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We report on the derivation of the discrete complex Ginzburg-Landau equation with first- and second-
neighbor couplings using a nonlinear electrical network. Furthermore, we discuss theoretically and numerically
modulational instability of plane carrier waves launched through the line. It is pointed out that the underlying
analysis not only spells out the discrete Lange-Newell criterion by the means of the linear stability analysis at
which the modulational instability occurs for the generation of a train of ultrashort pulses, but also character-
izes the long-time dynamical behavior of the system when the instability grows.
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I. INTRODUCTION

Dissipative systems are common in nature. Strictly speak-
ing, any other physical model is just an idealization. The
so-called conservative or Hamiltonian systems provide con-
venient models for basic mathematical analysis of simple
motion, but they fail to describe real dynamics in longer time
scales. Observing nature, we can realize that “particles” are
always submerged into dissipative media, which feed their
continuous motion. Dissipative systems driven far from ther-
mal equilibrium support solitonlike localized states. These
structures are referred to as “dissipative solitons” and are
sustained because of an interplay between dispersion, non-
linearity gain, and losses. One of the models of a dissipative
system is based on the complex Ginzburg-Landau �CGL�
equation �1� that has terms responsible for a variety of gain-
loss mechanism. This equation is encountered in several di-
verse branches of physics, such as, for example, in supercon-
ductivity and superfluidity, nonequilibrium fluid dynamics
and chemical systems, nonlinear optics, Bose-Einstein con-
densates, quantum field theories, and nonlinear electrical line
�1–4�. The discrete CGL lattices are quite often used to de-
scribe a number of physical systems such as semiconductor
laser in optics �5� as well as the formation of dissipative
discrete solitons in laser arrays �6�, Taylor and frustrated vor-
tices in hydrodynamics �7�.

Also, the behavior of nonlinear discrete system has re-
ceived considerable attention. There are two main raisons for
this interest: the development of experimental techniques
making it possible to realize experiment in complicated pe-
riodic nonlinear structure and the potential for all-optical
switching applications. The nonlinear electrical lines are
good examples of such systems. They are very convenient
tools for studying quantitatively the fascinating properties of
wave propagation in nonlinear dispersive media �8,9�. In par-
ticular, they provide a useful way to check directly how the
nonlinear excitations behave inside the nonlinear medium by

means of probes related to an oscilloscope. The first studies
of soliton on electrical lattices have been done by Hirota and
Suzuki �8�. Qualitatively, the origin of soliton in nonlinear
electrical line is explained by the balance between the effect
of dispersion �due to the periodic location of capacitor in the
nonlinear electrical lines� and nonlinearity �due to the volt-
age dependence of the capacitance�. Let us also point out
that, recently, nonlinear electrical lines have proven to be of
great practical use in extremely wideband �frequencies from
dc to 100 GHz� focusing and shaping of signals �10� which is
usually a hard problem. Up to now, in the area of dissipative
lattices, only the one-dimensional discrete CGL equation
with first-neighbor couplings has been derived in any physi-
cal system.

In this work, we report the first derivation of the discrete
CGL equation with first- and second-neighbor couplings in a
real network: the nonlinear electrical line. A fundamental
process that is possible in such an array system is that of
discrete modulational instability �MI�. Thereafter, the gener-
alized discrete Lange-Newell criterion will be derived for
dissipative systems. Our numerical observations were found
to be in good agreement with theoretical predictions. The
paper is organized as follows. In Sec. II, we derive through
the nonlinear electrical line, the discrete complex Ginzburg-
Landau �DCGL� equation with next-nearest-neighbor cou-
plings. The generalized Lange-Newel criterion is also pre-
sented. Section III is used to verify our analytical findings
and good agreement is obtained. Finally in Sec. IV we give a
brief summary.

II. DCGL WITH NEXT-NEAREST-NEIGHBOR COUPLINGS
IN NONLINEAR ELECTRICAL LATTICE

We consider a nonlinear electrical line which contains a
finite number of cells as shown in Fig. 1. Each cell contains
a linear inductor of inductance L1 and L3 in the series branch
and a linear inductor of inductance L2 in parallel with a non-
linear capacitor C. This capacitor consists of a reverse-biased
diode with a differential capacitance function of the voltage
Vn across the capacitor. The conductance g1 describes the
dissipation in the inductor L1 while g2 accounts for the dis-
sipation of the inductor L2 in addition to the loss of the
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nonlinear capacitor C�Vn�. During computations, the follow-
ing values of parameters are used: L1=L3=280 �H
�10,11,13� and L2=2L1=560 �H. The nonlinearity is intro-
duced in the line by a varicap diode for which the capaci-
tance varies with the applied tension. Denoting by Qn�t� the
nonlinear electrical charge of the nth cell and by Vn�t� the
corresponding voltage, we assume that the charge has a volt-
age dependence similar to the one of an electrical Toda lat-
tice �12�: Qn=C0A ln�1+

Vn�t�
A �. The subscript n designates the

number of cells in the network. Coefficients A and C0 are
constants. Negative nonlinear resistances are made of opera-
tional amplifiers, transistors, or multipliers. They were intro-
duced recently in nonlinear transmission lines for signal pro-
cessing applications, particularly in noise removal on
coherent information weakly varying in space �13� and on
image and waves amplification �14�. The corresponding con-
ductance is given by g2=�−�Vn.

We focus now on the nonlinear behavior of the lattice.
From Kirchhoff’s laws it is easy to show that the propagation
of waves in the network is governed by the following equa-
tion:

�A + Vn�
d2Vn

dt2 − �dVn

dt
�2

=
�0

2

A
�A + Vn�2�Vn−1 − 2Vn + Vn+1� −

�0
2

A
�A + Vn�2Vn

+
�0

2

A
�A + Vn�2�Vn−2 − 2Vn + Vn+2�

+ 2�1
�0

A
�d�Vn−1 − 2Vn + Vn+1�

dt
� − 2�2

�0

A
�A + Vn�2dVn

dt

+ 2��
�0

A
�A + Vn�2dVn

2

dt
, �1�

where 2�0�1=
g1

C0
, 2�0��= �

C0
, 2�0�2= �

C0
, �0

2= 1
L2C0

, �0
2

= 1
L1C0

. The linear properties of the network can be studied by
assuming a sinusoidal wave and, thus one obtains the follow-
ing dispersion relation of the line plotted in Fig. 2:

�2
2 = �0

2 + 4�0
2 sin2� k

2
� + 4�0

2 sin2�k� . �2�

From Eq. �2�, one can derive the following group velocity:

Vg�k� =
�0

2 sin�k� + 2�0
2 sin�2k� .

��0
2 + 4�0

2 sin2� k
2� + 4�0

2 sin2�k�
. �3�

This group velocity increases by including second-order cou-
plings as one can see in Fig. 3. We restrict our study to slow
temporal variations in the envelope. As we shall see, it pro-
vides a deep and useful insight into the full dissipative dy-
namics of the nonlinear electrical line and leads to pattern
formation. For this purpose, we look for a solution of Eq. �1�
in the form

Vn = ��n�T�exp�− i�t� + ��n
��T�exp�i�t� , �4�

where � is small parameter ��	1� and T=�2t. Inserting this
relation in Eq. �1�, we collect solutions of order �� , exp�
−i�t��, order ��2 ,1� which give a relation between the wave
function at different site of the lattice. Thereafter, one write
the relation at order ��3 ,exp�−i�t��, using the dispersion re-
lation �Eq. �2�� and equations resulting from the above dif-
ferent order, one obtains the following equation:

i
n� + P1�
n−1 − 2
n + 
n+1� + P2�
n−2 − 2
n + 
n+2�

+ Q�
n�2
n = i��r + i�i�
n, �5�

where the complex coefficients of Eq. �4� are given by

Qr =
3�2

A2�0
2 ,

FIG. 1. Schematic representation of the nonlinear electrical line.
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FIG. 2. Linear dispersion curve.
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Qi =
4���

A�0
2 ,

P1r = 1,

P2r =
�0

2

�0
2 ,

P1i = 2
�

�0
	�1��0

2 + 2�0
2 + 2�0

2 − �2� − �0
2��2 + 2�1�

�0
2 + 2�0

2 + 2�0
2 − �2 
 ,

P2i = 2
�

�0
	 �0

2��2 + 2�1�
�0

2 + 2�0
2 + 2�0

2 − �2
 ,

�i = 2�P1r + P2r� ,

�r = − 2�P1i + P2i� .

Figure 4 presents the dependence of the coefficient P2i
versus the wave number for different values of the parameter
�i �i=1,2�. Equation �5� is the so-called discrete cubic CGL
equation with first- and second-neighbor couplings. This
equation has been phenomenologically proposed to describe
frustrated states in a linear array of vortices �7�. Also, it
reproduces reasonably well characteristics of the turbulent
regime below the percolation threshold. Percolation has been
found to be useful concept for the description of turbulence,
and the results suggest that nonadiabatic effects, such as dis-
crete nature of the system, play a role in the system. Let us
point out that the first study of second-order coupling has
been done by Efremidis et al. �15� through the study of dis-
crete diffraction properties of nonlinear waveguide arrays.
Later, a general model of a one-dimensional dynamical lat-
tice combining the on-site discrete nonlinear Schrödinger
equation nonlinearity and both the first couplings and second
couplings linear couplings between lattice sites has been in-
troduced �16�. This model has been considered to describe

three types of fundamental solitons: site-centered and
intersite-centered ones, and twisted localized modes.

MI has time-honored history in nonlinear wave equations.
Their occurrence span areas ranging from fluid dynamics
�17� �where they are usually referred to as the Benjamin-Feir
instability� and nonlinear optics �18,19� to plasma physics
�20�. While earlier manifestation of such instabilities was
studied in continuum systems, in the last decade the role of
the MI in the dynamics of discrete systems has emerged. In
particular, the MI was analyzed in the context of the discrete
nonlinear Schrödinger equation �21�.

The fundamental idea of linear stability analysis is to per-
turb the initial solution slightly, and then study whether this
small perturbation grows or decays with propagation. It
should be emphasized that the linear stability analysis is
valid as long as the perturbation amplitude remains small
compared with the initial wave amplitude. So, to study the
MI, we assume an initial wave. The stability properties of the
initial wave can be determined by perturbing the initial
wave,


n��� = �
0 + Bn����exp�i�kn − ���� , �6�

where 
0 is the initial complex constant amplitude, k and �
are, respectively, the wave number and the angular frequency
of the carrier wave. The quantity Bn��� is the perturbation
assumed to be small in comparison of 
0. To further ana-
lyzed this problem, we write

Bn = b1 exp�i�Kn + ���� + b2
� exp�− i�Kn + ����� , �7�

where K and � are the wave number and the frequency of
perturbation, respectively. While K is real, � may be com-
plex. Parameters b1 and b2 are complex constants. With this
relation of the perturbation, Eq. �7� leads to a linear homog-
enous system for b1 and b2. The condition for the nontrivial
solution of this linear homogenous system gives a second-
order equation for �,
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FIG. 3. Group velocity.
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�� − 
r − i
i�2 = �r + i�i, �8�

where 
r, 
i, �r, and �i are given in the Appendix. The fre-
quency � can be written as

� = 	
r ����r + ����
2


 + i	
i ���− �r + ����
2


 . �9�

Substituting Eq. �9� into Eq. �7� helps in understanding the
behavior of waves in the network. Indeed, this operation
yields

Bn��� = �b1 exp	i�Kn + �
r ���− �r + ����
2

���

+ b2

� exp	− i�Kn + �
r ���− �r + ����
2

���
�
� exp�− 	
i ���− �r + ����

2

�� . �10�

The amplitude Bn��� will be unbounded as �→ +� if and

only if: 
i���−�r+����
2 �0, in order to get this relation, it is

necessary that 
i�0. Because, −��−�r+����
2 �0, the relation,


i−��−�r+����
2 �0, holds and from this inequality we can eas-

ily derive the following inequality,

�
0�2 � �
0�cr
2

= 
4P2i sin2�K�cos�2k� + 4P1i sin2�K/2�cos�k�
Qi


 .

�11�

Relation �11� represents the threshold amplitude of wave
through the system. As a first step, it is interesting to see how
the threshold amplitude depends on the presence of first- and
second-neighbor couplings. Thus, this threshold is depicted
in Fig. 5. Figure 5�a� shows the threshold amplitude in the
absence of second-neighbor couplings, while Fig. 5�b� shows
the case where the second-neighbor couplings are taken into
account. One can see that the competitive effects between
first- and second-neighbor couplings lead to an explosion of
the threshold in satellite sidebands.

Assume that the necessary condition 
i−��−�r+����
2 �0 is

satisfied, then we can write the inequality 2
i
2�−�r, that is
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FIG. 6. Propagation of wave through the network in the absence of second-neighbor couplings: �a� Cell 800; �b� Cell 1000
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�P1rQr + P1iQi�sin2�K/2�cos�k� + 4�P2rQr

+ P2iQi�cos2�K/2�cos�2k� +
�

8�
0�2sin2�K/2�

�
2
i

2 + 16Pr
2 sin4�K/2�cos2�k� + 16P2r

2 sin4�K�cos2�2k�
8�
0�2sin2�K/2�

� 0, �12�

where

� = 8 sin�K�sin�k��− P2iP1i sin�2K�sin�2k�

+ 4�P1iP2i + P1rP2r�sin2�K�cos�2k�� . �13�

Relation �12� represents the MI criterion associated to the
model understudy. This result is the discrete version of the
well-known Lange and Newell criterion for discrete system.
So, one can call this relation the generalized discrete Lange
and Newell criterion.

In particular, when P1i= P2i= P2r=Qi=�r=0, Eq. �5� is re-
duced to the usual �nonintegrable� discrete nonlinear
Schrödinger equation �21� and, one recovers results of Ref.
�21�, which in turn leads, in the continuum limit, to the well-
known Benjamin-Feir instability �17�. In the long-
wavelength limit, when k	1 and K	1: for P2i= P2r=0, the
continuous analog of Eq. �5� is the continuous CGL equation
�22�. In this case, relation �12� also fulfills the well-known
Lange and Newell criterion for continuous lattices.

III. NUMERICAL ANALYSIS

To verify our analytical findings and to further explore
MI, we use computer simulations. In particular, our results
are based on the theory of linear stability analysis. However,
we know that the linear stability analysis is limited because it
can only predict the onset of instability and does not tell us
anything about the long-time dynamical behavior of the sys-
tem when the instability grows. When the perturbation am-
plitude grows large enough to be comparable to that of the

initial wave, the numerical analysis must be adopted. To fur-
ther confirm that our linear instability analysis given above
can correctly describe the initial stage of instability in the
nonlinear electrical lines, we exactly solve Eq. �1� by nu-
merical fourth-order Runge-Kutta algorithm. A normalized
integration time step �t=5�10−3 is used for numerical
simulations. Similarly, the number of cells N is chosen to be
equal to 1500 and we have used periodic boundary condi-
tions so that we do not encounter the wave reflection at the
end of the line. At the input of the line, we apply a slowly
modulated signal,

V�t� = V0�1 + m0 cos�2�fmt��cos�2�fpt� , �14�

where V0 is the amplitude of the unperturbed plane wave, m0
designates the modulation rate and fm the frequency of
modulation. As a specific example, we use the following
value V0=0.80 V, fp=1000 KHz, m0=0.01 and fm
=12 KHz. It is well known that a continuous wave or qua-
sicontinuous radiation propagating in a nonlinear dispersive
medium may suffer instability with respect to weak periodic
modulations of the steady state and results in the breaking of
a continuous wave into a train of ultrashort pulses. The
above input signal voltage leads to a self-modulation of the
wave as represented in Fig. 6 at different cells in the pres-
ence of dissipation term ��1=0.003 and �2=0.00015� with
�0=0 i.e., in the absence of second neighbors. Figure 6�a�
presents the time evolution of the voltage at cell 800, while
Fig. 6�b� is depicted at cell 1000. In all these figures, one
observes that the initial quasicontinuous is broken into a train
of ultrashort pulses. The time evolution shape of the ul-
trashort pulses depends not only on parameters of the system
but also on the different cells. The generation of high-
repetition-rate pulse trains resulting from MI has been first
suggested by Hasegawa and Brinkman �23� and it was later
experimentally verified by Tai et al. �23�. Each element of
the wave train which propagate in Fig. 6 has the shape of
solitonlike object. One of the main properties of solitons,
making them to be of special interest for physical applica-
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FIG. 7. Propagation of wave through the network in the presence of second-neighbor couplings: �a� Cell 800; �b� Cell 1000
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tions, is preserving their localized shapes during evolution
and mutual interactions. Due to this robustness, solitons can
be regarded as quasiparticles and systems possessing large
number of such excitations can be described in terms of the
distribution function governed by the kinetic equation. The
propagation presented in Fig. 6 is similar to the quantum
evolution of Bose-Einstein condensate atom �24�. While in
the presence of second neighbors, one obtains the phenom-
enon depicted in Fig. 7. Even in this case, the initial wave
breaks into a pulse train. But due to the competitive effect
between first- and second-neighbor couplings, the magnitude
of voltage seems to increase slowly. What is also known at
this level is the fact that the modulated waves seem to travel
with chaoticlike behavior through the line.

Coherent structures and chaotic states are well known as
two distinct states of nonlinear dissipative wave systems.
However, these states sometimes occur and propagate to-
gether in some systems. Figure 8 depicts the incoherent evo-
lution of modulated plane waves through the line. This inco-
herent evolution of modulated plane waves can also be
evidenced from the nonreproducibility of experiments de-
voted to their propagation in the nonlinear medium, as ob-
served by Ablowitz et al. �25� in the context of fluid dynam-
ics, that is, considering modulated periodic Stokes waves in
deep water. For two different experiments with initial iden-
tical signals generated by the wave maker, the resulting tem-
poral evolutions of the surface displacement at a given posi-
tion in the tank are graphed against each other to produce a
“phase plane” plot indicating the level of reproducibility. In
the phase plane plots, the evolution of the voltage Vn

1�t� is
graphed against the evolution of the voltage Vn

2�t�, Vn
1�t�, and

Vn
2�t� being the temporal voltages measured at the same cell

n, and obtained using the same input signal V�t� for the dif-
ferent experiments. Figure 8�a� presents the dynamics of the
line in the absence of second neighbors. The graph traduces
the dynamics of nonlinear modulated waves behaving an ap-
parently chaoticlike state, at cells 1000. But when we take
into account second neighbors, the system seems to become
more chaotic as depicted in Fig. 8�b�. One can conclude that

the presence of second neighbors through the line seems to
lead the system toward a chaoticlike behavior.

IV. CONCLUSION

In summary, we have reported the first derivation of the
discrete complex Ginzburg-Landau equation with first- and
second-neighbor couplings in a discrete nonlinear electrical
lattice. The generalized discrete Lange-Newell criterion has
been presented. As the quintic nonlinearity, we have demon-
strated that the second-neighbor couplings can be used to
control the magnitude of waves, and also can lead the system
in a chaoticlike behavior. Results which have been presented
in this work can be also appropriate in the context of multi-
disciplinary subjects.

APPENDIX

Coefficients of the linear homogenous system �8�,

a = − 4P1 sin2 K

2
cos�k� + 2P1sin�K�sin�k�

− 4P2 sin2�K�cos�2k� + 2P2 sin�2K�sin�2k� + Q�
0�2,

b = − 4P1
� sin2K

2
cos�k� + 2P1

� sin�K�sin�k�

− 4P2
� sin2�K�cos�2k� + 2P2

� sin�2K�sin�2k� + Q��
0�2,


r = − 2P1r sin�K�sin�k� − 2P2r sin�2K�sin�2k� ,


i = Qi�
0�2 − 4P1i sin2K

2
cos�k� − 4P2i sin2�K�cos�2k� ,

�r = Re	1

4
�b − a�2 + ab − �Qr

2 + Qi
2��
0�4
,

�i = Im	1

4
�b − a�2 + ab − �Qr

2 + Qi
2��
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FIG. 8. Phase portrait at Cell 1000: �a� in absence of second-neighbor couplings; �b� in presence of second-neighbor couplings
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