in our sample runs. Moreover, we should note
that the idea of mixing several iterative steps according to,
e.g., Broyden’s scheme can also be applied on top of the
usual ZBR98, ZR98, or Krotov’s algorithms (and not on top
of the straight iteration scheme, as it has been presented
here). Our experience shows that, in most cases, doing this
accelerates the convergence—although at the cost of loosing
the predictable, regular, monotonic behavior. Finally, we re-
mark that the suggested algorithms can be easily mounted on
top of the already working programs.
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