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We investigate Painlevé integrability of a generalized nonautonomous one-dimensional nonlinear
Schrödinger �NLS� equation with time- and space-dependent dispersion, nonlinearity, and external potentials.
Through the Painlevé analysis some explicit requirements on the dispersion, nonlinearity, dissipation/gain, and
the external potential as well as the constraint conditions are identified. It provides an explicit way to engineer
integrable nonautonomous NLS equations at least in the sense of Painlevé integrability. Furthermore analytical
solutions of this class of integrable nonautonomous NLS equations can be obtained explicitly from the solu-
tions of the standard NLS equation by a general transformation. The result provides a significant way to control
coherently the soliton dynamics in the corresponding nonlinear systems, as that in Bose-Einstein condensate
experiments. We analyze explicitly the soliton dynamics under the nonlinearity management and the external
potentials and discuss its application in the matter-wave dynamics. Some comparisons with the previous works
have also been discussed.
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I. INTRODUCTION

The soliton is a ubiquitous phenomenon in nature. Clas-
sically the soliton originates from the subtle balance between
the dispersion and nonlinearity and has a particlelike nature
which remains intact even after mutual collisions. The soli-
ton dynamics plays an important role in the study of the
elementary excitations in related systems. In recent years the
dynamics of the matter-wave soliton has been intensively
studied in Bose-Einstein condensates �BECs� �1–3�. With the
development of modern technology the concept of soliton
management �4� has been proposed. Essentially soliton man-
agement is control of the soliton dynamics by tuning the
related control parameters. For example, we can consider the
dispersion in nonlinear optics �5–9� and nonlinearity in BEC
by the technique of Feshbach resonance �10�. In the one-
dimensional case, such a soliton management can be de-
scribed by a generalized nonautonomous nonlinear
Schrödinger �NLS� equation,

i
�u�x,t�

�t
+ f�x,t�

�2u�x,t�
�x2 + g�x,t��u�x,t��2u�x,t�

+ V�x,t�u�x,t� + i��x,t�u�x,t� = 0. �1�

Here f�x , t� and g�x , t� are the dispersion and nonlinearity
management parameters, respectively. V�x , t� denotes the ex-
ternal potential applied and ��x , t� is the dissipation ���0�
or gain ���0�. In the BEC context Eq. �1� is also known as
Gross-Pitaevskii equation �11�. The general form of Eq. �1�
includes many special cases discussed in the literature and its
analytical solitonlike solution was recently named as nonau-

tonomous soliton �12�, which is quite different from the con-
ventional canonical soliton concept �13�.

As the first extension of the canonical soliton concept in
1976, Chen and Liu �14� found that the soliton can be accel-
erated in a linearly inhomogeneous plasma. At the same time
the analytical soliton solutions for the Korteweg–de Vries
equation with varying nonlinearity and dispersion were also
found by Calogero and Degasperis �15�. In 1993 Konotop et
al. �16,17� discussed the soliton dynamics of the discrete
NLS equation with varying coefficients. Recently the gener-
alized NLS equation with varying dispersion, nonlinearity,
and dissipation or gain has been extensively investigated in
the literature �12,18–23� and some useful techniques have
been explored. On one hand, based on the generalized in-
verse scattering transformation �14�, the Lax pair analysis
was used in discussing the integrability condition of the sys-
tems under study �12,18,19,23�. Another available method
used widely in the literature is the similarity transformation
�20,24,25�, in which transformation parameters can be deter-
mined by a set of differential equations. In some special
cases the set of differential equations can be solved analyti-
cally and, as a result, analytical solutions of the systems un-
der study were obtained. However, it was pointed out in Ref.
�24� that in general cases such a set of differential equations
is difficult to solve analytically. Therefore a general way to
obtain analytical solutions of the nonautonomous nonlinear
equation is still lacking. By some explicit ways mentioned
above the analytical soliton solutions of the nonautonomous
NLS equation have been obtained, and they are apparently
different from the canonical solitons in many aspects because
both amplitudes and speeds of the solitons vary with time
and space. However, under some integrability conditions
�12,18,19,21�, these solitonlike solutions maintain the basic
properties of the canonical solitons.*zhaod@lzu.edu.cn
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From the angle of soliton applications it is desirable to
keep the basic properties of the solitons when some param-
eters are controllable. For example, in optical soliton trans-
mission the basic shape of the input optical soliton should be
maintained in the transmission process in order to decrease
the error rate. Thus a question arises: how does one manage
these parameters to make nonautonomous NLS equation �1�
integrable? Then as a result, the corresponding solitonlike
solutions keep the basic properties of the canonical solitons.
To answer this question we employ the Painlevé analysis, a
quite powerful tool to explore integrability of partial differ-
ential equations. The central results of the present paper are
that �i� starting from nonautonomous NLS equation �1�, the
explicit requirements on the constraint relations about pa-
rameters f�x , t�, g�x , t�, V�x , t�, and ��x , t� �i.e., the integra-
bility conditions� can be obtained by the Painlevé analysis,
which provides a significant way to engineer integrable non-
autonomous NLS systems; and �ii� under these conditions
the analytical solutions of these integrable nonautonomous
NLS equation can be obtained from the solutions of the stan-
dard NLS equation. We provide a direct way to control the
soliton dynamics by tuning the control parameters.

This paper is organized as follows. In Sec. II we perform
the Painlevé analysis of Eq. �1� to obtain the constraints on
f�x , t�, g�x , t�, V�x , t�, and ��x , t� or, in other words, the com-
patibility condition under which Eq. �1� can pass the Pain-
levé test. In Sec. III we show a transformation which can
convert Eq. �1� into the standard NLS equation under the
compatibility condition. In Sec. IV we give some examples
which show the way to obtain the solutions of Eq. �1� from
the solutions of the standard NLS equation by a set of sys-
tematic transformations. Finally we give a brief summary in
Sec. V.

II. PAINLEVÉ ANALYSIS AND COMPATIBILITY
CONDITIONS

Our analysis is based on the Painlevé test for partial dif-
ferential equations, i.e., the well-known Weiss-Tabor-
Carnevale �WTC� test, which has been proven to be a very
effective tool to investigate the integrability of partial differ-
ential equations. The remarkable connection between com-
plete integrability and the Painlevé property was first ob-
served by Ablowitz and Segur �26�. They found that
similarity reductions of nonlinear partial differential equa-
tions solvable by an inverse scattering transform give rise to
nonlinear ordinary differential equations; the only movable
singularities of their solutions are poles. In 1980 Ablowitz et
al. �27� developed an algorithm, based on the work of Kowa-
levski �28�, for giving necessary conditions for an ordinary
differential equation to have the Painlevé property. The algo-
rithm was later extended by Weiss et al. �29� to be applicable
directly to partial differential equations. This algorithm is
now called WTC test. For details of the WTC test and its
applications, one can refer to Refs. �29–31�. Although some
special cases of Eq. �1� have been discussed through Pain-
levé analysis by many authors, it seems that a thorough
analysis of Eq. �1� is still lacking. In this section we follow
the idea in �31� to obtain a condition which guarantees that

Eq. �1� pass the WTC test. Then under this condition in Sec.
III we look for a transformation which converts Eq. �1� to the
standard cubic nonlinear Schrödinger equation.

In order to perform conveniently the Painlevé analysis we
first complexify Eq. �1�, which becomes

i
�u�x,t�

�t
+ f�x,t�

�2u�x,t�
�x2 + g�x,t�v�x,t�u�x,t�2

+ V�x,t�u�x,t� + i��x,t�u�x,t� = 0, �2�

− i
�v�x,t�

�t
+ f�x,t�

�2v�x,t�
�x2 + g�x,t�u�x,t�v�x,t�2

+ V�x,t�v�x,t� − i��x,t�u�x,t� = 0, �3�

where u�x , t� and v�x , t� are treated as independent complex
functions of variables x and t, and the functions f�x , t�,
g�x , t�, V�x , t�, and ��x , t� are analytic on the noncharacteris-
tic singularity manifolds ��x , t�=0. Due to the ansatz of
Kruskal �32� noncharacteristic singularity manifold can take
the following form:

��x,t� = x + ��t� . �4�

Then the solutions of Eqs. �2� and �3� can be expanded on
the noncharacteristic singularity manifold as

u�x,t� = �x + ��t��−p�
j=0

�

uj�t��x + ��t�� j , �5�

v�x,t� = �x + ��t��−q�
j=0

�

v j�t��x + ��t�� j , �6�

where u0�” 0, v0�” 0.
Furthermore we also expand f�x , t�, g�x , t�, V�x , t�, and

��x , t� on the same singularity manifold as follows:

f�x,t� = �
i=0

�

f i�t��x + ��t��i,

g�x,t� = �
i=0

�

gi�t��x + ��t��i,

V�x,t� = �
i=0

�

Vi�t��x + ��t��i,

��x,t� = �
i=0

�

�i�t��x + ��t��i, �7�

where

f i�t� =
1

i!
� �i f�x,t�

�xi �
x=−��t�

,

and similarly for g�x , t�, V�x , t�, and ��x , t�.
Substituting expressions �5�–�7� into Eqs. �2� and �3� and

collecting the same powers of ��t�, one can obtain �i� the
values of p and q, and the equations about the first terms
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derived from the leading-order analysis; and �ii� the general
recursion relations of uj and v j �j�1� as shown below.

A. Leading-order terms and recursion relation

Substituting Eqs. �5�–�7� into Eqs. �2� and �3� by the stan-
dard procedure for leading-order analysis, we get p=q=1
and

2f0�t� + g0�t�u0�t�v0�t� = 0. �8�

The recursion relations are

A�j�	uj

v j

 � 	 Qj g0u0

2

g0v0
2 Qj


	uj

v j

 = 	Fj

Gj

 , �9�

where

Qj = �j − 1��j − 2�f0 + 2g0u0v0, �10�

Fj = − i�uj−2,t + �j − 2�uj−1�t� − gju0
2v0 − �

k=1

j

�j − k − 1�

��j − k − 2�fkuj−k − g0v0�
m=1

j−1

uj−mum

− g0�
m=1

j−1

�
k=0

m

v j−mum−kuk − �
m=1

j−1

�
k=0

m

�
l=0

k

gj−mvm−kuk−lul

− �
m=0

j−2

Vj−m−2um − i�
m=0

j−2

� j−m−2um. �11�

i=�−1 and Gj has a similar expression which can be ob-
tained from Fj by first interchanging uj and v j and then tak-
ing its complex conjugate. In addition we use the notation
that once an index is less than zero, the expression itself is
zero. Hereafter the subscript “t” denotes time derivative of
the related functions.

B. Compatibility conditions

The recursion relations above determine the unknown ex-
pansion coefficients uniquely unless the determinant of the
matrix in Eq. �9� is zero. Those values of j at which the
determinant is equal to zero are called the resonances, and
the conditions which ensure Eq. �9� to have solutions at the
resonances are named compatibility conditions. From Eqs.
�9�–�11� it is found that resonances only occur at

j = − 1,0,3,4.

The resonance of j=−1 corresponds to the arbitrariness of
the singular manifold ��x , t�. For j=0 the recursion relation
holds automatically. It is just relation �8�.

From recursion relations �9� with condition �8� the com-
patibility conditions for the remaining resonances are

j = 3: v0�t�F3 − u0�t�G3 = 0, �12�

j = 4: v0�t�F4 + u0�t�G4 = 0. �13�

To show explicitly compatibility conditions �12� and �13�,
uj and v j �j=1,2� should be calculated by using the recur-

sion relation �9�, from which u1, v1, u2, and v2 can be
uniquely determined by u0, v0, f0, g0, f1, g1, f2, g2, �0, �, and
their derivatives. When one substitutes u1, v1, u2, v2, and Eq.
�8� into Eq. �12�, it is found that Eq. �12� is equivalent to

�g0f0f1 + 4f0
2g1�g0,t − �2g0g1f0 + 3g0

2f1�f0,t + 2g0
2f0f1,t

− 2f0
2g0g1,t − 2�2f0�0g1 + g0�0f1 − 3f0g0�1�g0f0

+ �6f2f0g0
2 − 2g0g1f0f1 − 4f1

2g0
2��t�t� = 0. �14�

By the arbitrariness of ��t�, one has

�f0f1g0 + 4f0
2g1�g0,t − �2f0g0g1 + 3f1g0

2�f0,t + 2f0f1,tg0
2

− 2f0
2g0g1,t − 2�2f0g1�0 + g0f1�0 − 3f0g0�1�g0f0 = 0,

�15�

6f2f0g0
2 − 2g0g1f0f1 − 4f1

2g0
2 = 0. �16�

Under this condition at j=3 we get from Eq. �12� that

u3 =
F3 − g0u0

2v0

g0u0v0
,

where v3 is arbitrary.
Repeating the above process the compatibility condition

at resonance j=4 is equivalent to

H� · � = 0, �17�

where H� · � is determined by u0, v0, f0, g0, f1, g1, f2, g2, f3,
g3, f4, g4, �0, �1, �, and their derivatives. Again by the
arbitrariness of � and u0, Eq. �17� is equivalent to a set of
algebraic and differential equations from which we conclude
that

g1�t� = f1�t� = 0. �18�

According to the definition of f i�t� we have

f1�t� = � � f�x,t�
�x

�
x=−��t�

= 0, �19�

but ��t� is arbitrary and Eq. �19� just means that f�x , t� is
independent of x. So we obtain

f1�t� = f2�t� = ¯ = 0

and

f�x,t� = f0�t� = f�t� . �20�

Similarly we have

g�x,t� = g0�t� = g�t� ,

��x,t� = �0�t� = ��t� . �21�

With Eqs. �20� and �21� it is found that the compatibility
condition for j=3 holds automatically and the compatibility
condition for j=4 is equivalent to

�4f2ggt − 2f f tg
2�� − 4f2g2�2 − 2f2g2�t − g2f f tt + f2ggtt

− 2f2gt
2 + f t

2g2 + f tgfgt + 4V2f3g2 = 0, �22�

which imposes a constraint condition on f�t�, g�t�, ��t�, and
V2�t�. Since
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Vi�t� =
1

i!
� �iV�x,t�

�xi �
x=−��t�

,

condition �22� also implies that

�3

�x3V�x,t� = 0.

Therefore we conclude that the conditions due to the Pain-
levé analysis for Eq. �1� are

f�x,t� = f�t�, g�x,t� = g�t�, ��x,t� = ��t� ,

V�x,t� = V0�t� + V1�t�x + V2�t�x2, �23�

where V0�t� and V1�t� are arbitrary, and f�t�, g�t�, ��t�, and
V2�t� satisfy relation �22�.

Condition �23� suggests that the Painlevé integrable class
of Eq. �1� should have the form of

i
�u�x,t�

�t
+ f�t�

�2u�x,t�
�x2 + g�t��u�x,t��2u�x,t� + �V0�t�

+ V1�t�x + V2�t�x2�u�x,t� + i��t�u�x,t� = 0, �24�

where f�t�, g�t�, ��t�, and V2�t� satisfy relation �22� and V0�t�
and V1�t� are arbitrary. In this case it is easy to check that by
a transformation

u�x,t� = q�x,t�exp�−
 ��t�dt� ,

the term of loss/gain in Eq. �24� can be eliminated formally
and so in this paper we only consider the model without
loss/gain ���t��0 in Eq. �24��, i.e.,

i
�u�x,t�

�t
+ f�t�

�2u�x,t�
�x2 + g�t��u�x,t��2u�x,t�

+ �V0�t� + V1�t�x + V2�t�x2�u�x,t� = 0. �25�

According to Eq. �22� its constraint condition on f�t�, g�t�,
and V2�t� is

− g2f f tt + f2ggtt − 2f2gt
2 + g2f t

2 + gfgtf t + 4V2f3g2 = 0.

�26�

One notes that Eq. �25� with V0�t�=0 has been studied by
Lax pair method �12� and the integrability condition obtained
is essentially consistent with Eqs. �23� and �26�. Actually
V0�t� can also be removed by means of a time-dependent
phase in the wave function as shown in Eq. �45�, but its
presence is necessary to clarify the roles played by V0�t� in
the dynamics of soliton in comparison with those played by
V1�t� and V2�t� terms.

We point out that relation �26� is invariant if we replace
g�t� with −g�t�. Setting

gt�t�
g�t�

−
f t�t�
f�t�

= 	�t� ,

Eq. �26� can be rewritten as the following Riccati equation of
	�t�:

	t − 	2 −
f t

f
	 + 4fV2 = 0.

Thus all functions satisfying Eq. �26� can be presented as

g�t� = f�t�exp�
 	�t�dt�, V2�t� = −
f	t − f	2 − f t	

4f2 ,

with 	�t� and f�t� given arbitrarily.

C. Some explicit integrable models

Below we discuss some explicit models of Eq. �25� that
satisfy compatibility conditions �23� and �26� and compare
them with some previous works.

�A� If V2�t�=0, Eq. �26� becomes

g�t� =
f�t�

C1
 f�t�dt + C2

, �27�

where C1 and C2 are constants such that the denominator in
the above expression is not equal to zero at any time. This is
a physically interesting case in that the soliton can be coher-
ently compressed by the technique of Feshbach resonance.
We discuss it in detail below. Note that if V0�t�=V1�t�=0,
C1=0, C2=1, and f�t�= 


1
2 , then Eq. �25� recovers the stan-

dard NLS equation.
�B� If f�t�=1, Eq. �26� becomes

g�t�gt,t�t� − 2gt
2�t� + 4V2�t�g2�t� = 0. �28�

�1� We take V2�t�=�2 /4, where � is a constant. In this
case g�t� has the following form:

g�t� =
2�e�t

C1e2�t + C2
, �29�

where C1 and C2 are constants such that the denominator in
Eq. �29� is not equal to zero at any time. This condition was
obtained in �33� through the Lax pair technique. In particular,
the model with C1=2� ���0� and C2=0 was studied in
�23�.

�2� Let V2�t�= �1−tanh��t���2 /2, where � is a constant.
From Eq. �26� one has

g�t� =
��1 + tanh��t��

C1 + C2�tanh��t� + 2 ln�1 − tanh��t���
, �30�

where C1 and C2 are constants. If C1=� and C2=0, then Eq.
�30� becomes

g�t� = 1 + tanh��t� , �31�

which is a model studied in �34�.
�C� If g�t�= 
1, Eq. �26� becomes

f t�t�2 − f�t�f t,t�t� + 4f�t�3V2�t� = 0. �32�

�1� We take V2�t�= 
�2 /4, where � is a constant. In this
case one has
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f�t� = �
1

2�2C1
2sech2	 t + C2

2C1

 ,

where C1 and C2 are constants and C1�0. Setting C1
=1 /2� and C2=0 we get

f�t� = � 2 sech2��t� . �33�

�2� We take f�t�=sech��t�, where � is a constant. One can
solve for V2�t� that

V2�t� = −
�2

4
sech��t� . �34�

The list can be continued if one wishes. This list also
shows sufficiently how to engineer integrable nonautono-
mous NLS systems �1� by making use of condition �26�;
some of them have been studied in the literature. In the fol-
lowing we explore systematically the analytical solutions of
these integrable nonautonomous NLS equations.

III. TRANSFORMATION TO THE STANDARD
NLS EQUATION

In this section we look for a transformation which can
convert Eq. �25� into the standard NLS equation

i
�

�T
Q�X,T� + 


�2

�X2Q�X,T� + ��Q�X,T��2Q�X,T� = 0,

�35�

where 
 and � are real constants. It is well known that stan-
dard NLS equation �35� is completely integrable and it has
been thoroughly discussed in the literature. If �
�0, Eq.
�35� is called self-focusing and it has bright soliton solutions.
If �
�0, Eq. �35� is called self-defocusing and it has dark
soliton solutions.

We look for a transformation in the form �35�

u�x,t� = Q„p�x,t�,q�t�…eia�x,t�+c�t�, �36�

where p�x , t�, q�t�, a�x , t�, and c�t� are real functions to be
determined and u�x , t� and Q�X ,T� are the solutions of Eqs.
�25� and �35�, respectively.

Substituting Eq. �36� into Eq. �25� and letting p�x , t�=X
and q�t�=T, we obtain

iQTqt + fpx
2QX,X + ge2c�Q�2Q + i�Q�ct + fax,x�

+ QX�pt + 2fpxax�� + fpx,xQX − �at + fax
2

− V0 − V1x − V2x2�Q = 0. �37�

Comparing this with Eq. �35� one has

ct + fax,x = 0,

pt + 2fpxax = 0,

at + fax
2 − V0 − V1x − V2x2 = 0,

px,x = 0. �38�

From the first two and the fourth equations above we get

a�x,t� = −
ct�t�
2f�t�

x2 + h1�t�x + h2�t� ,

p�x,t� = xe2c�t� − 2
 f�t�h1�t�e2c�t�dt , �39�

where h1�t� and h2�t� are functions to be determined. Insert-
ing a�x , t� and p�x , t� into the third equation in Eq. �38�,
collecting the coefficients of all powers of x, and further
setting them as zero, we get

− ct,t f + ctf t + 2fct
2 − 2V2f2 = 0,

− 2cth1 + h1,t − V1 = 0,

fh1
2 + h2,t − V0 = 0. �40�

From the last two equations in this system h1�t� and h2�t� can
be solved:

h1�t� = h�t�e2c�t�, �41�

h2�t� =
 �V0�t� − f�t�h�t�2e4c�t��dt + C2, �42�

where h�t�=�V1�t�e−2c�t�dt+C1. Here C1 and C2 are con-
stants.

Finally in comparison to the standard NLS equation one
has

ge2c

qt
= �,

fe4c

qt
= 
 . �43�

The above equations give

c�t� =
1

2
ln


g�t�
�f�t�

, q�t� =



�2
 g2�t�
f�t�

dt + C3, �44�

where C3 is a constant. Usually we choose C3 such that
q�0�=0.

Then it is easy to determine the remaining transformation
parameters a�x , t� and p�x , t� as

a�x,t� =
1

4f�t�
d

dt
	ln

f�t�
g�t�


x2 +
g�t�
f�t�

z�t�x

−
 	g�t�2

f�t�
z�t�2 − V0�t�
dt + C2, �45�

p�x,t� =

g�t�
�f�t�

x −
2


�

 g�t�2

f�t�
z�t�dt . �46�

Here we define z�t� by

z�t� =
 f�t�
g�t�

V1�t�dt + C1.

Now we have obtained the explicit expressions of p�x , t�,
q�t�, a�x , t�, and c�t� and then transformation �36� has also
been explicitly and analytically determined. This result is
independent of both the solutions of the standard NLS equa-
tion and of the parameters and the external potentials, which
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is in sharp contrast to the similarity transformation method.
The general expression of the transformation is difficult to
obtain explicitly in a general case �24�.

IV. APPLICATIONS AND DISCUSSIONS

The existence of transformation �36� for conversion of
nonautonomous NLS equation �25� to the standard NLS one
�Eq. �35�� indicates that the analytical solitonlike solutions of
Eq. �25� have a close relation with the conventional canoni-
cal solitons when integrability conditions �23� and �26� are
satisfied. This is a fairly general conclusion and it can be
applied to all solutions of the standard NLS equation. In
order to show this generality and its wide applications in
engineering integrable nonautonomous NLS equation, we
discuss some explicit examples and make some comparison
with the previous results in the literature.

A. Solitons in nonuniform media

As the first nontrivial generalization of the standard NLS
equation, Chen and Liu �14� studied the propagation of a
soliton in an inhomogeneous media governed by the follow-
ing equation:

i
�u�x,t�

�t
+

�2u�x,t�
�x2 + 2�u�x,t��2u�x,t� − 2�xu�x,t� = 0, �47�

where � is defined as in �14�. Apparently this equation is a
special case of Eq. �25� under f�t�=1, g�t�=2, V0�t�=V2�t�
=0, and V1�t�=−2�. In this case integrability conditions �23�
and �26� are autonomically satisfied irrespective of the ex-
plicit form of V1�t�, since it does not influence the integra-
bility of the system studied. This is the reason that the model
of Chen and Liu �14� can be studied by Lax pair method. The
one-soliton solution of standard NLS equation �36� is

Q�X,T� = sech�X�e�i/2�T. �48�

The corresponding one-soliton-like solution of Eq. �47� can
be straightforwardly written as

u�x,t� = sech�x + 2�t2 − 4t0t − x0�

�e−i�2��t−t0�x+�4/3��2�t − t0�3�ei�t+t0�/2, �49�

where t0 and x0 are the initial time and position of the one-
soliton-like solution. One notes that soliton �49� is the same
as that in �14� except for some different notations.

Below we go beyond the one-soliton �49� to explore its
dynamical properties for arbitrary V0�t� and V1�t�. According
to Eqs. �45� and �46� the dynamical behavior of the corre-
sponding one-soliton-like solution can be described by the
time-dependent wave number �let 
=1, �=2�

k�t� =
�

�x
a�x,t� =
 V1�t�dt + 2C1 �50�

and the position- and time-dependent frequency shift

��x,t� = −
�

�t
a�x,t� = − V1�t�x + k�t�2 + V0�t� . �51�

In addition the central position of the one-soliton moves with
the velocity

vg�t� = −
�

�t
p�x,t� = 2k�t� . �52�

In Fig. 1 we show the one-soliton evolution with time.
The upper one is the model studied by Chen and Liu �14�
with V0�t�=0 and V1�t�=1. The lower one shows that the
one-soliton oscillates apparently in space since the linear ex-
ternal potential is modulated periodically as V1�t�=sin��t�.
Obviously, when �→�, the one-soliton behaves like stan-
dard stationary one-soliton �48� since in this case
�sin��t�dt→0. Of course, one can take the form of V0�t� and
V1�t� as desired since the presence of these two external po-
tentials does not break down the integrability of the system.
Thus the soliton moves as a whole under the potentials V0�t�
and V1�t�. This can be seen from Fig. 1, in which the ampli-
tude and width of the one-soliton remain unchanged. How-
ever, this is not the case in the presence of the quadratic
external potential, as discussed below.

B. Presence of quadratic external potential

It is well known that the presence of the quadratic exter-
nal potential is important to generate BEC in experiments. In
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FIG. 1. �Color online� The one-soliton dynamical behavior. Up-
per plot: V0�t�=0, V1�t�=1; lower plot: V0�t�=V1�t�=sin��t� with
�=1. The other parameters used are f�t�=g�t�=1, C1=C2=C3=0,
and V2�t�=0.
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the mean-field level the BEC can be well described by the
GP equation. Thus the analytic solution of the GP equation is
most relevant to the experimental observation of BEC dy-
namics. For simplicity we fix f�t�=1 in the case of BEC.
Thus Eq. �26� becomes

V2�t� =
1

4
g�t�

d2

dt2

1

g�t�
, �53�

which indicates how to tune the quadratic external potential
when the nonlinear interaction is tuned by the technique of
Feshbach resonance in order to ensure the integrability of the
matter-wave system. A similar condition was also given by
Hernandez et al. �36� and Zhang et al. �37� in discussing how
to control the soliton interactions in BEC. It is very interest-
ing to note that if the quadratic external potential is absent,
i.e., V2�t�=0, condition �53� means that

g�t� =
1

1 + �t
, �54�

where � is a constant. When �=0, g�t�=1; there is no non-
linear modulation, which is the standard NLS equation.
When ��0, the nonlinearity decreases with time and as a
result the soliton broadens with time. On the contrary, when
��0 and t� �0,−1 /��, the nonlinearity increases rapidly
with time and correspondingly the soliton is compressed rap-
idly, as shown in Fig. 2. This case is consistent with that in
�38�. According to the theory of Feshbach resonance

as�t� = abg	1 +
�

B0 − B�t�
 ,

and so

g�t� =
as�t�
abg

= 1 +
�

B0 − B�t�
,

which gives

B�t� = B0 + �	1 +
1

�t

 . �55�

When the magnetic field varies like Eq. �55� �note that t
� �0,−1 /���, the nonlinear interaction follows like Eq. �54�.
This effect provides a simple way to compress the soliton.

Below we focus on the effect of the quadratic external
potential tuned by Eq. �53�. We first discuss one-soliton case
�48� and then provide a multisoliton solution later. To de-
scribe the one-soliton dynamics the time-dependent wave
number becomes

k�t� = −
x

2

gt�t�
g�t�

+ g�t��
 V1�t�
g�t�

dt + C1� , �56�

and the position- and time-dependent frequency shift is

��x,t� =
x2

4
�ln g�t��tt − x�gt�t�	
 V1�t�

g�t�
dt + C1
 + V1�t��

+ g�t�2	
 V1�t�
g�t�

dt + C1
2

− V0�t� . �57�

The central position of the one-soliton moves with velocity

vg�x,t� = −



�
gtx +

2


�
g�t�2	
 V1�t�

g�t�
dt + C1
 , �58�

which is space and time dependent.
In Fig. 3 we present the one-soliton dynamics when the

nonlinear interaction is tuned as g�t�=1+d sin��t� �39� as
�d ,��= �0.5,2�. To ensure the integrability of the system
studied, the corresponding quadratic external potential V2�t�
should be tuned as Eq. �53�, as shown in the upper plot of
Fig. 3. It is noted that not only the magnitude of the qua-
dratic external potential changes periodically but also its sign
does, which means changing between the repulsive and at-
tractive quadratic external potentials. With these modulations
the one-soliton oscillates periodically due to V1�t�, as dis-
cussed above. However, different from the case discussed
above, here the amplitude and width of the one-soliton
change periodically. When the amplitude of the one-soliton
increases, the width of the one-soliton becomes narrow cor-
respondingly. This result is due to the periodic modulation of
the nonlinear interaction g�t�, and the expressions of c�t� and
p�x , t�.

Now a brief summary is in order. In a generalized one-
dimensional integrable NLS equation �25�, V0�t� term con-
tributes only to the frequency shift of the one-soliton and it
can be removed by a time-dependent phase in the wave func-
tion as mentioned above. The linear external potential V1�t�
term contributes both the frequency shift and the central po-
sition of the one-soliton. These two terms do not influence
the integrability of the system. However, the quadratic exter-
nal potential V2�t� term affects the integrability of the system
and it should satisfy a constraint condition �26� to ensure the
integrability of the system. Surprisingly the V2�t� term does
not directly contribute to the soliton motion and possible
deformations.

After the one-soliton dynamics has been clearly explored,
below we discuss multisoliton dynamics. As an example we
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FIG. 2. �Color online� The one-soliton compression as the mag-
netic field tuned by Eq. �55� in the absence of the quadratic external
potential. Here V0�t�=V1�t�=0 and f�t�=1, C1=C2=C3=0, and �
=−0.1.
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consider the following two-soliton solution of the standard
NLS equation �40�:

Q�X,T� = 4e�i/2�T cosh�3X� + 3e4iT cosh X

cosh�4X� + 4 cosh�2X� + 3 cos�4T�
.

�59�

In Fig. 4 we show the time evolution of the two-soliton
when the nonlinear interaction modulation and the external
potential are applied, as in the one-soliton case. One notes
that the overall features are completely similar to the one-
soliton case; i.e., the two-soliton oscillates periodically in
space and its amplitude and width change dramatically, as
compared with the standard one �the upper plot of Fig. 4�.
Here we do not observe the soliton splitting phenomenon, as
discussed in �4�. The reason is that the present case is com-
pletely integrable, but the system �see, e.g., Eq. �5.5� of �4��
does not satisfy integrability condition �26� since V2=0 in
that system.

The above studies of the one- and two-soliton dynamics
show that the transformation we obtained is quite powerful

and can be applied to all solutions of the standard NLS equa-
tion, which are vast in the literature �31,41–47�.

V. SUMMARY

Based on the Painlevé test we have thoroughly analyzed
the integrability conditions of the generalized one-
dimensional nonautonomous NLS equation and found the
general constraint conditions on the dispersion and nonlin-
earity managements and the external potentials. It provides
many ways to engineer integrable nonautonomous NLS sys-
tems. Through a general transformation the solutions of these
integrable nonautonomous NLS equations have been ob-
tained analytically from the solutions of the standard NLS
equation. The corresponding soliton dynamics can be con-
trolled as desired by tuning the related dispersion, nonlinear-
ity, and external potential parameters. Moreover, the charac-
teristic contributions of different control parameters to the
soliton dynamics have been clearly identified, which is of
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FIG. 3. �Color online� Upper plot: the nonlinear interaction
tuned as g�t�=1+d sin��t� with �d ,��= �0.5,2� and the quadratic
external potential given by Eq. �53� with 
=1 /2. Lower plot: the
corresponding one-soliton time evolution with V0�t�=sin��t� and
V1�t�=g�t�sin��t�. The other parameters used are f�t�=1 and C1

=C2=C3=0.
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FIG. 4. �Color online� Upper plot: the two-soliton solution of
the standard NLS equation. Lower plot: time evolution of the two-
soliton tuned by the nonlinear interaction and the external potentials
as used in Fig. 3. All parameters used are the same as those in Fig.
3 except for �=4.

HE et al. PHYSICAL REVIEW E 79, 056610 �2009�

056610-8



significance to guide experiment to control the soliton dy-
namics. The same idea can also be used to other nonlinear
systems and provides a general way to engineer integrable
nonautonomous nonlinear systems.
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